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Critical behaviour of the XY -rotors model on regular and small world networks

Sarah De Nigris and Xavier Leoncini
CPT-CNRS, UMR 7332, Aix-Marseille Université,

Campus de Luminy, Case 907 - 13288 Marseille cedex 9, France

We study the XY -rotors model on small networks whose number of links scales with the system
size Nlinks ∼ Nγ , where 1 ≤ γ ≤ 2. We first focus on regular one dimensional rings. For γ < 1.5
the model behaves like short-range one and no phase transition occurs. For γ > 1.5, the system
equilibrium properties are found to be identical to the mean field, which displays a second order
phase transition at ǫc = 0.75. Moreover for γc = 1.5 we find that a non trivial state emerges,
characterized by an infinite susceptibility. We then consider small world networks, using the Watts-
Strogatz mechanism on the regular networks parametrized by γ. We first analyze the topology and
find that the small world regime appears for rewiring probabilities which scale as pSW ∝ 1/Nγ . Then
considering the XY -rotors model on these networks, we find that a second order phase transition
occurs at a critical energy εc which logarithmically depends on the topological parameters p and γ.
We also define a critical probability pMF , corresponding to the probability beyond which the mean
field is quantitatively recovered, and we analyze its dependence on γ.

I. INTRODUCTION

Real-life networks are of finite size, loopy and display
heavy correlations. This complexity represents a chal-
lenge from several points of view: first it is computation-
ally expensive when attempting to investigate the net-
work topology and to simulate dynamical systems upon
it; moreover it becomes rapidly intractable analytically
and one is obliged to make assumptions in order to sim-
plify the picture and perform calculations. If this effort
is crucial to practically afford problems, it also embeds a
deeper question: facing the network complexity and their
omnipresence in real world, it is fundamental to make
the distinction between the essential variables which are
able to catch the topology main features and those de-
tails which are unessential for a minimal though complete
description. One of those very fruitful simplifications is
sparseness, i.e. the networks considered have in general a
few links per vertex while the network size tends to infin-
ity. More precisely, a network is sparse if k/N → 0 when
N → ∞, k being the average degree. This basic hypoth-
esis leads to a crucial consequence: locally, the network
can be approximated by a tree, which means the absence
of finite loops, i.e. finite closed paths, among the vertices.
Sparseness and the local tree-likeness proved essential to
analytical studies of dynamical systems on networks: we
cite, focusing just on small-world networks, studies on
the Ising model [1, 2], percolation [3] and, more recently,
on the Kuramoto model (for a more complete overview,
see [4]). Therefore, the advantage in terms of numerical
computation is evident: in general, both numerical stud-
ies investigating the network topology [5, 6] and critical
phenomena on networks [1, 2, 7, 8] exploit the assump-
tion of sparseness in its strongest form, taking the degree
as constant. Nevertheless, increasing the links density,
networks exist which are still sparse, fulfilling the afore-
mentioned condition but they cannot no longer ensure
the tree-likeness because of the heavy presence of loops.
It could be argued hence that the links density could play
a non negligible role both on the topological properties

of those networks and on dynamical models defined upon
them. Indeed it is the case of the XY -rotors model on
regular one-dimensional chains: we show that the pas-
sage between a sparse network in the sense of k = O(1)
and a dense one (k = O(N)) implies the emergence of a
new metastable state for which the thermodynamic or-
der parameter does not relax at equilibrium [9]. The links
density hence triggers a non trivial effect on the thermo-
dynamic behavior of the XY model, which by itself is
known for possessing a rich phenomenology investigated
in several numerical studies [10–15] on 2 and 3-D lat-
tices. In particular, we would like to recall, as an exam-
ple among many others, that the two dimensional case
with nearest neighbors coupling is characterized by the
famous Berezinskii-Kosterlitz-Thouless phase transition
[16, 17], which implies the correlation function to switch
from a power law decay at low temperatures to an ex-
ponential one in the high temperatures regime. In the
mean field limit, the XY model, called the Hamiltonian
Mean Field (HFM) model in this case, displays as well a
wide variety of behaviors this complexity being strongly
entangled with the lack of additivity. Among its peculiar-
ities we cite the presence of a second order phase transi-
tion of the magnetization [18] and, even more noteworthy,
the presence of non equilibrium quasi-stationary states of
diverging duration in the thermodynamic limit [19–22].
More recently, those models have been challenged to face
more complex network topologies: for instance, studies
exist concerning the HMF model on random graphs [23]
where, varying the links density, a second order phase
transition of the global magnetization is recovered for
every density value in the thermodynamic limit. Fur-
thermore, studies of the XY model on small world net-
works [7, 8] proved that this lattice topology supports as
well complex thermodynamical responses of the model: a
mean field transition of the order parameter is retrieved
and its critical energy seems to depend on the network
parameters.
The present work inscribes itself on this line as we will
focus, on first instance, on regular networks and then we
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will shuffle this regular topology with the introduction of
a controlled amount of randomness. The first part of the
paper being on regular networks, we detail the analyti-
cal calculations presented in [9] showing that tuning the
link density allows to pass from a short-range regime to
a long-range one. The analytical approach is preceded in
Sec. III by the results of numerical simulations which are
as well more extensively illustrated than in [9]. Further-
more, we show that it exists between those two regimes
a peculiar metastable state characterized by huge fluc-
tuations of the order parameter. We then address, in
the second part of the paper, small-world networks us-
ing the Watts-Strogatz model [24] aiming to shed light
on the interplay between the link density and the injec-
tion of randomness in the network. In his regime we
first investigate, acting on the links density γ and on
the rewiring probability p, the crossover from the reg-
ular lattice to the small-network topology. In Sec.IVB
we consider the dynamics of the XY -rotors model on
small-world networks and we show how the emergence
of global coherence, via a mean field phase transition of
the order parameter, strongly depends on the topological
conditions fixed by p and γ. Furthermore, we discuss in
the last part how this influence turns out to be quanti-

