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ABSTRACT

Detection and analysis of astrophysical sources from thtedom-
ing MUSE instrument is of greatest challenge mainly due édiiigh
noise level and the three-dimensional translation vatiunt effect
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of objects only, and use prior knowledge of the field spreadtfu
tion (FSF) to retrieve the abundance maps. In the other gitoafp
considers stellar spectra, [3] presents a instantanepeastrally in-
variant linear mixing model and uses existing method, negative
matrix factorization (NMF), to extract stellar spectrat duwcannot

of MUSE data. In this work, we use some realistic hypothedes ogjstinguish star types.

MUSE to reformulate the data convolution model into a seirafdr

mixing models corresponding to different, disjoint spakframes.
Based on the linear mixing models, we propose a spatiatispen-

mixing (SSU) algorithm to detect and characterize the gaspec-
tra. In each spectral frame, the SSU algorithm identifiesptine

galaxy regions with a theoretical guarantee, and estimagets
based on a sparse approximation assumption. The full gajsectra
can finally be recovered by concatenating the spectra estiragso-
ciated with all the spectral frames. The simulations weréopamed

to demonstrate the efficacy of the proposed SSU algorithm.

In this paper, we propose a spatial-spectral unmixing (S8U)
gorithm to detect spectra and abundance maps associatedlhtite
objects in order to characterize very distant emittingagtysical
sources from the PSF-corrupted MUSE data. We first reforraula
the convolution model (for whole spectral range) into savinear
mixing models associated with distinct, disjoint specfraines. In
each spectral frame, based on the pure pixel assumptiorprthe
posed SSU algorithm identifies the pure galaxy regions. Bicb
ering the fact that each galaxy spectrum can be well apprbeich
by suitable sparse representation [1], the estimation lefxgaspec-

Index Terms— MUSE instrument, Astrophysical hyperspectral tra is formulated as a conve-norm minimization problem. The

data, Galaxy spectra, Spatial-spectral unmixing, Spagesenta-
tion

1. INTRODUCTION

MUSE (Multi-Unit Spectroscopic Explorer) is a very powdriiote-
gral field spectrograph, planned to be commissioned at Varge.
Telescope (VLT) in Chile in the near future. MUSE will pro-
vide massive hyperspectral astrophysical data cube wittyé® of
300 x 300 pixels and up tot000 spectral bands, ranging from the
visible to near-infrared465nm to 930nm) wavelength. The data
provided by MUSE will be in a very noisy condition with highly
spectrally-varied power distribution, caused by the grparasite
emission of the atmosphere at specific wavelengths and binthe
strumental limitations. In addition, when observed thiotWUSE,
each source will be spread in spatial and spectral domaitisein
cube with the three-dimensional point spread function (RISE to
the instrument and atmospheric effects [3].

Present efforts for analyzing the MUSE hyperspectral data ¢
be mainly categorized by two groups: one for very distanaxgal
ies [1, 2] while the other for stellar spectra [3]. In [1], @ncthe
hypothesis that spectra should be in sparse form, spesti@a&on

estimation of abundance maps can be formulated as a notiveega
least-squares problem. Both problems can be solved by ailpbie
convex optimization solvers. Finally, the complete estedaspectra
are obtained from those estimates of all the spectral frahresgh
an advisable permutation. Some simulation results arepted to
demonstrate the efficacy of the proposed SSU algorithm.
Notations: R (R4.), RY (RY) andRM*N (R} *") denote set
of real (non-negative real) numberd] x 1 vectors andM x N
matrices, respectivelyi[x] is the discrete-time impulse function of
x; 1 is an all-one column vector with proper dimensiof; - ||,”,
“|I - ||l#” and “[-]” stand for p-norm, Frobenius norm, and ceiling
function, respectivelyPg is the orthogonal complement projector
of matrix C.

2. PROBLEM STATEMENT
As reported in [1-3], MUSE data can be modeled by

ylr, \] = z[r, \] + w[r, \] € R, Vr, A, Q)

wherey][r, )] is the value of the MUSE data at voxXel A\], z[r, \]
is the noise-free counterpart, andr, \] is the noise. Alsor € R?
denotes the 2-D spatial coordinate and= R denotes the wave-

from line spread function (LSF) contaminated MUSE data can b length. The noise-free MUSE data can be written as:

accomplished by solving afi -norm minimization problem, where
a dictionary of elementary spectral features must be ablyigaven
in advance. In [2], Bourguignon et al. consider the restongbrob-
lem with the PSF taken into account, employ sparse appraiansa
to solve joint spatial-spectral restoration for full datebe, instead

This work is supported by National Science Council (R.O.@jer
Grant NSC 99-2221-E-007-003-MY3.

