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Abstract : 

The unconstrained binary quadratic optimization problem (UQP) is known to be NP-hard and due 

to its computational challenge and application potential, it becomes more and more considered 

and involved by the recent research studies, including both exact and heuristic solution 

approaches. Our work is in line with that of Glover, Alidaee, Rego and Kochenberger (2002) who 

proposed one pass heuristics as alternatives to the well-known Devour Digest Tidy-up procedure 

(DDT) of Boros, Hammer and Sun (1989). The “devour” step sets a term of the current 

representation to 0 or 1, and the “tidy-up” step substitutes the logical consequences derived from 

the “digest” step into the current quadratic function. We propose several versions of the DDT 

constructive heuristic based on the alternative representation of the quadratic function. We also 

present an efficient implementation of local search using r-flip moves that simultaneously change 

the values of r binary variables. Computational experiments performed on large scale instances 

show the efficiency of our implementation in terms of quality and CPU time.  

 

Keywords : Unconstrained Quadratic Programming, Constructive Heuristic, Local Search, r-Flip 

Move 

 

1. Introduction 

The unconstrained binary quadratic minimization problem (UQP) is defined as an optimization 

problem that aims to find the minimum value of a given quadratic function q(x) over x in {0, 1}
n
. 

Each quadratic function q(x) is a real-value function defined in {0, 1}
n
 which has at most a 

degree of 2 for its unique polynomial expression. The UQP problem is an NP-hard combinatorial 

optimization problem introduced by Hammer and Rudeanu (1968). The UQP can be formulated 

as follows:  

 (UQP) min { q(x) = xAx + bx + q0: x  {0,1}
n
} 

where A is an n by n matrix,  b is an n-vector, q0 is a real constant and x is an n-vector of binary 

variables. The q(x) value is the quadratic objective value of binary vector x.  

The UQP problem has been investigated in numerous papers see e.g. Hammer and Rudeanu 

(1968), Hansen, Jaumard and Mathon (1993), Boros and Hammer (2002), and the references 

mentioned therein. The UQP’s formulation is suitable to represent a wide range of important 

problems, including those from social psychology, Harary (1953); financial analysis, Laughunn 

(1970), McBride and Yormak (1980); computer aided design, Krarup and Pruzan (1978); traffic 
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management, Gallo and Simeone (1998), Witsgall (1975); machine scheduling, Alidaee et al. 

(1994); cellular radio channel allocation, Chardaire and Sutter (1994); molecular conformation, 

Phillips and Rosen (1994). Moreover, many combinatorial optimization problems pertaining to 

graphs such as determining maximum cliques, maximum cuts, maximum vertex packing, 

minimum coverings, maximum independent sets, and maximum independent weighted sets are 

known to be capable of being formulated by the UQP problem as documented in papers of 

Pardalos and Rodgers (1990), and Pardalos and Xue (1994). Other additional applications and 

formulations can be found in Kochenberger et al. (1998). For example, the maximum independent 

set problem is equivalent to the following UQP: 

(UQP) min{ x(A - I)x :  x  {0,1}
n
} 

where A is the adjacency matrix of a given undirected graph G=(V, E) and I is the identity matrix 

with appropriate dimension. Similarly, the maximum clique problem is given as follows: 

 (UQP) min{ x( A  - I)x :  x  {0,1}
n
} 

where A  is the adjacent matrix of ),( EVG 
 
the complement graph of G. The maximum cut 

problem can be addressed as the following UQP: 

 (UQP) min{ xAx - xAe :  x  {0,1}
n
} 

where Aij denotes the weight of the edge (i, j ) E.  

Another application of the UQP takes place in condensed matter physics. The Ising Spin Glasses 

problem consists to found a configuration of the spins with minimum energy can be written as 

follows:  

(UQP) min{4xAx – 2(A + A
T
)x + eAe :  x  {0,1}

n
} 

where A
T
 denotes the transpose matrix of A and  Aij denotes the interaction between site i and j. 

Other problems such that Maximum Vertex Packing, Minimum Covering, Maximum 

independent weighted sets, can be also formulated as an UQP problem. 

 (UQP) min{ x( A  - I)x :  x  {0,1}
n
} 

 

Due to its computational challenge and application capability, the UQP becomes more and more 

considered and involved by the recent research studies, including both exact and heuristic 

solution approaches. Several exact methods have been developed and tested for UQP in the 

literature. Actual solving exact algorithms include those that attack the problem with some kind 

of branch and bound method or use linear programming techniques and some cutting plane 

generation methods. However, the exact methods degrade rapidly with problem size, and have 

meaningful application to general UQP problems with no more than 100 variables. Several 

heuristic algorithms, based on different ideas, were proposed recently in the literature to find 

acceptable solutions for such large problems. The heuristic ideas applied to UQP include Tabu 

Search (Glover et al. (1998); Beasley (1998); Palubeckis (2004-2006)), Scatter Search (Amini et 

al. (1999)), Simulated Annealing (Alkhamis et al. (1998); Beasley (1998), Katayama and 

Narihisa (2001)), Evolutionary Algorithms (Lodi et al. (1999); Merz and Freisleben (1999); 

Katayama et al. (2000); Borgulya (2005)), and Memetic Algorithms (Merz and Katayama 

(2004)). Recent studies addressing the UQP are those by Williams (1985), Pardalos and Rodgers 

(1992), Boros, Hammer and Sun (1989), Chardaire and Sutter (1994), Glover, Kochenberger and 

Alidaee (1998), Glover, Kochenberger, Alidaee, and Amini (1999), Alkhamis, Hasan and Ahmed 

(1998), Beasley (1998), Lodi, Allemand and Liebling (1997), Amini, Alidaee and Kochenberger 

(1999), Glover, Amini, Kochenberger and Alidaee (1999), Katayama, Tani and Narihisa (2000), 

and Merz and Freisleben (1999).  
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A large number of solution procedures have been reported in the literature. 

 

 

This paper is focusing on the study of constructive heuristics for large-scale zero-one UQP 

problems. Such approaches can serve as advanced starting points input for more improving 

methods based on one or more solutions such that local search procedure or population methods . 

The rest of the paper is organized as follows. In section 2, we present the one-pass heuristics 

designed for this study. To provide a basis for comparison as well as a rationale for our heuristics, 

we begin with a discussion of DDT, the best known and most promising one-pass heuristic in the 

current literature. Then, in section 3, we present our computational experience. Our 

computational work is divided into two parts. The first part provides a relative comparison of the 

various one-pass methods by extensive testing on new test problems ranging from 1000 to 9000 

variables. The second part shows how the best of the methods perform on standard test problems 

where “best known” solutions are available. Finally, section 4 presents conclusions and 

comments for future work. 

 
1. Generalized Constructive Heuristics 

By observing that xi xj = xj xi, when xi and xj are 0-1 variables, the UQP model can be stated in the 

following form: 

 

             

 

where Q is an n x n lower triangular matrix defined from A and b by the preprocessing rules : 

 qij = Aij + Aji for i < j 

 qii = Aii + bi for i = j 

qij = 0  for i > j. 