tative, affecting the critical energy ǫc at which the phase
transition occurs.

II. THE XY-ROTORS MODEL

The XY -rotors model describes a set of N spins in-
teracting pairwise: each spin is fixed on the sites of a
one dimensional ring and it is assigned with two canon-
ically conjugated variables {θi, pi}, θi ∈ [−π;π] being a
rotation angle. The XY Hamiltonian reads [17, 25]:

H =

N
∑

i=1

p2i
2

+
J

2k

N
∑

i,j

ǫi,j(1− cos(θi − θj)), (1)

where ǫi,j is the matrix encoding the spins connections:

ǫi,j =

{

1 if i, j are connected

0 otherwise
. (2)

We take J > 0, so that we are in the ferromagnetic case
and in the following J = 1 as well as the lattice step.
Finally the 1/k factor in Eq. (1) ensures that the energy
is an extensive quantity. k is referred to as the degree

and, to control the density of links in the network, we
define it as:

k =
22−γ(N − 1)γ

N
∼ 22−γNγ−1. (3)

Practically, we take the integer part of Eq. (3) since, once
fixed γ and N , k is in general non integer. The dynamics

are given by the set of Hamilton equations:

θ̇i =
∂H

∂pi
= pi, (4)

ṗi = −∂H

∂θi
= −J

k

N
∑

j∈Vi

sin (θi − θj)

where Vi, represents the neighbors of rotor i. A global
parameter, the magnetization is defined by

M = 1
N

(
∑

cos θi
∑

sin θi

)

= M

(

cosϕ
sinϕ

)

(5)

in order to have an insight on the macroscopic behavior:
we expect finite values of M to indicate the emergence of
a coherent inhomogeneous state, while a vanishing mag-
netization signals the absence of long-range order. We
first study the response of the total equilibrium magne-
tization M to the change of the underlying network via
the γ parameter. Practically, for each γ, we perform
simulations within the microcanonical ensemble, by di-
rect numerical integration of Eqs. (4) with the fifth order
optimal symplectic integrator described in [26]. The ini-
tial conditions of angles and momenta are picked from
a Gaussian distributions with identical variance (which
corresponds to a low temperature setting) and, to check
the numerical integration, we monitor the conservation
of the two constants of motion preserved by the dynam-
ics: the energy E = H and the total angular momentum
P =

∑

i pi, which we have set without loss of generality
to P = 0. Finally the time step is ∆t = 0.05 and we av-
erage the thermodynamic quantities over time only when
the system has reached the equilibrium.

III. THERMODYNAMIC BEHAVIOR ON

REGULAR LATTICES

A. : Numerical Computation

The regular network that we take into account is a
one-dimensional chain of N spins (rotors) with periodic
boundary conditions for which each spin is connected to
its k nearest neighbors. By tuning the parameter γ,
1 < γ ≤ 2 we act on the links density of the network.
For γ = 1 (k = 2) the spins are connected to their near-
est neighbors, while for γ = 2 (k = N − 1) the network
is fully coupled. Heuristically, changing the value of γ
corresponds to change the range of interaction of each
spin. Then two limit behaviors naturally emerge from
this approach: the first is γ →1 in which we expect the
system to behave progressively like a one dimensional
short range system with the existence of a continuous
symmetry group, and so without any phase transition .
On the other side, the γ → 2 limit leads to the mean field
regime and we expect the HMF transition of the magne-
tization to appear above a specific threshold of degree.
We find this boundary value for γ = 1.5 so that the two



3

(a)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

M

ǫ

N=212

N=214

N=216

(b)