N
z[r, \] = in[r, A, Vr, A, 2)
i=1

wherez;[r, \] is the contribution of théth galaxy to the voxelr, ]
after taking into account the PSF effect addis the number of
galaxies. Moreover, suppose that there Byepixels correspond-
ing to theith galaxy and each galaxy has a set of pixel indices



7, = {ri,r?,...,r/"} fori = 1,...,N. Hence, theith galaxy
contributionz;[r, A] in (2) can be further expressed as the following
convolution model:

D93 (z el — 1) Haule N, ¥, )

Wherer;1 cilflai[u)d[z — r’] is the contribution of théth galaxy
spectruma;[u], up to an unknown proportional factet[j] at jth
pixel in Z;, to the voxel(z, u|, and H . [r, \] is the contribution of
the PSF of voxe[z, u] to voxel[r, \]. Since the PSF is translation
variant, it can not be written in the forf (r — z, A — p).

The problem of spatial-spectral unmixing is to estimate the

galaxy spectraui[}], ..., an[A], VA from the given MUSE data
cubey[r, A], Vr, A\, under the following general assumptions:

(C1) The sum of factors associated with all the pixels in each

galaxy is equal to unity, i.er;’1 ciljl=1,¢=1,...,N.

(C2) The PSFs are spatially invariant for each gal@xyi.e.,

Haule,N = Hifr —2,)\, 2€Z;, i =1,...,N.

(C3) The PSF is separable in terms of FBE,[r] € Ry and LSF

Lyu[A] € Ry, ie Hypr, N = Fp ulr]La u[N] € Ry
(C4) The FSF changes slowly spectrally, i.e.,

M[r] Z>\m[ ]7 ,LLEAm,

whereA,, = {A\n + zA/\}Z_,K for someKr andm

1,...,Q, in which A\ is the spectral resolution ang
[M/(2K¥+1)] is the total number of spectral frames, where

>l

M is the total number of spectral bands. The sum of the FSK,

coefficients is equal to unity, i.€}, F; .[r] = 1, Vz, u.
(C5) The LSF only spreads over few spectral samples, i.e.,
L, [\ >0,

{ if A€ {pu+ kAN
LZ»M[)‘] = 07

otherwise

for some smallK;,, and the sum of the LSF coefficients is

equal to unity, i.e.y ", L, u[\] =1, Vz, p,.
AssumptiongC1), (C4) and(C5) are realistic for MUSE data [3].
Assumption(C2) is due to the fact that all the pixel locationsZn
are basically close to each other. Assumpt{@8) is widely used
in the MUSE studies [2, 3]. FrorflC2) — (C4), the FSFs and LSFs
located at the voxels of thigh galaxy can be expressed as:

Fz,u[r]
Lz,u[)‘] =

= Fﬁm[r —z],z€ZL;, p € A,

L[\, z € T,,

(4a)
(4b)

which will be utilized to derive the linear mixing models diet
MUSE data for different, disjoint spectral frames.

3. LINEAR MIXING MODEL FORMULATION
From (3) and undefC2), we can have

Sl Y e —x
2

P;
< cilf)Fs. [r — rZ])
m=1 \j=1 HEAm

where the second equality holds due to (4). Substitutingntb)(2)
yields

zi[r, Al =

ailu L[N, (5)

Py

<ch[j FAm[r—r ]

Jj=1

z[r, \]= ZZ

m=1i=1

> aluLuAl. (6)

HEAM

)

Considering themth, shorten, spectral fram@,,
ZA)‘}z—fKFJfKL by (C5), (6) can be written as

=2 (Zc 1A%, e — ri])

{Am +

Z ai[M]LL A, A€ Wi,

HEAm
)
which only involves the information of thexth spectral frame for
m=1,...,Q.
In order to have a vector-matrix representation of (7), $per-
form the following change of variables:

e The noise-free data associated with thth frame at pixekh:

xm[n] £ [[r, ] Jrew,, € RYFTHT,

where[ z[r, \] |acw,, denotes a column vector comprisinfy, A]
for all A in the set¥,,, andn = (r1 — 1)Z + r2, in whichr; is
theith entry ofr and Z is the width of MUSE image.

e Theith galaxy spectrum in thexth spectral frame:

a" £ [ai[u] Juea,, € RYFF

The contribution ofith galaxy (through the FSF) to theth spec-
tral frame at pixeh, or called the abundance fraction:

Py
23 i), e —r]] € Ry

j=1

s [n]

The matrix form of the LSF ofth galaxy associated with theth
spectral frameH® € RYXF KLt DX CER+D \whose(p, ¢)th
elementd;" (p, q) is

Lgm*(KF*KL)AXJr(qfl)A)\[)‘m —(Kr —KL)AM+(p—1)AN],

which is nonzero over the following set (K€5))

{(p,q

With x,,[n], aj", si*[n], Hi* defined above, and by (1) and (7),
the noisy MUSE pixel vector associated with the¢h spectral frame
ym[n] 2 [y[r, A] Jaew,, form € {1,2,...,Q} can be expressed as

) 1<p<2Kr —2Kr+1,p<q<p+2Kr}.

N
= Zs;”[n]HZ"a;” +wnln]l, n=1,..., L,

=1

ym[n] ®

wherew,,,[n] £ [w[r, \] Jxew,, € R*¥F2KLF1 is a zero-mean
Gaussian noise vector with covariance maf¥ix,[n], which is a
known diagonal matrix [1], and. is the total number of observed
pixel vectors.

Now, the problem to be solved for each spectral frame becames
blind source separation problem for the estimation of gatgpectra
at",...,aR;, with the given noisy pixel vectorg[1], ..., ym[L]
given by (8) , LSF matrice§H"}Y_,, and the number of galaxies
N. The full spectraas,...,ay can finally be obtained from the

spectra estimates of all th@ frames. Based o(C1) — (C4), we
have the following two facts:
(F1) Abundance fractions are non-negative, i.ej'[n] >

0, Yi,n,m.
) Sum of all the abundance fractions @l galaxy is equal to
unity for each spectral band, i.6,%_, s [n] = 1, V i, m.

(F2

n=1



Besides, we make two assumptions to the linear mixing ma@Jel (  LSF corrupted galaxy spectrum, afg, [n] = v,.[n]/17 ¥, [n] de-
(A1) min{L,2Kr 2Ky +1} > N and the LSF corrupted galaxy notes the normalized noise. Sineg [n] is zero-mean, one can eas-

spectra{H"aT", ..., Hya%} are linearly independent. ily show that N

(A2) (Pure pixel assumption) The pure pixel region associatéu wi Z 5i'[n] &1, Vn. (12)
theith galaxy is identical for all the spectral bands, and there i=1
exists a set of indiceg(T", ..., £§} such thatx,.[("] = |t has been shown in [4, Lemma 4] that und@), (A1), (A2)

sy (6] A, Vi and the absence of noise (i.E.. , 57"[n] = 1, Vn), the pure pixel
Assumption(A1) describes the fact that the number of galaxies ofindices can be identified by
interest are less than the number of pixels and the numbgeofrsi B )
bands in each spectral frame. Assumpt{é®) is realistic because o { arg MaXn=1,...,L ”y"i[n]”% J=1 (13)
the object field is not very dense, as illustrated in Figure 1. J arg maxn=1,...L [Pt ymnlll2, 7>1

— T wherel'y.x = [Ym[f1'], ..., ¥m[€r']]. We denote the extracted pure
! ! ! | __L__ pixel indices in the noisy scenario §y1*, ..., {3 }.
///I( ' } <—}———L 4.3. Galaxy Spectra Unmixing
vavLy i s Given the pure pixel indice§(T", ..., ¢%;} estimated above, by (9)
I— e and(Az2), we have

Yol 0] = TIPS 0] B H A+ 5 [0 w0 Vi (14)

Also, we suppose that each galaxy spectraifh can be sparsely
[ represented by a dictionary [1]:

3
a” =Dpu”, i=1,...,N, (15)

Fig. 1. lllustration of (A 2). Three galaxies located &t, 7,, Z3 and
their associated abundance supports (through the FSF)atedh  whereu!" is a sparse vector, afd,,, € R(2KF+1)x22601 ig the dic-
by respective color regions. The so-called pure pixel megjiare tionary matrix composed of line spectra, step-like speatré con-

denoted by the oblique line regions. tinuous spectra. Substituting (15) into (14) yields

m Smi— 1 m m Smi— 1 m .
4. THE PROPOSED SSU ALGORITHM FOR MUSE DATA Yym [ =T [0 ZH Do " + T [6 ] 2w [(57], Vi, (16)
In this section, we elaborate the procedure of the propoStd &  where 2m[2;n], H", D,, are knowna priori, and p* £
gorithm for analyzing MUSE data. s[éru should be sparse since” is sparse. Hence, we

can estimatei;”, Vi by solving the following ¢;-norm mini-
mization problem subject to the maximum fitting error in (16)
upper-bounded by £ /2Kr — 2K7, + 1 (standard deviation of
Sl AW [0