Since for each binary variable we have jj xx 2
 the quadratic function q(x) also can be written as 

follows : 
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Defining the following sets: 

T
+
 = {(i, j) : 1 ≤ i <  j ≤ n and qij > 0},  

T
-
 = {(i, j) : 1 ≤ i < j ≤ n and qij < 0},   

T
=+

 = {(i, i) : 1 ≤ i ≤ n and qii > 0}, and 

T
=-

 = {(i, i) : 1 ≤ i ≤ n and qii < 0}; 

with T = T
-
  T

+ 
 T

=+ 
 T

=-
.  Let N = {1, …, n}. 

sign(a) = 1 if a > 0 and sign(a) = -1 if a < 0. 

In this paper we present several constructive and improvement heuristics for the UQP. The 

improved heuristics start from an initial solution and seek a better solution by iteratively moving 

from the current solution to the next one, according to the adjacency relationships defined by a 

given neighborhood structure.   
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Local Search and associated metaheuristic have been the focus of widespread scientific 

investigation during the last decade. 

We accompany to the followed versions of DDT heuristic many running-up examples, to make 

the ideas more clear. 

 

1. Standard Devour Digest Tidy-up Heuristic 

We start by the standard version of the well-known Devour Digest Tidy-up (DDT) heuristic of 

Boros, Hammer, and Sun (1989) applied to an input quadratic function q of UQP. In the “devour” 

step, a term with the largest absolute value of coefficient is set to 0 or 1. If this largest coefficient 

is negative the term is set to 1 which implies that the variables involved in this term are set to 1. 

Moreover if the term of the largest coefficient involves only one variable, then this variable is set 

to 0 if the sign of the largest coefficient is negative or set to 0 otherwise. In the “digest” step all 

the logical consequences of the “devour” step are derived. In the “tidy-up” step the logical 

consequences derived are substituted into the current quadratic function. The pseudo code of the 

standard DDT procedure is described as follows: 

 

Standard DDT Procedure (q) 

Initialization : Compute T
+
 = {(i, j) : 1 ≤ i <  j ≤ n and qij > 0},  

T
-
 = {(i, j) : 1 ≤ i < j ≤ n and qij < 0},  T

=+
 = {(i, i) : 1 ≤ i ≤ n and qii > 0}, and  

T
=-

 = {(i, i) : 1 ≤ i ≤ n and qii < 0}. Set T = T
-
  T

+ 
 T

=+ 
 T

=-
.  Set the system set S = . 

Devour: Find a term qi*j* from q with the largest |qij|, i.e. set  

(i*, j*) = argmax{ |qij| : (i, j)  T} 

If (i*, j*)  T
-
 (i.e. qi*j* < 0) then set  xi* = 1 and xj* = 1 else if i* = j* then set  

xi* = (1 - sign(qi*j*))/2. Otherwise, add  xi*xj* = 1 to S. 

Digest: Draw all the logical conclusions C from the boolean equations in S. 

Tidy-up: Substitute the consequence C into q and update q, T
-
, T

+
 and T. 

If T then return to Devour. 

Output: Solve the Boolean equations in S, and output x.   

 

To illustrate, we consider the following example from Boros et al. (2008). 

Example 1: We seek to minimize the quadratic function given by  

54434232412154321 861048127129513)( xxxxxxxxxxxxxxxxxxq   

A step-by step procedure of standard DDT applied to such quadratic function q(x) is as follows: 

Iteration 1 : We have (i*, j*) = (4, 4) with qi*j* = 12 therefore we set x4 = 0 and update the 

function q so that  

q(x) = 13 - 5x1 + 9x2 + x3 + 7x5 - 12x1x2 + 4x2x3. 

Iteration 2 : Now we have (i*, j*) = (1, 2) with qi*j* = -12, so set x1 = 1 and x2 = 1. Then 

propagate these equalities into the function q to obtain  

q(x) = 5 + 5x3 + 7x5. 

Iteration 3 : The maximum of |qij| is reached by (i*, j*) = (5, 5) with qi*j* = 7. Set x5 = 0 and 

propagate this assignment into the function q so that  

q(x) = 5 + 5x3.  

Iteration 4 : We have (i*, j*) = (3, 3) with qi*j* = 5 therefore set x3 = 0 and update the function q 

so that  

q(x) = 5. 

Now the set T = , then we stop and we return the solution  x = (1,1,0,0,0) with q(x) = 5. 
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In the next section, we describe the DDT versions applied to a posiform representation of the 

quadratic function q. 

 

2. Devour Digest Tidy-up Heuristic with Posiform 

The original Devour, Digest and Tidy-up method is fitted and applied to a posiform 

representation of q. For a binary variable xi let ii xx  1  be the complement of xi. Given a 

quadratic function q, it is possible to write this function using several ways in the following form 


 
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with 0,,,, 

ijijij
ppppp ii  for all i and j. This representation is called a posiform expression 

of the UQP problem. The concept of the posiform representation will be significant for the 

methods subsequently described. A posiform expression can be obtained by an appropriate choice 

of variables to complement in the given negative terms (i.e. qijxixj where qij < 0), in order to have 

positive value of all coefficient of q. There are many ways to transform a quadratic function to an 

equivalent posiform by substituting complements of some variables in q. More precisely, a 

posiform expression can also be generated by choosing value of variables yij  [0, 1] for i, j = 1, 

…, n and apply successively the following rules:  

 

)1()1()1( jiijjiijji xxyxxyxx   for (i, j)  T
-
  (3-a) 

)1)(1)(1( jiijjiijji xxyxxyxx   for (i, j)  T
+
  (3-b) 

ii xx 1      for (i, i)  T
=-

  (3-c) 

Remark 1: Note that when the variables yij are binaries in equation (3-a) this can be interpreted 

by  












jiji

jiji

ij
xxxxif

xxxxif
y

)1(by replaced is0

)1(by replaced is1
 

Remark 2: A simple procedure to obtain a posiform consists to replace each quadratic product 

xixj associated with a negative coefficient by −xj + xixj (i.e. yij = 1); then in a second step to 

replace each xi with a negative coefficient by ix1 (i.e. rule 3-c). 

Remark 3: Complementing only the smaller index variable in each complementation step 

corresponds to setting 



 


otherwise

jiif
yij

0

1
 

Complementing only the larger index variable in each complementation step is equivalent to set 

 

 

 

 

Other posiform representation can be constructed where in each complementation step, 

complementing  randomly a variable or complementing  alternatively the smaller and the larger 

index variable. 
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Since all coefficients of linear and quadratic term in the posiform expression are positives, 

the constant p0 in (2) defines a lower bound on q (i.e. p0  min{q(x) : x  {0,1}
n
}). The biggest 

value of the constant p0 with which the posiform representation satisfies (2) is called the roof-

dual bound. Hammer, Hansen, and Simeone (1984) have introduced the “roof dual” of a UQP 

and they have proved that the roof-dual bound is equal to the optimal value of the LP-relaxation 

of the following Mixed Integer Linear Problem (MIP): 

MIP  minimise 
 

n

i

n

ij

ijij yq
1

      (4-a) 

subject to  

yij  xi    i, j  N    (4-b) 

yij  xj    i, j  N    (4-c) 

yij   xi + xj – 1   i, j  N    (4-b) 

xi{0,1}   i  N    (4-e) 

where binary variables yij represent the quadratic terms xixj. It can be easily seen that the MILP is 

equivalent to the quadratic problem UQP. Constraints (4-b) and (4-c) ensure that yij must be zero 

if either of xi or xj are zero. Constraint (4-d) ensures that yij is one if both xi and xj are one. 