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

3.5 4 4.5 5 5.5 6 6.5

lo
g 1

0
(M

)

log10(N)

ǫ = 0.1

FIG. 1: (a) Equilibrium magnetization versus energy density
for γ = 1.25 and different sizes. The error bars are of the
size of the dots; (b) Residual magnetization for γ = 1.25 at
ε = 0.1 versus the system size.

aforementioned limits translate more precisely in two in-
tervals γ < 1.5 and γ > 1.5. Practically, for each γ value,
we monitor the average magnetization M(N, ε) (the bar
indicates the temporal mean) for different sizes N and
for every energy density ε = H/N in the physical range.
The temporal mean is computed on the second half on
the simulations: we start with the Gaussian initial condi-
tions described in Sec. II and we simulate the dynamics,
calculating the magnetization at each time step. When
the system reaches a stationary state for the magneti-
zation, we take the temporal mean as the equilibrium
value.

We start our analysis with the γ < 1.5 interval. The
simulations are displayed in Figs. 1a-b) and as mentioned
the magnetization smoothly vanishes with the tempera-
ture (Fig. 1a). We have to recall that for low tempera-
tures, the magnetization can be non-zero as a finite size
effect, so the results displayed should depend on the sys-
tem size. This is confirmed in Fig. 1, where the trend
for the magnetization to vanish with increasing the size
is exhibited. To check with even larger sizes, we con-
sider in Fig. 1b the magnetization for a small energy
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FIG. 2: (color online) Correlation function cj for γ = 1.25
and N = 214.

density ε = 0.1 and several sizes. The results clearly
point out that the magnetization vanishes in the ther-
modynamic limit. When looking at relaxation scales,
we found that larger sizes took more time to relax to
equilibrium. So typically in our simulations we take as
final time tf = 20000 for sizes up to N = 216 and for
N > 218 tf = 30000.

Given these numerical results, we conclude that in the
γ < 1.5 interval, the system is short-ranged and the
Mermin-Wagner theorem applies imposing the order pa-
rameter to vanish. Nevertheless, if long-range order is not
possible, quasi long-range could still entail an infinite or-
der phase transition of the correlation function, like in
the two dimensional XY model with nearest neighbors
interactions. We recall that this particular type of crit-
ical phenomenon, first detected by Berezinskii, Koster-
litz and Thouless [16], is characterized by two different
types of decay of the correlation function with distance:
a power law or an exponential decay, respectively for low
and high temperatures. In order to look for such possi-
bility we computed the correlation function

c(j) =
1

N

N
∑

i=1

cos(θi − θi+j[N ]) ,

for every ε in the considered range. The results shown
in Fig. 2 indicate that the decay behavior is also expo-
nential for low temperatures, demonstrating the absence
of the aforementioned phase transition. This could have
been anticipated from the fact that finite size effects on
the magnetization even though present were small, but
possible tricky effects of the boundary conditions could
come into play, so it was worth while checking.

To summarize our result, we can conclude that, for γ <
1.5, the spin degree is still too low for the system to show
long-range or quasi long-range. Interestingly, the short
range behavior is still at play even for configurations like
γ = 1.4 where each spin is under the influence of quite
an important neighborhood since k ∝ N0.4 in this case.
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FIG. 3: Equilibrium magnetization for N = 216 and different
γ. For γ 6= 1.5 the error bars are of the size of the dots.

Taking now in account the symmetric interval γ > 1.5,
the spins are connected enough to allow a coherent state
to emerge: in Fig. 3 the magnetization undergoes a sec-
ond order phase transition at εc = 0.75 which is well
described by the HMF analytical curve. Again, around
the delicate zone of the phase transition, finite size ef-
fects induce a shift between the theoretical prediction of
the HMF and the simulations, but they can be smoothed
down increasing the size. We recall that this phenomenon
is also present for the full coupling γ = 2. As a conse-
quence we then find that even with a degree remarkably
inferior (e.g. for γ = 1.6 ) than the full coupling con-
dition, each spin possesses enough connections to trig-
ger the global behavior of the system and give a finite
magnetization (at low energies). Of course, in both the
intervals γ ≶ 1.5, the equilibrium magnetization is still
affected by fluctuations because of the finite size effects.
To monitor these we measured the magnetization vari-

ance σ2 = (M −M)2 and we show in Fig. 5 that it scales
with the system size like

σ2 ∝ 1/N. (6)

This scaling is the one expected for the equilibrium state
thus confirming that the values in Figs. 1a- 3 are repre-
sentative of such state.

