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AN OPTIMAL POINCARÉ-WIRTINGER INEQUALITY IN GAUSS SPACE

BARBARA BRANDOLINI1, FRANCESCO CHIACCHIO1, ANTOINE HENROT2,
AND CRISTINA TROMBETTI1

Abstract. Let A be a smooth, convex, unbounded domain of RN . Denote by �
1
(A) the �rst

nontrivial Neumann eigenvalue of the Hermite operator in A; we prove that �
1
(A) � 1. The

result is sharp since equality sign is achieved when A is a N -dimensional strip. Our estimate
can be equivalently viewed as an optimal Poincaré-Wirtinger inequality for functions belonging
to the weighted Sobolev space H1(A; dD

N
), where D

N
is the N -dimensional Gaussian measure.

1. Introduction

Let A be a convex domain of RN (N � 2) and let us denote by dDN the standard Gaussian
measure in RN , that is

dDN =
1

(2�)N=2
e�

jxj2

2 dx:

In [3] (see also [36] and [2]) the authors prove, among other things, that, if A is a convex,
bounded domain, the �rst nontrivial eigenvalue �1(A) of the following problem

(1.1)
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>

<

>

>

:

�div
�

exp
�

� jxj2

2

�

Du
�

= � exp
�

� jxj2

2

�

u in A

@u

@�
= 0 on @A

satis�es

(1.2) �1(A) � max

�

1;
1

2
+

�2

diam(A)2

�

:

Here � stands for the outward normal to @A and diam(A) for the diameter of A. It is well-known
that �1(A) can be characterized in the following variational way

�1(A) = min
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A
jD j2dDN
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A
 2dDN

:  2 H1(A; dDN ) n f0g;

Z

A
 dDN = 0
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where H1(A; dDN ) is the weighted Sobolev space de�ned as follows

H1(A; dDN ) �
n

u 2W 1;1
loc (A) such that (u; jDuj) 2 L

2(A; dDN )� L
2(A; dDN )

o

;

endowed with the norm

kukH1(A;dDN )
= kukL2(A;dDN ) + kDukL2(A;dDN ) :

Incidentally note that the space H1(A; dDN ) � H1(A) whenever A is a bounded domain.
Estimate (1.2) implies that, if A is a bounded, convex domain of RN , the following Poincaré-
Wirtinger inequality holds

(1.3)
Z

A

�

u�

Z

A
udDN

�2

dDN �

Z

A
jDuj2dDN ; 8u 2 H1(A; dDN ):

It is well-known (see for example [20]) that, when A = R
N , inequality (1.3) still holds true.

The purpose of this paper is to �ll the gap between convex, bounded sets and the whole RN by
proving the following sharp lower bound.

Theorem 1.1. Let A � RN be a convex, C2 domain whose boundary satis�es a uniform interior
sphere condition (see (2.1) below). Then

(1.4) �1(A) � 1;

equality holding if A is any N -dimensional strip.

Remark 1.1. We suspect that, up to a rotation, the strip is the unique minimizer of �1(A); but
it seems to be a challenging open problem to prove it.

Our strategy consists into constructing a suitable sequence fAkgk2N of bounded convex do-
mains invading A and then passing to the limit in (1.2). To show that �1(Ak) converge to �1(A)
one of the main ingredients is an extension theorem for functions belonging to H1(Ak; dDN ) with
a constant independent of k (see Theorem 2.1, see also [19]).
The structure of the di¤erential operator in (1.1) suggests the relevance of the case of un-

bounded sets since the density of Gaussian measure degenerates at in�nity. Moreover, in such
a case, the space H1(A; dDN ) does no longer coincide with H