Constraints (4-e) are the integrality constraints. This linearization was proposed independently by 

several authors Fortet (1959), Balas (1964), Zangwill (1965), Watters (1967), Glover and Wolsey 

(1974), Adams, Forrester and Glover (2004), Gueye and Michelon (2005), Fortet (1959-1960), 

Glover (1975-1984), Goldman (1983), and Plateau (2006). Recently Hansen and Meyer (2009) 

propose and compare three new compact linearizations for the UQP, two of them are achieving 

the same lower bound than the “standard linearization”. The first linearization requires n 

additional constraints with respect to Glover’s one, where n is the size of the quadratic 0–1 

problem, while the two others require the same number of constraints. All three linearization 

require the same number of additional variables than Glover’s linearization.  

 

The variable xi and its complement ix  are called literals, we introduce a new variable x0 assigned 

to one (x0 = 1), and we denote by L = { xi, ix  : i = 0, 1, …, n} the set of literals. To make simpler 

the notation, we assume in the rest of this paper that the quadratic function q is given as  





Tvu

uvuvqqxq
),(

0)(

    (5)

 

whereas T = {(u, v) : for all u, v  L with quv  0}. 

In the “devour” step of posiform DDT procedure, the term with the largest coefficient is set to 0. 

In case of this largest term involves only one literal, we fix this literal to 0. Using this procedure 

all the logical consequences are derived in the “devour” step. Then, these logical consequences 

are substituted into the current posiform in the “tidy-up” step. The posiform DDT procedure is 

described below. 

 

Posiform DDT Procedure (q) 

Input : UQP q in a posiform. 

Initialization : Compute T = {(u, v) : puv > 0, u,v  L} and set the system S = . 

Devour: Find the largest coefficient pu*v* in the current posiform q, set 

(u*, v*) = argmax{ puv : (u, v)  T} 

If u* = v* then set u* = 0 otherwise, add the pseudo cut u*v* = 0 to S. 

Digest: Draw all the logical conclusions C from the boolean equations in S. 
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Tidy-up: Substitute the consequence C into q and update T. If T   then return to Devour.  

Output: Solve the Boolean equations in S, and output x.   

 

Example 2: Consider again the quadratic function of Example 1. By applying the rules (3-a), (4-

b) and (4-c) we obtain an equivalent posiform representation of q will be: 

54434232412154321 861048127451710)( xxxxxxxxxxxxxxxxxxq   

A step by step procedure of DDT applied to such posiform is as follows:  

Iteration 1 : We have (u*, v*) = ),( 11 xx  with qu*v* = 17 therefore set 01 x  (hence x1 = 1) and 

update the function q so that  

544342325432 8610471251310)( xxxxxxxxxxxxxq   

Iteration 2 : Now we have (u*, v*) = ),( 22 xx  with qu*v* = -13, so set 02 x  (hence x2 = 1). 

Then propagate this equality into the function q to obtain  

5443543 86724)( xxxxxxxxq   

Iteration 3 : The maximum of puv in the current posiform is reached by (u*, v*) = ),( 54 xx  with 

pu*v* = 8. Set S = { 054 xx } and the current posiform become 

54543 8724)( xxxxxxq   

Iteration 4 : We have (u*, v*) = ),( 55 xx  with qu*v* = 7 therefore set x5 = 0 and draw all the 

logical conclusions from the Boolean equation 054 xx  in S to obtain x4 = 0. Substitute the 

consequence x4 = x5 = 0 into q so that  

q(x) = 5 + 5x3  

Iteration 5 : Finally, we have (u*, v*) = ),( 33 xx  with qu*v* = 5 therefore set x3 = 0 and update the 

function q so that  

q(x) = 5.  

Now the set T = . Stop and return x = (1,1,0,0,0) with q(x) = 5. 

 

1. Devour Digest Tidy-up Heuristic with Negaform 

A negaform expression can be obtained by an appropriate choice of variables to complement in 

the given positive terms (i.e. qij xixj where  qij > 0), in order to have all coefficient of q negative. 

A quadratic function q can be transformed to an equivalent negaform by substituting 

complements of some variables in q. Specifically, a negaform can also be generated by choosing 

value of variables yij  [0, 1] for i, j = 1, …, n and apply successively the following rules:  

)1()1()1( jiijjiijji xxyxxyxx   for (i, j)  T
+
  (6-a) 

)1)(1)(1( jiijjiijji xxyxxyxx   for (i, j)  T
-
  (6-b) 

ii xx 1      for (i, i)  T
=+

  (6-c) 

The similary remarks of the rules 3-x can be cited for 6-x. 

 

Negaform DDTprocedure (q) 

Input : UQP q in a negaform. 

Initialization : Compute T = {(u, v) : puv < 0, u,v  L}. 

Devour: Find the smallest coefficient pu*v* in the current posiform q, set 

(u*, v*) = argmin{ puv : (u, v)  T} 
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Digest and Tidy-up: Set  u* = 1 and v* = 1. Substitute the assignment u* = v* = 1 into q and 

update T. If T   then return to Devour.  

Output: Return the solution x.   

 

Example 3: We seek to minimize the quadratic function given by 

54434232412154321 861048127129513)( xxxxxxxxxxxxxxxxxxq   

Consequently, by completing the small index the equivalent negaform representation of q is: 

54434232412154321 8610481272059554)( xxxxxxxxxxxxxxxxxxq   

A step by step procedure of DDT applied to such negaform is as follows:  

Iteration 1 : We have (u*, v*) = ),( 44 xx  with qu*v* = -20 therefore set 14 x  (hence x4 = 0) and 

update the function q so that  

32215321 412759534)( xxxxxxxxxq   

Iteration 2 : Now we have (u*, v*) = ),( 21 xx  with qu*v* = -12, therefore set x1 = 1 and x2 = 1. 

Then propagate these equalities into the function q to obtain  

53 7517)( xxxq   

Iteration 3 : The minimum of quv in the current negaform is reached by (u*, v*) = ),( 55 xx  with 

pu*v* = -7. Therefore set 15 x  (hence x5 = 0)  and after propagation the current negaform 

become 

3510)( xxq   

Iteration 4 : Finally, we have (u*, v*) = ),( 33 xx  with qu*v* = -5 therefore set 13 x  (hence x3 = 

0) and update the function q so that  

q(x) = 5.  

Now the set T = . Stop and return x = (1,1,0,0,0) with q(x) = 5. 