Given the results presented in the previous discussions,
a natural critical value appears, which characterizes the
shift from the short range picture to the long range one:
γc = 1.5. We decided to investigate the system behavior
at this critical threshold imposing γ = γc. In fine, we ex-
pect that the system will be in a peculiar state by itself
which cannot be labeled as short or long ranged. Results
are depicted in Fig. 3. We observe that for low energies,
0.3 . ε ≤ 0.75, the averaged magnetization is finite even
when increasing the size but it remains lower than the
mean field value. The effect is clearer when we look at
its temporal behavior. It is indeed totally different than
in the other two regimes and the order parameter M

shows large fluctuations which are orders of magnitude
larger than for the other γ regimes. We show in Fig. 4 a
comparison a time series for the same energy and system
size and different values of γ, namely γ = 1.75 which dis-
plays a finite magnetization with small fluctuations and
the one γ = 1.5, with large fluctuations. In order to con-
trol the fact that these fluctuations are not an artifact
of our initial conditions and that it is likely that the sys-
tem does not relax on larger timescales than the previous
configurations, we considered computation times up to a
final time tf = 200000. Results are presented in Fig. 4,
where it appears that this regime with large fluctuations
persists. We recall that for γ ≶ 1.5 the simulation time
was at most tf = 30000 and it was enough to reach a
stationary state. Proceeding further, we notice that the
amplitude of these fluctuations is not dependent on sys-
tem size. We compare for instance N = 212 to N = 218

in Fig. 4 c, d, and conclude that for the aforementioned
energies there is no significant amplitude decrease with
system size. More precisely, if we consider the variance
σ2 as before, it appears that the scaling of the variance
mentioned in Eq. (6) and coherent with in the γ 6= 1.5
regimes, is substituted by a flat behavior increasing N
(see the results in Fig. 5b). It is worth noticing that the
influence the system size can be retrieved not in the fluc-
tuations amplitude but in the typical fluctuation time
scale. In Figs. 4c-d, it becomes obvious that fluctua-
tions appear to slow down with the system size. This
time-scale dependence on the size is reminiscent of out of
equilibrium behavior in systems with long range interac-
tions, namely the lifetime of the Quasi Stationary States
(QSS) [20, 27–29] and further investigations are ongoing
to shed light on this effect and on its potential analogy
with the HMF results.

Heuristically, for γ = γc it is like the if each spin does
not possess enough connections to create a global order
and establish the mean field but, nevertheless, the degree
is sufficiently high (γc = 1.5 corresponds to k =

√
N) to

avoid the vanishing of the order parameter in the ther-
modynamic limit. The resulting behavior is reminiscent
of a bistable regime oscillating between the M = 0 con-
figuration and the mean field value, which corresponds to
a finite magnetization, we thus may expect some kind of
intermittent behavior. In fine, the flatness of the variance
suggests moreover that we observe a state with infinite
susceptibility χ considering its definition

χ ∼ lim
N→∞

Nσ2. (7)

To conclude our analysis in symmetry with the γ ≶ 1.5
cases, we looked for a signature of this non trivial state
in the correlation function but the fluctuations heavily
affect it too so that it oscillates without showing a proper
scaling.
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FIG. 4: (color online) Time series for the magnetization with
(a) N = 218, ǫ = 0.60; (b) N = 212; ε = 0.44 ; (c) ε = 0.44
and (d) ε = 0.52.
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FIG. 5: (color online) Scaling of the magnetization variance
〈
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〉

with the size for γ = 1.75 (a) and γ = 1.5 (b).

B. Analytical Calculation

The numerical investigations illustrated point out that
the degree triggers the shift from the pure one dimen-
sional topology to the mean field frame. We now tackle
this issue analytically aiming to retrieve the influence
of the topology, encoded in the adjacency matrix ǫi,j
(Eq. (2)), in the thermodynamic properties. We thus
compute the magnetization in the low energy regime and
check if the correct behavior is recovered, namely a zero
magnetization for γ < 1.5 and a finite value for γ > 1.5.
At low energies we have a clear separation between the
magnetization values, with M = 0 and the mean field
one, in which as ε → 0 M → 1. In this limit, due to
the ferromagnetic coupling it is natural to assume the
difference θi− θj are small when ǫi,j = 1 so that the con-
nected spins are mostly aligned in order to minimize the
free energy. We can hence develop the Hamiltonian at
the leading order:

H =
∑

i

p2i
2

+
J

4k

∑

i,j

ǫi,j(θi − θj)
2 , (8)
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so that our system reduces to a collection of oscillators
connected by ǫi,j. We then choose to represent the spin
field as a superposition of modes and following the recipe
given in refs [17, 30]:

θi =
∑N−1

l=0 αl(t) cos(
2πli
N + φl)

pi =
∑N−1

l=0 α̇l(t) cos(
2πli
N + φl)

. (9)