1(A). Indeed, when A = RN , the
case mostly studied by physicists, the eigenvalues of problem (1.1) are the integers and the cor-
responding eigenfunctions are combinations of Hermite polynomials which clearly do not belong
to H1(RN ).
The Hermite operator appearing in problem (1.1) is widely studied in literature from many

points of view. It is a classical subject in quantum mechanics (see for instance [20]) as well as
in probability; indeed it is the generator of the Ornstein-Uhlenbeck semigroup (see for example
[10]). Finally, problems of the kind (1.1) are related to some functional inequalities as the well-
known GrossÕs Theorem on the Sobolev Logarithmic embedding (see e. g. [31, 27, 26, 38, 21,
11, 24]).
Note that the convexity assumption in Theorem 1.1 cannot be relaxed; it is enough to consider

the classical example of a planar domain made by two equal squares connected by a thin corridor.
Problems linking the geometry of a domain and the sequence of eigenvalues of a second order
elliptic operator are classical since the estimates by Faber, Krahn or Pólya, Szégö concerning the
�rst eigenvalue of the Laplacian with Dirichlet or Neumann boundary conditions respectively.
Further developments of this topic can be found for instance in [4, 5, 1, 16, 22, 17, 15, 8],
where estimates for Dirichlet eigenvalues and eigenfunctions of linear and nonlinear operator
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are derived. Concerning Neumann boundary conditions we refer the reader to [5, 12, 14] and to
[37, 6, 18, 28, 29] for lower bounds of Neumann eigenvalues in di¤erent contexts (Laplacian, p-
Laplacian, manifolds of constant curvature). For results in Gauss space we mention, for instance,
[9, 23, 13]. Clearly the above list of references is far from being exhaustive; more papers in this
growing �eld of research are cited in [34, 35, 33, 32].

2. Proof of Theorem 1.1

We recall that, given a subset A of RN , @A satis�es a uniform interior sphere condition if

(2.1) 9�r > 0 : 8x 2 @A 9B�r � A such that B�r \ A = fxg ;

where B�r denotes a ball with radius �r > 0:
The proof of our result is divided in two steps. The �rst one provides an extension theorem

that may have an interest by its own. In the second one we consider a sequence of convex,
bounded domains fAkg invading A satisfying �1(Ak) � 1 and we show that lim

k
�1(Ak) = �1(A).

Theorem 2.1. Let A � RN be a convex, C2 domain whose boundary satis�es (2.1) and let us
denote d0 = dist(0; @A). Let u 2 H

1(A; dDN ); there exist a function ~u 2 H
1(RN ; dDN ) extending

u to the whole RN and a constant C such that

(2.2) jj~ujjH1(RN ;dDN )
� CjjujjH1(A;dDN )

:

In (2.2) C = C(�r;N) if 0 2 A, while C = C(�r;N; d0) if 0 =2 A.

Proof of Theorem 2.1. We distinguish two cases: 0 2 A and 0 =2 A and we �x ~r = �r
2 .

Suppose �rst that 0 2 A. Let us denote by d(x) = dist(x; @A) the distance of a point x 2 RN

from @A and
A~r = fx 2 RN n A : d(x) < ~rg; A~r = fx 2 A : d(x) < ~rg:

Let u 2 H1(A; dDN ); we want to extend u to R
N by re�ection along the normal to @A. De�ne

� : x 2 A~r �! �(x) = x� 2d(x)Dd(x) 2 A~r:

By construction � is a C1 one-to-one map; we claim that

(2.3) 1 � jJ�(x)j � 3
N�1; 8x 2 A~r:

A straightforward computation yields

@�i(x)

@xj
= Eij � 2

@d(x)

@xj

@d(x)

@xi
� 2d(x)

@2d(x)

@xi@xj
:

By a rotation of coordinates we can assume that the xN -axis lies in the direction Dd(x): By
a further rotation of the �rst N � 1 coordinates we can also assume that the x1; :::; xN�1 axes
lie along the principal directions corresponding to the principal curvatures �1; :::; �N�1 of @A at
p(x) = x+�(x)

2 : Clearly p(x) is the projection of x on @A. In this coordinate system, known as
principal coordinate system at p(x), it is immediate to verify that

jJ�(x)j =
N�1
Y

i=1

�

1 +
2d(x)�i
1� d(x)�i

�

:

Claim (2.3) follows recalling that d(x) < ~r = �r
2 and �i �

1
r :

We observe that in the simplest case N = 2; (2.3) has been proven, in a di¤erent and more
direct way, in [13].