 

1. Devour Digest Tidy-up Heuristic with Bi-form 

A particular posiform of a quadratic function is the bi-form representation which was introduced 

by Boros, Hammer and Sun (1989) (see also Boros, Hammer, Sun and Tavares (2008)). Let xi 

and xj be two binary variables, the expression jijiij xxxxx   is called a positive bi-term and 

jijiij xxxxx   is called a negative bi-term. It is easy to figure out that the bi-terms express 

naturally the equality or non-equality of the variables involved: 

jijijiij xxxxxxx  0
 

jijijiij xxxxxxx  0
 

In the DDT heuristic, the term with the largest coefficient is set to 0 and the logical consequences 

derived are substituted into the current biform. A bi-form q is a quadratic function containing 

only bi-terms with positive coefficient, i.e. )()( 0





  ijij

ji

ijij xbxbbxq  with 0, 

ijij bb . Thus, 

any quadratic function q has a unique bi-form representation which can be obtained by applying 

successively the transformations (7-a) and (7-b) of its positive and negative quadratic terms (1  i 

< j  n), and then the transformations (7-c) and (7-d) of its positive and negative linear terms (i = 

1, . . . , n), with x0 = 1. 
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)(
2

1
)(

2

1
jijijiji xxxxxxxx    for (i, j)  T

-
  (7-a) 

2

1
)(

2

1
)(

2

1
 jijijiji xxxxxxxx  for (i, j)  T

+
  (7-b) 

)(1 00 xxxxx iii     for (i, i)  T
=-

   (7-c) 

00 xxxxx iii     for (i, i)  T
=+

   (7-d) 

The given transformations (7-x) for linear and quadratic terms can be readdressed as follows : 

)(
2

1
1 00

  jiijji xxxxx   for (i, j)  T
-
    (8-a) 

)1(
2

1
00  

jiijji xxxxx   for (i, j)  T
+
   (8-b) 

 01 ii xx     for (i, i)  T
=-

   (8-c) 
 0ii xx     for (i, i)  T

=+
   (8-d) 

By applying the rules (8-x) to the quadratic function q(x) = xQx, we obtain the following Biform 

representation: 


 





 
n

i

n

ij

ijiji

n

i

i xbxbxbxbbxq
ijijii

1 1

0

1

00 )()()(
00

  (9)

 

where 

))
2

((
1 1

0  
 



 
n

i

n

ij

i

ij

ij

q
qqb  

)(
2

1

1

0 


 
n

i

ijii qqb    
2



  i

ij

q
b  

)(
2

1

1

0 


 
n

i

ijii qqb    
2



  i

ij

q
b  

Remark 4 :   0,min  

ijijijij bbbb  

 

Given a quadratic function q in the bi-form representation, )()(
0

0





  ijij

nji

ijij xbxbbxq , we set 

the associated graph Gq, whose vertices correspond to the indices {0, 1, … , n} of the variables, 

and whose edges correspond to those pairs (i, j) representing a bi-term in q involving the 

variables xi and xj. An edge (i, j) is called positive (negative) if the associated bi-term is positive 


ijx  (negative 


ijx ) weighted by the positive coefficient 


ijb  (


ijb ) in q. In other words, Gq is a 

weighted signed graph associated to the bi-form of q, defined by Gq = (V, w, s) where V = {0, 1, 

… , n}, weighted  by w and signed by s such that : 
 ijjiij bww  and sij = sji = +1 if the positive bi-term 

ijx  is involved in q, 

 ijjiij bww  and sij = sji = -1 if the negative bi-term 

ijx  is involved in q, 

0 jiij ww   and sij = sji = +1 otherwise, 

 

Example 4: Consider the quadratic function 
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q(x) = −3x1 + 12x2 − x3 + 3x4 + 14x5 − 10x1x2 + 12x1x3 − 6x1x5 − 14x2x3 + 4x3x4 − 10x4x5. 

The unique bi-form of q is  

 q(x) = -13 + 5x
+

01 + 6x
-
05 + 5x

+
12 + 6x

-
13 + 3x

+
15 + 7x

+
23 + 2x

-
34 + 5x

+
45  

The weighted signed graph Gq associated to the Bi-form q is presented in the Figure 1. The 

positive edges are represented by solid line and the negative edges by dotted lines where s05 = s13 

= s34 = -1 and sij = 1 for the other edges (i, j). 

 

x0

x1

x5

x2

x4

x3

5

6

5

2

7

6

3

6

 
Figure 1 : Weighted Signed Graph associated to the Bi-form 

 

Within the weighted signed graph Gq associated to a given bi-form q, Boros, Hammer, and Sun 

(1989), show that substituting ji xx   (or ji xx  ) into q is equivalent to contracting the positive 

(or negative) edge (i, j) of Gq. The contraction of the edge (i, j) of Gq yields a new weighted 

signed graph G’ = (V’, w’, s’) defined by : 

V’ =  V – {j} 













iVlikwssws

iVlkw
ww

jljlijilil

lk

kllk ' and  if

', if
''   





















0and,' , if1-

0and,' , if1

', if

''

jljlijilil

jljlijilil

lk

kllk

wsswsiVlik

wsswsiVlik

iVlks

ss   

The contraction operation generates the following constant  

 





1:'

),min('
jkijik sssiVk

jkikij www  

 

DDT with Bi-form Procedure (q) 

Input : UQP q in the bi-form representation. 

Initialization : Compute the weighted signed graph Gq = (V, w, s) associated to q. Let b0 be the 

constant of q. Set the system S = . 

Devour: Find the largest weight wi*j* in the current graph Gq, i.e. wi*j* = max{ wij : i, j  V}. If 

si*j* = +1 add 0** 

jix  to S else add 0** 

jix  to S.  

Digest-Tidy-up: Set 
 





1:*

**00 ),min(
jµJµiµjµiJ sssiVj

jjji wwbb . Drop j from vertex set V = V – {j} and 

contract the edge (i*, j*) by updating the weight and sign of the current graph as follows : 
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For j V – {i*} do{ 

jjjjjijijijiji wsswsww ********     










0 if1

0 if1

******

******

**

jjjjjijiji

jjjjjijiji

jiji wssws

wssws
ss

  } 

If still there are edges with nonzero weight in Gq, then return to Devour.  

Output: Solve the Boolean equations in S, and output x and b0.   

 

To illustrate a step by step procedure of DDT with bi-form we applied it on the quadratic function 

of Example 1. 

Example 5: The weighted signed graph Gq associated to each current Bi-form q is presented in 

the Figure 2.  

Iteration 0: The equivalent biform of the quadratic function of Example 1 is  

q(x) = -13 + 7x
+

01 + 4x
-
04 + 3x

-
05 + 6x

+
12 + 4x

-
14 + 2x

-
23 + 5x

+
24 + 3x

+
34 + 4x

+
45  

Iteration 1: First the largest weight wi*j* = 7 in the current graph corresponds to the edge (i*, j*) = 

(0, 1) is found. The contraction operation generates the constant w’i*j* = 0, q0 = -13 and we have 

x1 = x0 = 1. The current bi-form becomes  

q(x) = -13 + 6x
+

02 + 8x
-
04 + 3x

-
05 + 2x

-
23 + 5x

+
24 + 3x

+
34 + 4x

+
45. 

Iteration 2: Next the largest weight wi*j* = 8 in the current graph corresponds to the edge (i*, j*) 

= (0, 4) is found. The contraction operation generates the constant w’i*j* = 5 and we have 

104  xx  with q0 = -8. So x4 = 0 and the current bi-form becomes  

q(x) = -8 + x
+

02 + 3x
-
03 + 7x

-
05 + 2x

-
23. 

Iteration 3: Then, we have (i*, j*) = (0, 5) with wi*j* = 7and si*j* = -1 therefore we get 

105  xx  and w’i*j* = 0 with q0 = -8. So x5 = 0 and the current bi-form becames  

q(x) = -8 + x
+

02 + 3x
-
03 + 2x

-
23. 