In Eq. (9), we sum over N modes so that the change of
variables is linear and we observe that, given the period-
ical border conditions, it just corresponds to perform a
discrete Fourier transform. The amplitudes αl are, in our
approach, the information carriers of the temporal behav-
ior, hence the representation of the momenta pi is related
to the one of the angles via the first Hamilton equation
pi = θ̇i. The phases φl are randomly distributed on the
circle to ensure that the momenta pi are Gaussian dis-
tributed in the limit N → ∞ as theoretically predicted
for the microcanonical ensemble. Following the approach
described in [30], if we consider different sets of phases
{φl}m labeled by m we can interpret each set as a real-
ization of the system, i.e. a trajectory in the phase space.
Hence the process of averaging on random phases would
correspond to ensemble averaging and lead to dynamic

equations which, nevertheless, embed information about
the thermodynamic state of the system, via the phase av-
eraging. If we now inject Eq. (9) in the Hamiltonian (8)
we obtain for the kinetic part K:

〈K〉
N

=
1

N

〈

∑

i

p2i
2

〉

=
1

4

∑

l

α̇2
l , (10)

where 〈...〉 stands for the average over random phases. In
Eq. (10) we used the relation:

〈cos(ki + φi)cos(kj + φj)〉 =
1

2
δi,j .

For the potential, we have that the adjacency matrix ǫi,j
is a circulant one because of the definition of the regular
network given in Sec.II. Hence we can diagonalize it and
its spectrum {λl} is known:

λl =
2

k

k/2
∑

j=1

cos(
2πlj

N
) =

1

k

[

sin[(k + 1)lπ/N ]

sin(lπ/N)
− 1

]

,

(11)
where k is the spin degree of Eq. (3). To the leading
order the potential will hence take the form:

V

N
=

1

4kN

∑

i,j

ǫi,j(θi − θj)
2 =

1

2

∑

l

(1− λl)
∣

∣

∣
θ̂l

∣

∣

∣

2

(12)

In Eq. (12) we used the identity

1

kN

∑

i,j

ǫi,jθiθj =
∑

l

λl

∣

∣

∣
θ̂l

∣

∣

∣

2

,

which comes from the eigenvectors of a circulant matrix
of size N are the columns of the unitary discrete Fourier

transform matrix of the same size. We can then inject in
Eq. (12) the linear waves representation and average over
the phases as we did for the kinetic part of the Hamilto-
nian:

〈V 〉
N

=

〈

1

2

∑

l

(1 − λl) |θl|2
〉

=
1

4

∑

l

(1 − λl)α
2
l .

Having obtained the averaged Hamiltonian 〈H〉 = 〈K〉+
〈V 〉, we can deduce the averaged equation of motion, as
anticipated, via the second Hamilton equation

d

dt

(

∂ 〈H〉
∂α̇l

)

= −∂ 〈H〉
∂αl

,

and obtain

α̈l = −(1− λl)αl = −ω2
l αl. (13)

We have hence an equation for an harmonic oscillator
whose frequency depends on the adjacency matrix spec-
trum and, consequently, on the spin degree. We note
that this approach is dependent from our low temper-
atures approximation, but as mentioned we shall make
use of this by the fact that depending on the value of
γ we expect two clearly defined regimes of zero or finite
magnetization. Our system is now completely encoded
in terms of wave amplitudes {αl} and frequencies {ωl}
which can be linked observing that, at equilibrium, we
have the equipartition of the modes (pi’s are Gaussian):

T =
1

N

∑

i

〈

p2i
〉

=
1

2

∑

l

α2
l ω

2
l ⇒ α2

l =
2T

N(1− λl)
.

In order to compute M , we apply the same procedure,
meaning that we average over the phases its expression
given by Eq. (5) after we substitute the representation
Eq. (9). We obtain [17]:

〈M〉 =
∏

l

J0(αl)(cos θ0, sin θ0), (14)

where J0 is the zeroth order Bessel function and θ0 is the
average of the angles {θi}. This quantity is conserved
because of the translational invariance, giving a constant
total momentum P which is set at P = 0 by our choice of
initial conditions. As the final step to evaluate Eq. (14),
we recall that we are dealing with a low temperatures
approximation so we can consider that the amplitudes
α2
l to be small at equilibrium and in the large system

size limit [30]. This consideration allows to develop at
leading order the product of the Bessel functions and,
taking the logarithm of Eq. (14), we finally obtain:

ln (〈M〉) = −
∑

l

α2
l

4
= − T

2N

∑

l

1

1− λl
. (15)

Eq. (15) conjugates the thermodynamic information
and the topological one because of the matrix spectrum.
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FIG. 6: (color online) Analytical magnetization 〈M〉 from
Eq. (15) for T = 0.1 versus γ. Theory refers to the exact
analytical solution of the HMF model.