4 B. BRANDOLINI, F. CHIACCHIO, A. HENROT, AND C. TROMBETTI

Now de�ne
u(x) = u(��1(x)) 8 x 2 A~r:

Let � 2 C10 (R
N ) be a cut-o¤ function such that 0 � � � 1 in RN , � = 1 on A, � = 0 in

R
N n (A [ A~r) and jD�j � C = C(�r). Set

(2.4) ~u =

8

<

:

u in A
�u in A~r

0 in RN n (A [ A~r):

Since A contains the origin, it is easy to verify that

(2.5) exp

�

�j�(x)j2

2
+
jxj2

2

�

� 1 8 x 2 A~r:

Thus, by (2.3), (2.4) and (2.5) we get
Z

RN

~u2dDN =

Z

A
u2dDN +

Z

A~r
~u2dDN(2.6)

�

Z

A
u2dDN +

Z

A~r

u2(x) exp

�

�
j�(x)j2

2
+
jxj2

2

�

jJ�jdDN

� C(N)

Z

A
u2dDN :

On the other hand, (2.3), (2.4), (2.5) and (2.6) imply
Z

RN

jD~uj2dDN � C(N; �r)

�
Z

A~r
�u2dDN +

Z

A[A~r
jD�uj2dDN

�

� C(N; �r)

�
Z

A
u2dDN +

Z

A
jDuj2dDN +

Z

A~r

jDuj2 exp

�

�
j�(x)j2

2
+
jxj2

2

�

jJ�jdDN

�

� C(N; �r)

�
Z

A
u2dDN +

Z

A
jDuj2dDN

�

:

Hence if A contains the origin (2.2) holds true.
Suppose now that 0 =2 A. Up to a rotation about the origin, the translation T : x =

(x1; x2; :::; xN ) 2 R
N ! (x1 � E; x2; :::; xN ) 2 R

N , for a �xed E > d0, maps A onto a set
T (A) containing the origin. De�ne

v(x) = v(x1; x2; :::; xN ) = u(x1 + E; x2; :::; xN ) exp

�

�
x1E

2
�
E2

4

�

; x 2 T (A);

then
Z

A
u2dDN =

Z

T (A)
v2dDN :

Since by construction T (A) contains the origin, there exists a function ~v 2 H1(RN ; dDN ) such
that ~v

C

C

T (A) = v and
jj~vjjH1(RN ;dDN )

� C(�r;N)jjvjjH1(T (A);dDN )
:

Let

~u(x) = ~u(x1; x2; :::; xN ) = ~v(x1 � E; x2; :::; xN ) exp

�

x1E

2
�
E2

4

�

;
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we �nally get
jj~ujjH1(RN ;dDN )

� C(�r;N; d0)jjujjH1(A;dDN )
:

�

Using the fact that H1(RN ; dDN ) is compactly embedded into L
2(RN ; dDN ) (see for example

[25]) and the above extension theorem we deduce the compact embedding of H1(A; dDN ) into
L2(A; dDN ). By classical arguments (see for instance Theorem 5.4.3 in [7], see also Proposition
3.4 in [30]) we can deduce a Poincaré-Wirtinger inequality with a constant depending on A.
Therefore, as we said in Section 1, by the classical spectral theory on compact self-adjoint
operators, �1(A) satis�es the following variational characterization

�1(A) = min

8

>

>

<

>

>

:

Z

A
jD j2dDN

Z

A
j j2dDN

:  2 H1(A; dDN )n f0g ;

Z

A
 dDN = 0

9

>

>

=

>

>

;

:

When A is a convex, bounded domain, estimate (1.4) is contained in [3]. Therefore, from now
on A will denote a convex, unbounded domain. Let Ak be a sequence of convex, bounded, C2

domains whose boundaries satisfy (2.1) for every k 2 N, and invading A in the sense that

Ak � Ak+1 8k 2 N and
[

k2N

Ak = A:

For the explicit construction of a sequence of this kind see for instance [13].
As proven in [3] we have that

(2.7) �1(Ak) � 1; 8k 2 N;

that can be equivalently written as

(2.8)
Z

Ak

 2dDN �

Z

Ak

jD j2dDN ; 8 2 H1(Ak; dDN ) :

Z

Ak

 dDN = 0:

Now we want to pass to the limit in (2.7). To this aim consider the operator

Ak : f 2 L
2(A; dDN ) :