Iteration 4: We have (i*, j*) = (0, 3) with wi*j* = 3 and si*j* = -1 therefore we get 103  xx  and 

w’i*j* = 0 with q0 = -8. So x3 = 0 and the current bi-form becomes  

q(x) = -8 + 3x
+

02. 

Iteration 5: At the end, we have (i*, j*) = (0, 2) with wi*j* = 3 and si*j* = 1 therefore we get 

102  xx  and w’i*j* = 0 with q0 = -8. So x2 = 1 and the current bi-form becames q(x) = -8. Now 

the graph is empty so the algorithm terminates and return x = (1, 1, 0, 0, 0) with q(x) = -8. 
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x3
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1

3

x0=x1=x4=x5=x3=x2
x0=x1=x4=x5=x3 x23

Iteration = 4 Iteration = 5

 

Figure 2 : Weighted Signed Graphs corresponding to each step of DDT with Bi-form 

 

3. Devour Digest Tidy-up Heuristic with equality 

The bi-form representation of a quadratic function can also be obtained by the following way. 

This new representation, called reprentation with equality, is obtained from the input quadratic 

function q given in the form of (1) by applying the following rule: 

2

)( 2

jiji

ji

xxxx
xx




      (10)
 

By replacing xixj using the equation (9) and regrouping the terms, the expression of the quadratic 

function q(x)
 
can be written as: 




 


1

1 1

2

1

0 )()(
n

i

n

ij

jiij

n

i

iii xxcxccxq

    

(11-a) 

where 
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00 qc 
        (11-b)

 

)(
2

1

1

ii

n

j

ijii qqc  


       
(11-c)

 

2

ij

ij

q
c          

(11-d)
 

Similarly to the standard DDT described in section ?, in the “devour” step of the DDT with 

equality, a term with the largest absolute value of coefficient is set to 0 or 1. If this largest 

coefficient is negative the term is set to 1 which implies that the variables involved in this term 

are set to 1. Precisely, at each iteration of this version of DDT, we find the largest absolute value 

of coefficient ci*j* in the current function q, i.e. 

 (i*, j*) = argmax{|cij| : (i, j)  T} 

where T = {(i, j) : cij ≠ 0 }. The term associated to the largest coefficient is set to 0 if the sign of 

the largest coefficient is positive otherwise it is set to 1. Then the logical consequences of this 

assignment are derived and substituted into the current quadratic function. More specifically, we 

consider two cases. In case where i* = j*, then we set xi* = sign(qi*i*). Then we substitute this 

assignment in to the current function q. By substituting this assignment and observing that  

(xi* - xj)
2
 = (xj - xi*)

2
 = (1-2xi*)xj + xi*   (12-a) 

**

2

** 0)( jiji xxxx 
    (12-b) 

**

2

** 1)( jiji xxxx 
    (12-c) 

The current quadratic function q becomes 




 


1

1 1

2

1

0 )(''')(
n

i

n

ij

jiij

n

i

iii xxcxccxq

    

(13-a) 

where 

*

*

00 )(' i

i xeQcc 
        (13-b)

 

*for )21(' ** iicxcc iiiiiii        
(13-c)

 

icc iiii  allfor 0**         
(13-d)

 

In case where i* ≠ j*, then we set (xi* - xj*)
2
 = sign(qi*j*). Then we substitute this assignment in to 

the current function q. By substituting this assignment and observing that  

(xj* - xj)
2
 = (1-2(xi* - xj*)

2
)(xi* - xj)

2
 + (xi* - xj*)

2
 

The current quadratic function q becomes 




 


1

1 1

2

1

0 )(''')(
n

i

n

ij

jiij

n

i

iii xxcxccxq

    

(14-a) 

where 
2

**

*

00 ))((' ji

j xxeQcc 
       (14-b)

 

*for ))(21(' *

2

**** iicxxcc iijiiiii      
(14-c)

 

icc ijij  allfor 0**         
(14-d)

 

 

Algorithme à décrire et à implémenter 

 

4. Devour Digest Tidy-up Heuristic with One-Pass 
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Glover, Alidaee, Rego and Kochenberger (2002) suggest several alternative heuristics based on 

different ways of generating posiform representations. These variants evaluations schemes are 

slightly different than those used in the DDT procedure proposed by Boros. Glover et al. propose 

eight different ways of evaluating the contributions of the variables in the one-at-a-time 

assignments. The original DDT heuristic often results in setting several variables to 0 or 1 

simultaneously after the assignment of a value to one variable. These assignments are triggered 

by giving a value to a literal that appeared in preceding pairs in the sequence that have been kept 

in the current system.  

Different ways of evaluating the contributions of the variables in the one-at-a-time assignments 

lead to alternative ways of implementing the one-pass idea. 

 

DDT with One-Pass Procedure(q) 

Input : UQP q in a posiform. 

Initialization : Compute T = {(u, v) : puv > 0, u,v  L}. 

Devour: Find the largest coefficient pu*v* in the current posiform q, set 

(u*, v*) = argmax{ puv : (u, v)  T} 

Digest: If u* = v* then set u* = 0. Otherwise, Let  

(u’,v’) = argmax{quv : (u, v)  T

 and ),( uu or ),( vv   T

=
}. 

If  ),( uu   T
=
 then set v’ = 0; else if  ),( vv   T

=
 then set u’ = 0;  

else u* = 0. 

Tidy-up: Substitute the assignment into q and update T. If T   then return to Devour.  

Output: the solution x.  
 

 

Local Search 

Local search (LS) heuristic tries to improve an initial solution by searching in a neighborhood of 

the current solution for a better one until no further improvement can be made. LS progressively 

improves the initial solution by applying a series of local modifications (called also moves).  

 

Boros,  Hammer and Tavares (2007) present a family of LS heuristics for UQP and they 

analyze the effects of various parameters on the efficiency of these methods. 

MERZ AND FREISLEBEN propose greedy and LS heuristics for UQP 

In this section, we propose an efficient implementation of local search algorithms using r-flip 

moves. These heuristics are well suited for the incorporation into meta-heuristics such as Tabu 

search and evolutionary algorithms. The proposed heuristics—especially the r-flipp local 

search—offer a great potential for the incorporation in more sophisticated meta-heuristics. 

 

• Let x  {0,1}
n 

 

• Stop = False 

• While Not Stop{ 

– Choose x’  Nk(x) such that q(x’) < q(x) 

 








 


kyxyxN
n

j

jj

n

k

1

10 :,)(
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– If x’ exists then Set x = x’ 

– Else Stop = True 

} 
// x[0] = q(x) = xQ1x 

int RL_V12_firstimprove(UPQ *Q, int *x) 

{ 

for(h=1;h<=n;h++){ 

 Qx[h] = Q[1][h]*x[1]; 

 for(int j=2;j<=n;j++) Qx[h] += Q[j][h]*x[j]; 

} 

Qx = Q*x; 

iter = delta = 0; 

Best = q(x); 

eval: 

Best += delta; 

for (h=1; h<= n;h++){ 

 delta = Q[h][h] + 2(1 - 2x[h])*Qx[h]; 

 if (delta < 0){ 

  for(j=1;j<=n;j++) Qx[j] += (1 - 2x[h])*Q[h][j]; 

  x[h] = 1 - x[h]; 

  goto eval; 

 } 

} 

for (h=1; h < n; h++){ 

 for (k=h+1; k <= n; k++){ 

  delta = Q[h][h] + (2(1 - 2x[h])*Qx[h]) + Q[k][k] + 2((1 - 

2x[k])*Qx[k] + (1 - 2x[h])* (1 - 2x[k])*Q[h][k]); 

  if (delta < 0){ 

   for(j=1; j<=n; j++){ 

    Qx[j] += (1-2x[h])*Q[h][j] + (1-2x[k])*Q[k][j]; 

   } 

   x[h] = 1 - x[h]; 

   x[k] = 1 - x[k]; 

   goto eval; 

  } 

 } 

} 

x[0] = Best; 

return iter; 

} 

 

Recently Glover and Hao (2009b) propose a method for efficiently evaluating 2-flip moves in 

search methods for UQP. They extend thier method for efficiently evaluating 1-flip moves 

described in Glover and Hao (2009b). 