From one side it actually realizes the purpose of matching
these two levels of description; nevertheless the spectrum
in Eq. (11) carries now the system complexity, requir-
ing Eq. (15) to be evaluated numerically. In Fig. 6 we
show, increasing the size, how this approximated expres-
sion grasps the correct asymptotic behavior, giving the
mean field value in the high γ regime and vanishing for
low γ. The transition becomes sharper at γc = 1.5 by
increasing the size and gives hence confirmation of its
critical signification as already pointed out by our nu-
merical simulations of Sec.III.

IV. THE SMALL WORLD NETWORK MODEL

In Secs. III A-III B we considered a regular chain as
network topology and we illustrated how the degree
drives the thermodynamic response of the XY -model on
those lattices from the short-range regime to the long-
range one. The natural following step to reorganize the
topology is now to break the translational invariance of
the regular chain previously considered and to introduce
some randomness in how the spins are connected. For
this purpose, we used the Watts-Strogatz model (W-
S)[24] for small-world networks, which interpolates be-
tween a regular network and a random one by the pro-
gressive introduction of random long-range connections.
Following the algorithm devised in [24], each link is re-
connected with probability p to a randomly chosen other
vertex or is left untouched with probability 1 − p: long-
range connections are hence introduced and the rewiring
procedure injects disorder in the network since k, fixed
by Eq. (3) at the beginning, is non-uniform afterward.
The degree distribution decays exponentially since the
rewiring is performed independently for every vertex [5].
Moreover, since ki ≈ 〈k〉, a W-S network is not locally
equivalent, even in the limit case of p = 1, to a random
graph were eventually isolated vertex exist and the net-

FIG. 7: (color online) Path lengths starting from the blue
vertex.

work is fragmented in many parts [5]. It is noteworthy
for the following to add that the rewiring injects mainly
shortcuts of length of the order of the network size O (N ),
so that a fine tuning of the interaction range by the means
of the randomness p is not possible.

A. Network analysis

The small-world regime embeds characteristics of both
the regular lattice and the random network ones: the
network keeps track of the initial configuration since, af-
ter the rewiring, it still conserves a local neighborhood
like a regular lattice; on the other hand the network ap-
proaches, in the sense specified in Sec.IV, the random
graph topology because of the shortcuts induced by the
rewiring. In our context it hence emerges naturally the
question of how the degree, which scales as k ∼ Nγ−1,
could influence the scaling of topological quantities in
competition with the rewiring probability p. For in-
stance, a crucial passage in which the γ parameter could
play an important role is the crossover from the regular
chain topology to the small-world regime. It is usually
investigated by the scaling behavior of the average path
length l(p, γ), defined as the average shortest distance
between spins. This quantity has an algebraic increase
l ∼ N for a regular one-dimensional lattice with fixed de-
gree k, while for random networks it grows as l ∼ logN .
The passage between those two regimes is enhanced by
the long-range connections which could allow the spins to
behave coherently. Practically, since the network lacks a
metric, the distance between two spins is calculated as
the minimal number of edges to cross to go from one
spin to the other, as shown in Fig. 7. To investigate the
change between these two behaviors we perform numer-
ical simulations, varying γ and p: we use values for γ
from 1.2 to 1.5 and p ranges from 10−7 up to 10−3 . N
is fixed at 214 and we average over 10 network realiza-
tions for each value of p. In Fig. 8a we plot l(γ, p)/l(γ, 0)
versus γ. l(γ, p) shows the known crossover behavior [24]
but, considering the probability pSW (N, p, γ) at which
l(γ, p) drops abruptly to the random network values, it
appears evident that it is strongly dependent on γ. We
have the following scaling for pSW (N, γ) [3], using the
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degree definition in Eq. (3):

pSW ∼ 1

NDkD
∝

(

1

N

)γ

, (16)

where D = 1 is the dimension of the initial regular lat-
tice. In Fig. 8b we plot the estimation of pSW (N, γ)
from the simulations versus γ which effectively confirm
the power law of Eq. (16). The degree is hence crucial to
quantitatively determine the passage to the small-world
regime; this dependence unveils its importance consider-
ing that, on small-world networks, a correlation length
can be defined [3] as

ξ = 1/(pkD)1/D (17)

and then pSW in eq. (16) is the probability of having
ξ = N . This is the key condition to achieve global co-
herence and it clearly appears that the density of links,
governed by the parameter γ, and the randomness in-
jected by p concur in complexifying the network topol-
ogy. In Sec. III, we then move one step further dealing
with the thermodynamics of theXY -rotors model on the
small-world network and looking for the topological sig-
nature of the γ and p parameters in its properties.