Z

A
fdDN = 0 �! ~uk 2 H

1(A; dDN );

where ~uk is the extension provided in Theorem 2.1 of the solution uk 2 H1(Ak; dDN ) to the
following problem

(2.9)

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

�div
�

exp
�

� jxj2

2

�

Duk

�

= (f � ck) exp
�

� jxj2

2

�

in Ak

@uk
@�

= 0 on @Ak

Z

Ak

ukdDN = 0;

where ck =:
R

Ak
fdDN and � is the outward normal to @Ak. Observe that Lax-Milgram theorem

ensures the existence and uniqueness of uk. Moreover DN (A n Ak)! 0 implies ck ! 0. We also
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introduce the operator

A : f 2 L2(A; dDN ) :

Z

A
fdDN = 0 �! u 2 H1(A; dDN );

where u is the unique solution, whose existence is guaranteed by Lax-Milgram theorem, to the
problem

(2.10)

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

�div
�

exp
�

� jxj2

2

�

Du
�

= f exp
�

� jxj2

2

�

in A

@u

@�
= 0 on @A

Z

A
udDN = 0:

Using uk as test function in (2.9), from Schwarz inequality we deduce
Z

Ak

jDukj
2dDN =

Z

Ak

uk(f � ck)dDN �

�
Z

Ak

u2kdDN

�1=2�Z

Ak

(f � ck)
2dDN

�1=2

:

Using (2.8) and recalling that ck ! 0, we get
Z

Ak

jDukj
2dDN � C1

�
Z

A
f2dDN

�1=2

+ C2;

where C1, C2 are positive constants whose values are independent of k. The above inequality
together with (2.8) yield

Z

Ak

u2kdDN +

Z

Ak

jDukj
2dDN � C;

where C is a positive constant whose value is independent of k. From (2.2) we deduce that the se-
quence f~ukgk2N is bounded in H

1(A; dDN ): Since the embedding of H
1(A; dDN ) into L

2(A; dDN )

is compact, there exists a (not relabelled) subsequence ~uk such that ~uk * v in H1(A; dDN ),
~uk ! v in L2(A; dDN ) and a.e. in A. In fact v coincides with u since they both solve the same
problem (2.10). Indeed, let � 2 C1(A). Recalling that DN (A n Ak)! 0 and Ak � A, we get

Z

A
DvD�dDN = lim

k

Z

A
D~ukD�dDN = lim

k

 

Z

Ak

DukD�dDN +

Z

AnAk

D~ukD�dDN

!

= lim
k

Z

Ak

(f � ck)�dDN =

Z

A
f�dDN :

Finally, as k goes to +1,

(2.11) jj(Ak �A)f jjL2(A;dDN ) = jj~uk � ujjL2(A;dDN ) ! 0:

The compact embedding of H1(A; dDN ) into L
2(A; dDN ) and (2.11) allow us to adapt Theorems

2.3.1 and 2.3.2 in [32] to conclude that the operators Ak strongly converge to A and hence

�1(Ak)! �1(A):

Finally we prove the optimality of our estimate (1.4). Consider the N -dimensional strip

Sa = fx = (x1; x2; :::; xN ) 2 R
N : �a < x1 < a; x2; :::; xn 2 Rg; a 2 (0;+1):
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The eigenfunctions are factorized and can be written as linear combinations of products of
homogeneous Hermite polynomials Hn1(x1), Hn2(x2),...,HnN (xN ). We recall that the Hermite
polynomials in one variable are de�ned by

Hn(t) = (�1)
net

2=2 d
n

dtn
e�t

2=2; n 2 N [ f0g;

and they constitute a complete set of eigenfunctions to problem (1.1) when A = R; more precisely

�
�

e�t
2=2H 0

n(t)
�0�t2=2

Hn(t); n 2 N [ f0g:

Denote by �1(�a; a) the �rst Dirichlet eigenvalue of the one-dimensional Hermite operator in
the interval (�a; a). One can easily verify that

�1(�a; a) = �1(�a; a) + 1 > 1 = �1(R):

Therefore �1(Sa) = 1 for every a 2 (0;+1) and a corresponding eigenfunction is, for instance,
H1(x2) = x2.
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