There exist several ways to establish combined neighborhoods from 1-flip and 2-flip moves see 

for example VNS, TS.  

Lü, Glover, and Hao (2009) propose a Tabu Search (Glover, Laguna, 1997, Glover, Hanafi, 2002) 

and Iterated Local Search (Lourenco, Martin, Stützle, (2003) that combines neighborhoods with 1-

flip and 2-flip moves.  
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2-flip moves that simultaneously change the values of two 0-1 variables in search methods for 

UQP. 

1-flip moves that change the value of a single 0-1 variable for the UQP problem.  
 

Starting from the 1-flip move, let x and x′ represent two binary solutions where x′ is obtained 

from x by flipping the value of a single variable from x
i 
to x

i
′ = 1 - x

i
, so we have 

x′ = x + (1 - 2x
i
)e

i
. 

Define q(x) = q
o
 + xQx. Then the objective function change produced by flipping x

i
, given by 

 Δ
i 
= q(x′) – q(x). 

By developing and observing that e
i
Qx = Q

i
x = (Qx)

 i
 and (1 - 2x

i
)

2
 = 1, Δ

i 
can be expressed as  

  Δ
i
 = (x + (1 - 2x

i
)e

i
)Q(x + (1 - 2x

i
)e

i
) - xQx  

Δ
i
 = (1 - 2x

i
)e

i
Qx  + (1 - 2x

i
)e

i
Qx + (1 - 2x

i
)e

i
Q(1 - 2x

i
)e

i
) 

Δ
i
 = 2(1 - 2x

i
)Q

i
x  + (1 - 2x

i
)

 2
q

ii
 

Δ
i
 = 2(1 - 2x

i
)(Qx)

i
  + q

ii
 

where the notation Q
i
 refers to column i of matrix Q.  

In the case of a 2-flip neighborhood, we are interested in the move from solution x to the 

neighbood solution x′ that results by flipping 2 variables, x
i
′ = 1 - x

i 
and x

j
′ = 1 - x

j
. We have 

x′ = x + (1 - 2x
i
)e

i
 + (1 - 2x

j
)e

j
. 

We will refer to the objective function change by Δ
ij
 = q(x) – q(x′). By developing and observing 

also that q
ij
 = q

ji
 = e

i
Qe

j
  = e

j
Qe

i
, Δ

ij 
can be expressed as  

 Δ
ij 

= (x + (1 - 2x
i
)e

i
 + (1 - 2x

j
)e

j
)Q(x + (1 - 2x

i
)e

i
 + (1 - 2x

j
)e

j
) - xQx  

 Δ
ij 

= xQx + (1 - 2x
i
)e

i
Qx + (1 - 2x

j
)e

j
Qx  +  

   xQ(1 - 2x
i
)e

i
 + (1 - 2x

i
)e

i
Q(1 - 2x

i
)e

i
 + (1 - 2x

j
)e

j
Q(1 - 2x

i
)e

i
 +  

   xQ(1 - 2x
j
)e

j
 + (1 - 2x

i
)e

i
Q(1 - 2x

j
)e

j
 + (1 - 2x

j
)e

j
Q(1 - 2x

j
)e

j
) - xQx  

 Δ
ij 

= (1 - 2x
i
) (Qx)

i
 + (1 - 2x

j
)(Qx)

j
 + (1 - 2x

i
)(Qx)

i
 + q

ii
 + (1 - 2x

j
)(1 - 2x

i
)q

ji
 +  

   (1 - 2x
j
)(Qx)

j
 + (1 - 2x

i
)(1 - 2x

j
)q

ij
 + q

jj
  

 Δ
ij 

= 2(1 - 2x
i
)(Qx)

i
 + 2(1 - 2x

j
)(Qx)

j
 + 2(1 - 2x

i
)(1 - 2x

j
)q

ij
 + q

ii
 + q

jj 

Equivalently, 

 Δ
ij 

= Δ
i
 + Δ

j
 + 2(1 - 2x

i
)(1 - 2x

j
)q

ij
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Quadratic Programming,” Proceedings of the 8th Metaheuristic International Conference (MIC 

2009), Hamburg, Germany, 13-16 July, 2009.  
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optimization problems. Working paper, LERIA, Université d'Angers (2009). 

 

1. Computational results 

In this Section, we show computational results of the aforementioned versions of DDT heuristics. 

The variants of DDT heuristics were implemented in C++, compiled using the Microsoft 

Windows 32-bit C/C++ Optimizing Compiler  (version 12) for 80×86, and linked with the 

Microsoft Incremental Linker (version 6). The computer used for testing has a Xeon (TM) CPU 

3.06 GHz, 3.5 GB of RAM and has installed the Windows XP Professional (version 2002) 

operating system.  

Benchmark datasets 

Several authors have reported in the past computational results about UQP. The benchmark test 

problems used in this paper and in numerous other studies of UQP (e.g., Pardalos and Rodgers 

(1990), Amini et al. (1999), Beasley (1998), Glover et al. (2002), Glover et al. (1998a), Merz and 

Freisleben (1999) and Merz and Freisleben  (2002)) were mostly taken from the Internet.  Only 

the largest problem instances available there were considered. 

Experiments are carried out on the set of the 53 largest instances with 1000 up to 6000 variables. 

We validate our heuristics on three sets of available instances of UQP. The first set is composed 

by 15 instances with n = 1000, the problems in this group GK and KG were taken from the 

Hearin Center for Enterprise Science website,2. The second set is composed by 20 instances with 

n in {1000, 2500} taken from the OR-Library website1. The last set is composed by 18 instances 

varying in size from 3000 to 6000 variables generated by PALUBECKIS and can be found in the 

wibeset3.  

The basic parameters and references of these problems are shown in Table 1. These problems 

vary considerably in size, density, and in the characteristics of their Q matrices. In Table 1, n 

denotes the number of variables in a problem, let d be the “density” of the problem, i.e., the ratio 

of the number of nonzero coefficients of quadratic terms in the function and n(n-1)/2.  Let l− and 

l+ be respectively the minimum and the maximum of the coefficients of the linear terms in (1), 

and let q− and q+ be equal to one half of the minimum, respectively of the maximum, of the 

coefficients of the quadratic terms in (1). For example, all the instances, named OR-n-1, . . . , 

OR-n-10 have density 10% and all nonzero coefficients of the objective function are drawn 

uniformly at random from the interval [−100, 100]. 