B. Thermodynamic Behavior on Small World

Networks

In Sec. IVA we focused on the topological interplay
of γ and p parameters in establishing the small-world
regime which, as explained, is noteworthy for its ambiva-
lence, resembling both to a regular lattice and to a ran-
dom graph. In this section we put the XY -rotors model
on a small-world network: the question we address now
is to investigate the thermodynamic counterpart of the
network complex topology. We focus the low γ regime,
i.e. γ < 1.5. In this case we recall that the degree is still
too low to induce long-range order by itself without the
intervention of randomness and the network behaves like
a one-dimensional chain. In the interval γ > 1.5 the high
degree already induces a mean field phase transition of
the magnetization whose critical energy is ǫc = 0.75, as
shown in Sec. III. In this interval, even without the con-
tribution of long-range connections, the network is con-
nected enough to behave like a full-coupled one, which is
the case of the Hamiltonian Mean Field model. On the
other hand, in the case of random networks, it has been
shown that the mean field phase transition appears for all
γ > 1 [23]. We thus introduce progressively long-range
connections with the rewiring probability p since, from
Eq. (17), we expect to retrieve two regimes determined
by γ and p; ξ < N in which long-range order is absent
and ξ > N where the order parameter displays a second
order phase transition. In Figs. 9a-c we set γ = 1.25
and, for each value of p, we consider several system sizes,
above and below the threshold ξ(1.25, p,N) = N . The
results displayed in Figs. 9 show the equilibrium mean
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FIG. 8: (color online) (a) Average path lengths versus rewiring
probability for different γ values. (b) Power law scaling of
pSW (γ).

value of the magnetization M versus the energy density
ε = E/N : for N = 212, the probabilities p = 0.001 and
0.005 (Figs. 9 a-b) are still too low to entail the crossover
to the long-range regime and the system does not un-
dergo a phase transition. On the other hand, the other
two sizes considered N = 214 and 216 are in the ξ > N
regime and the mean field phase transition is recovered
all the p taken in account. As explained, increasing the
randomness decreases the small-world threshold; hence
all the sizes show the phase transition of the magneti-
zation for p = 0.01 (Fig. 9c). Those results confirm
the interpretation of ξ in terms of a correlation length
in the standard statistical physics sense: in Sec. IVA,
we showed that it signals the topological passage from
regular to small-world network which identifies itself by
a drop of the average path distance l(N, γ, p); equiva-
lently in this short l(N, γ, p) regime the existence of long-
range order is possible and, thus, we observe the second
field phase transition of the thermodynamic order pa-
rameter. Remarkably, the critical energy εc at which
the transition occurs varies accordingly to the random-
ness; we thus investigate this effect tuning γ between 1.2
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FIG. 9: (color online) Average magnetization M versus en-
ergy density ε = E/N for several system sizes and p =
0.001 (a), 0.005 (b), 0.01 (c).

and 1.5 and p from 10−7 to 10−3. As explained before,
it is worth focusing on the interval γ ≤ 1.5. In this
case the shortcuts introduced by the rewiring process are
crucial for the achievement of global coherence; while in
the γ > 1.5 we already know that phase transition with
εc = εHMF = 0.75 occurs both on regular chains [9] and
on random networks [23]. In Fig. 10, we plot the critical
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FIG. 10: (color online) (a) Logarithmic dependence of the
critical energy εc versus the rewiring probability p for different
γ values. (b) Power law scaling of pMF versus γ.

energy εc(p, γ) versus the rewiring probability p for sev-
eral values of γ and we observe that the phase boundary
seems to be well described by the logarithmic form :

εc = log(g(γ)pc) (18)

with C ∼ 0.1. Eq. (18) is coherent with the scaling pro-
posed in [7, 8] as far as the p dependence is concerned.
Remarkably, in [7, 8], it was a result issued from Monte-
Carlo simulations in the canonical ensemble while we
work in the microcanonical frame. Moreover the afore-
mentioned results of logarithmic scaling was found in the
p → 0 regime, while where we are exploring regions with
large values of p. We also have to insist on the fact that
Eq. (18) embeds an extra piece of information concern-
ing the degree. Indeed, in our analysis the “quantitative”
topological parameter γ affects in his turn the critical
energy εc through the function g(γ) , showing the non
trivial role played by the links density in the thermody-
namic behavior of the XY -rotors model.