 

Problem  

Type  
Source  

n # pbs D Main  

Diagonal  

Off  

Diagonal  

G1  
Glover et al. 

[12] 
(1) 

 

1000 10 10 to 

100 [-75,+75]  [-50,+50]  

G2  
Kochenberger 

et al. 
(1) 

 

1000 5 10 to 

100 [-99,0]  [0,+50]  

OR  OR-Library 
(2) 

 
1000 and 

2500 

20 10 
[-100,+100]  [-100,+100]  

GP  
PALUBECKIS 

(3) 

 

3000 to 6000 18 50 to 

100 
[-100,+100]  [-100,+100]  

 

Table 1. Characteristic of Benchmark test problems for UQP 
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1 Beasley, J.E. (11/11/2003). OR-Library: Unconstrained binary quadratic programming 

(Beasley, 1990 and Badics, 1996). http://mscmga.ms.ic.ac.uk/jeb/orlib/bqpinfo.html. 

2 Hearin Center for Enterprise Science. (11/11/2003). Benchmarks for unconstrained binary 

quadratic problems. http://hces.bus.olemiss.edu/tools.html. 

3. http://www.soften.ktu.lt/˜gintaras/ubqop_its.html. 

 

 

Let us denote by q0* the best known value of the quadratic function q. The list of all best values 

for the test problems used in this study from the pseudo–Boolean optimization website: 

http://rutcor.rutgers.edu/˜pbo, and recent papers on the UQP cited in this paper. 

F. Glover, G.A. Kochenberger, B. Alidaee, and M. Amini, (1998), Tabu search with critical event 

memory: An enhanced application for binary quadratic programs. In: Meta--heuristics-Advances 

and trends in local search paradigms for optimization, pp. 83-109. 

F. Glover, G.A. Kochenberger, B. Alidaee, and M. Amini, (1998), Tabu search with critical event 

memory: An enhanced application for binary quadratic programs. In: Meta--heuristics-Advances 

and trends in local search paradigms for optimization, pp. 83-109. 

P. Merz and B. Freisleben, (1999), ''Genetic algorithms for binary quadratic programming'', in 

Proceedings of the 1999 international Genetic and Evolutionary Computation Conference 

(GECCO'99), Morgan Kauffmann, 417-424. 

J. E. Beasley, (1998), ''Heuristic algorithms for the unconstrained binary quadratic programming 

problem'', Technical Report, Management School, Imperial College, London, UK. 

G. Palubeckis, (11-24-2003), http://www.soften.ktu.lt/~gintaras/ 

P. Pardalos and G. P. Rodgers, (1990), ''Computational aspects of a branch and bound algorithm 

for quadratic 0-1 programming'', Computing 45 131-144. 

DDT0 : DDT Standard 

DDT1 : DDT with Signed Graph 

DDT2 : DDT with posiform 

DDT4 : One pass A2 

DDT5 : DDT with Negaform 

 

Pb q* DDT0 DDT0* DDT1 DDT1* DDT2 DDT2* DDT4 DDT4* DDT5 DDT5* 

G2a 4929 87,69 91,01 76,51 85,35 87,69 91,01 40,09 83,82 39,15 83,01 

G2b 2050 82,56 83,18 71,25 84,78 82,56 83,18 39,77 74,88 42,22 82,33 

G2c 1241 78,30 78,30 66,04 87,74 78,30 78,30 41,59 75,63 33,25 83,33 

G2d 843 83,26 83,26 65,01 80,37 83,26 83,26 30,37 82,10 31,64 80,60 

G2e 452 88,05 93,58 59,73 91,15 88,05 93,58 31,86 84,73 58,19 75,22 

http://www.soften.ktu.lt/~gintaras/
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OR1000_1 371438 62,62 82,79 83,71 84,02 70,78 83,79 70,72 83,66 4,32 83,78 