Another specific information can be retrieved from
Fig. 10a. There is a threshold beyond which a “satura-
tion” process exists, to be more explicit for each value of
γ, we define a threshold probability pMF (γ) for which the
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critical energy is εc = 0.75, identical to values obtained
in the mean field (γ = 2), or for the fully randomized
networks [23]. For p > pMF (γ) increasing the random-
ness does not influence anymore the critical energy and
in some way the resulting small-world network is, from
the thermodynamic point of view, equivalent to a fully
coupled graph. In Fig. 10b, we show how this probabil-
ity threshold pMF (γ) depends as a power law on the γ
parameter. Note though that we expect that pMF → 0
when γ → 1.5, because as we discussed before in the
γ > 1.5 regime the system is already in the mean field
state without any rewiring. Regarding Fig. 10b, we do
not expect the results to be valid near γ = 1.5. Indeed a
precise estimation of pMF proves to be very delicate since
it relies in its turn on the determination of the critical
energy of the transition which is intrinsically a hard task.
The simulations are performed with finite size systems.
Therefore the measured pMF is influenced by these finite
size effects and this depends also on on system size even
we have actually pMF (γ,N), we can then obtain a finite
value also for γ = 1.5. We also have to mention that
we average also only on a finite number of network re-
alization, which may also affect the results. Proceeding
in our analysis, we recall that for the regular network
a metastable state was found for γc = 1.5 in which the
order parameter is affected by heavy fluctuations, sug-
gesting that the system oscillates between low magne-
tization values, proper of the γ < 1.5 regime, and the
mean field value of the γ > 1.5 case. We can notice that,
after the introduction of randomness, we do not observe
this metastable state for γ = 1.5 or any other value of
γ. In fact now a small (eventually vanishing) p is enough
to generate a phase transition. It therefore exists an in-
terplay between the “quantitative” parameter γ and the
“qualitative” parameter p; nevertheless those parameters,
as anticipated in Sec. IV, are not equivalent when deal-
ing with their influence on the thermodynamic behavior
of the XY -model. This duality is so far not complete
since it was not possible to retrieve the metastable state
in the γ < 1.5 regime acting exclusively on the p pa-
rameter. In this sense, the randomness is “regularizing”
the thermodynamic behavior: the rewired network sup-
ports either the behavior of a regular lattice either, once
the small-world regime is reached, gives rise to the phase
transition of the magnetization. Summarizing, we can
say that the noise created by the rewiring stabilize the
passage between the two regimes and destroys the deli-
cate metastable state which arose in the regular lattice.

V. CONCLUSION

In conclusion, we have studied the influence on the
critical behavior of the XY-rotors model of two different
network topologies, the regular lattice and small world
network. In Sec. III, we introduced the parameter γ
which allows to tune the number of links from the lin-
ear chain to the full coupling configuration. We identi-

fied two main parameter regions: the first for γ < 1.5
in which the model has a one dimensional behavior and
thus it does not display long-range or quasi long-range
order as shown by numerical simulations. On the con-
trary, in the second region (γ > 1.5), the spin degree
is sufficiently high to lead to the emergence of a coher-
ent state: we thus observe a mean field phase transition
of the magnetization, identical to the one of the HMF
model. More interestingly, we show numerical and an-
alytical evidence of an unstable state at the threshold
between the two regions, for γc = 1.5. In this peculiar
state, the magnetization is affected by fluctuations which
seem to be size independent and, furthermore, this state
does not reach equilibrium on the timescales considered.
We then calculated analytically an approximated expres-
sion for the magnetization, obtained in the low tempera-
tures regime, which demonstrates the topological critical
nature of γc = 1.5. This expression retrieves correctly
the two behaviors aforementioned and, since it contains
the spectrum of the adjacency matrix, it points out that
the topological origin of the three different phases shown
by the simulations. We have then studied the role of the
links density on the topology of small-world networks and
its effect on the XY-rotors model dynamics. We have fo-
cused, in Sec. IV, on the crossover to the small-world
regime tuning the γ parameter. We show by numerical
simulations that pSW has the scaling in Eq. (16) which
is therefore consistent with [3]. Hence the links density,
governed by γ, turns out to be crucial to enhance the
crossover between the “large-world” regime and the small-
world one cooperating with the rewiring probability p in
the creation of long-range connections. We then investi-
gated, in Sec. IVB, the thermodynamic response of the
XY-rotors model to the variations of the network under-
lying. We retrieved the emergence of a mean field tran-
sition of the magnetization once p > pSW . This latter
condition implies the network to be in the ξ > N case,
using the definition in Eq. (17), and thus confirms the
interpretation of ξ in terms of a correlation length from
the statistical physics point of view. Moreover we found
a logarithmic dependence of the critical energy εc(p, γ)
on p and γ which lead to the scaling in Eq. (10). The in-
terplay between the topological parameters in modifying
εc saturates when εc = 0.75 which is the critical energy
of the Hamiltonian Field model and hence we define a
new threshold probability pMF which displays the power
law scaling with γ shown in Fig. 10b. We find hence
that a small (vanishing) amount of randomness regular-
izes the γ = 1.5 metastable state pointed out in Sec. III
and moreover it was not possible to recreate it in the
γ < 1.5 interval just adding long-range connections with
p. Therefore, as far as the thermodynamic behavior is
concerned, we conclude that γ and p are not equivalent
when dealing with the transition to the mean field state;
nevertheless, we anticipate here that a more refined cri-
teria than randomness could be found in order to perturb
the regular network in the low density regime (γ < 1.5)
and enhance the creation of out-of-equilibrium effects like
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the γc = 1.5 metastable state.
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