OR1000_2 354932 61,64 90,31 89,88 90,19 78,10 89,85 78,10 89,85 5,50 89,62 

OR1000_3 371226 73,42 89,04 88,86 89,56 79,70 89,69 79,70 89,69 4,08 89,15 

OR1000_4 370560 63,37 84,64 84,45 85,57 71,06 85,78 71,05 85,35 4,12 84,86 

OR1000_5 352736 71,69 88,00 87,33 87,96 73,93 87,36 73,90 87,74 4,28 87,71 

OR1000_6 359452 72,28 93,38 93,34 93,79 82,45 93,78 82,45 93,37 4,97 93,01 

OR1000_7 370999 68,66 86,28 86,45 87,37 73,00 87,28 73,01 87,13 4,08 86,35 

OR1000_8 351836 70,23 88,61 88,46 89,16 73,48 89,43 73,38 88,50 3,90 89,13 

OR1000_9 348732 66,91 91,08 91,62 92,59 78,11 92,10 78,11 92,20 5,38 92,17 

OR1000_10 351415 63,60 91,77 92,18 92,69 78,21 92,26 78,13 91,96 4,08 91,56 

OR2500_1 
1515944 68,50 81,27 80,94 81,69 58,28 81,53 58,27 81,63 1,19 81,76 

OR2500_2 
1471392 64,86 81,30 80,49 81,15 59,29 81,08 59,28 81,04 0,98 81,08 

OR2500_3 
1414192 73,60 90,68 90,51 91,49 68,60 91,05 68,60 90,91 1,28 90,77 

OR2500_4 
1507701 63,19 81,87 81,91 82,43 58,79 82,16 58,78 82,32 1,41 81,59 

OR2500_5 
1491816 65,81 81,40 80,87 81,43 56,90 81,45 56,89 81,35 1,44 80,82 

OR2500_6 
1469162 65,06 83,34 82,68 83,36 60,01 83,06 60,01 83,06 0,88 82,85 

OR2500_7 
1479040 67,66 82,88 82,93 83,87 59,05 83,23 59,05 83,36 1,29 83,11 

OR2500_8 
1484199 68,36 84,64 84,27 84,99 60,22 84,70 60,19 84,76 1,10 84,31 

OR2500_9 
1482413 67,26 82,75 82,85 83,46 60,21 82,99 60,20 83,23 1,46 82,89 

OR2500_10 
1483355 65,52 83,02 83,12 83,81 58,49 83,53 58,47 83,06 0,96 83,29 

GP_3000_01 
3931583 80,76 100,02 99,66 100,26 53,13 99,96 53,13 100,05 0,13 99,85 

GP_3000_02 
5193073 80,22 97,94 97,58 98,07 45,72 97,74 45,72 97,74 0,05 98,05 

GP_3000_03 
5111533 82,43 98,70 98,53 99,24 47,98 99,04 47,98 99,04 0,03 98,93 

GP_3000_04 
5761822 79,79 96,71 96,25 96,97 41,81 96,68 41,81 96,68 0,06 96,89 

GP_3000_05 
5675625 82,75 100,67 100,31 101,18 47,40 100,70 47,40 100,70 0,02 100,68 

GP_4000_01 
6181830 82,07 99,24 98,93 99,68 48,36 99,48 48,36 99,48 0,12 99,36 

GP_4000_02 
7801355 82,92 100,87 100,51 101,26 46,49 101,20 46,49 101,20 0,05 101,01 

GP_4000_03 
7741685 82,28 99,86 99,72 100,33 43,32 100,28 43,32 100,28 0,02 99,93 

GP_4000_04 
8711822 82,84 100,58 100,15 101,08 44,44 100,78 44,44 100,62 0,02 100,55 

GP_4000_05 
8908979 77,32 94,36 94,11 94,84 34,63 94,51 34,63 94,51 0,03 94,34 

GP_5000_01 
8559680 79,24 98,02 97,55 98,46 45,20 98,04 45,20 98,04 0,07 98,10 

GP_5000_02 
10836019 79,49 97,43 97,09 97,67 37,18 97,43 37,18 97,58 0,03 97,28 

GP_5000_03 
10489137 87,11 106,02 105,79 106,38 48,22 106,24 48,22 106,18 0,04 106,34 

GP_5000_04 
12252318 80,11 99,49 99,20 99,85 39,51 99,65 39,51 99,65 0,02 99,62 

GP_5000_05 
12731803 73,99 93,59 92,92 93,71 31,03 93,65 31,03 93,65 0,02 93,41 

GP_6000_01 
11384976 78,62 98,70 98,34 99,13 40,76 98,84 40,76 98,84 0,04 98,88 

GP_6000_02 
14333855 85,48 102,26 101,68 102,34 41,64 101,89 41,64 101,89 0,02 102,11 

GP_6000_03 
16132915 80,23 98,85 98,48 99,22 36,84 99,02 36,84 99,02 0,01 98,81 
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Table 2 : Solution quality of variants DDT heuristics for the UQP. 

 

 

Pb CPU0 CPU0* CPU1 CPU1* CPU2 CPU2* CPU4 CPU4* CPU5 CPU5* 

G2a 0,28 0,02 1,06 0,03 0,30 0,02 0,09 0,03 0,08 0,02 

G2b 1,56 0,02 1,06 0,02 1,59 0,02 0,23 0,03 0,23 0,03 

G2c 5,44 0,02 1,05 0,03 5,31 0,02 0,44 0,03 0,44 0,03 

G2d 9,25 0,02 1,05 0,02 9,13 0,03 0,66 0,02 0,66 0,03 

G2e 57,52 0,03 1,05 0,02 55,52 0,03 1,00 0,03 1,00 0,03 

OR1000_1 0,08 0,03 1,06 0,02 0,08 0,02 0,08 0,03 0,08 0,03 

OR1000_2 0,08 0,03 1,06 0,02 0,08 0,02 0,08 0,02 0,08 0,05 

OR1000_3 0,06 0,05 1,05 0,02 0,08 0,02 0,08 0,02 0,08 0,03 

OR1000_4 0,08 0,03 1,05 0,02 0,08 0,03 0,09 0,02 0,08 0,02 

OR1000_5 0,06 0,05 1,05 0,03 0,09 0,02 0,08 0,03 0,08 0,05 

OR1000_6 0,08 0,03 1,06 0,02 0,08 0,03 0,09 0,02 0,08 0,03 

OR1000_7 0,08 0,02 1,05 0,02 0,08 0,03 0,08 0,02 0,08 0,03 

OR1000_8 0,06 0,03 1,05 0,02 0,08 0,05 0,09 0,02 0,08 0,03 

OR1000_9 0,08 0,03 1,06 0,03 0,08 0,02 0,08 0,03 0,08 0,03 

OR1000_10 0,08 0,03 1,06 0,03 0,08 0,03 0,08 0,02 0,08 0,02 

OR2500_1 1,30 0,16 14,45 0,13 1,47 0,16 1,47 0,22 1,47 0,27 

OR2500_2 1,31 0,44 14,23 0,17 1,47 0,14 1,45 0,17 1,45 0,20 

OR2500_3 1,33 0,23 14,20 0,27 1,47 0,22 1,45 0,22 1,45 0,19 

OR2500_4 1,23 0,16 14,19 0,22 1,45 0,19 1,45 0,20 1,47 0,28 

OR2500_5 1,34 0,23 14,39 0,17 1,45 0,31 1,45 0,27 1,45 0,25 

OR2500_6 1,23 0,20 14,19 0,19 1,45 0,17 1,45 0,16 1,45 0,23 

OR2500_7 1,27 0,14 14,22 0,16 1,47 0,22 1,45 0,16 1,45 0,33 

OR2500_8 1,25 0,16 14,22 0,24 1,45 0,14 1,45 0,11 1,45 0,28 

OR2500_9 1,27 0,16 14,22 0,19 1,47 0,13 1,45 0,19 1,45 0,20 

OR2500_10 1,25 0,20 14,44 0,24 1,45 0,25 1,45 0,16 1,45 0,45 

GP_3000_01 13,17 0,28 24,09 0,20 14,69 0,25 14,55 0,31 14,67 0,44 

GP_3000_02 21,23 0,28 24,05 0,20 23,50 0,27 23,61 0,27 23,78 0,47 

GP_3000_03 21,33 0,25 24,19 0,22 23,52 0,28 23,38 0,28 23,49 0,44 

GP_3000_04 26,52 0,27 24,11 0,27 29,63 0,36 29,52 0,36 29,66 0,47 

GP_3000_05 26,84 0,27 24,31 0,23 29,36 0,30 29,25 0,30 29,47 0,47 

GP_4000_01 31,39 0,49 56,02 0,38 35,03 0,48 34,88 0,49 34,95 0,84 

GP_4000_02 50,47 0,56 56,27 0,41 55,88 0,56 55,63 0,56 55,84 0,89 

GP_4000_03 50,66 0,52 55,95 0,41 55,89 0,61 55,69 0,66 55,88 0,91 
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GP_4000_04 63,20 0,50 55,97 0,42 69,58 0,58 69,58 0,56 70,02 0,95 

GP_4000_05 63,02 0,64 55,74 0,45 69,74 0,61 69,48 0,61 70,13 0,92 

GP_5000_01 61,55 0,77 109,89 0,75 68,00 0,88 67,89 0,88 68,25 1,50 

GP_5000_02 98,69 0,80 110,05 0,88 108,97 0,91 108,98 1,25 109,52 1,66 

GP_5000_03 98,50 0,81 109,97 0,64 109,11 0,91 108,80 0,97 109,53 1,75 

GP_5000_04 123,36 0,86 110,05 0,67 136,08 1,22 136,05 1,22 136,78 1,58 

GP_5000_05 123,08 0,92 109,84 0,83 136,09 1,06 136,13 1,06 136,95 1,66 

GP_6000_01 106,56 1,27 184,63 0,88 117,42 1,53 117,28 1,53 117,92 2,50 

GP_6000_02 170,58 1,48 184,72 1,22 188,34 1,41 187,92 1,41 188,39 2,50 

GP_6000_03 212,81 1,56 184,53 1,30 235,38 1,83 235,59 1,83 236,03 2,47 

 

Table 3 : Running times in seconds of  variants DDT heuristics for the UQP. 

 

Conclusions 

• If more than one literal has the same max value then ties can be broken using different 

strategies. This gives other versions of DTT.  

• The various solutions generated can also serve as starting points for more advanced 

methods.  

• Efficiently evaluating moves that complement values of 0–1 variables in local search can 

exploited. 

• Those versions of DTT proposed here can be exploited in scatter search by employing 

adaptive memory ideas.  
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