4.1. Noise Pre-Whitening and Noise Reduction
As the covariance matrix of noise at each pixel (38, [n], Vn) are
known in advance [2], we perform noise-prewhitening asfed

1
Ym[n] £ ] 2ym(n] 9) A =arg min 7|1, Vi. 17)
~, N 1
N it 1 Hywn[e;nlfznl[Z;n]iiH;anl“;nlbgs
- s si' [P Zm{n] "2 Hi"a" + S [n] ™2 Win[n], vn, The scaled galaxy spectra can be estimated by
st ey = s [ Dl = D, Vi (18)

where the noise ternx,, [n]~'/?w,,[n] becomes white Gaussian

[1,2]. Then, by lettingV,, € RCEF—2KL+DxN po the matrix By (9) and (18), we can estimate the scaled abundance fnactio

containing the firstV left singular vectors of y.[1], ..., ym[L] ], me A m e

the noise reduced data can be obtained by ki [n] = s [n]/si [6:"], Vi, n, (19)
by solving the non-negative least-squares problem

N
Imln] £ Vo Viymn] = sl [nb" + vim[nl, ¥n,  (10) N )
0Nyl = 32w ]S ) DAL . (20)
where b" = V,VLE,[n] Y?Ha", and vim[n] = =l N =
Vo VIS, 0]~ Y 2w n). Note that (17) and (20) are convex and can be solved by any stan

dard convex optimization solvers, such as CVX [5]. The ishad
remains is how to fix the scaling ambigui§’ [¢;"] in (18) and (19).
Under(F2) and (19), we can further estimate the scale factors by

4.2. Pure Pixel Indices Search
The noise reduced data (10) will then be used to estimatepixee
indices. We first normalize the noise reduced data (10) as

L L
N m _ m mrpymy mypm
}_’m[n] 2 5’m[n]/1T§/m[n] — Zg:”[n]f):” +\_7m[n], Vn7 (11) Z:llii [n] = Z:lsi [n]/Sl [42 ] = 1/52 [42 ]
=1 L
where 5"[n] = s"[n]17b}"/17§,.[n] denotes the normalized = &[0 =1/ &P, i=1,...,N. (21)
abundance fractiorb!” = b"/17b!" denotes théth normalized n=1



Table 1. The pseudo-codes of the proposed $5&hd SSU algorithms.

SSUn Algorithm SSuU Algorithm

Given {ym[n]}iei, N, {Zn[n]}i:, {(HMY, andD,,. Given {ym[l],...,ym[L]}2_,, N, and initialm = 1.

Step 1. obtainy, [n], Vn by (9),¥m[n], Vn by (10) andy.[n], Vn by | Step 1. obtain{(a7*,s7"),..., (4%, s%)} by the proposed SSu algo-
(11). Then, obtaif( 77", ..., i} by (13). rithm.

Step 2. obtaini!™, Vi by (17) and then obtaifis?" [n]} Y, Vn by (20). | Step 2. obtainP,, by (25).

Step 3. obtainal®, Vi by (22). Step 3. obtainB,,, by (26).

Step 4. obtain {57 [n]}/L,, Vn by (23) and then obtai&", Vi by (24). | Step 4. if m < Q, then sein := m + 1, and go tcStep 1,

Step 5. output {a7*,...,a%} as the estimated galaxy spectra and else output the théh column of A = [BY ,BY,... BL]” as
{8T",...,8%} as the estimated abundance maps. the estimated spectrum of thig galaxy for alli.

Substituting (21) into (18) and (19), the estimated galgactra and
abundance fractions in thath spectral frame can be recovered by

L
ézn = Dmlj";n ’%;n [TLL Vi. (22)
n=1
L
0] = &"[n]/ Y &[], Vi, n. (23)
n=1
The estimates by (23) are collected as column vectors
87" = [8'[1], ..., s [L))", Vi. (24)

shown in Figure 3(a). The associated three galaxy spectra we
generated by linear, random superposition of the syntbdsitic-
tionary [1]. The synthetic noise-free data were generawéidviing

(6) for @ = 2, where FSFs all arg x 3 circular Gaussian with dif-
ferent variances, and LSFs are2d1, +1 = 11-point Gaussian with
different variances, shown in Figure 3(b). Then we added meran
Gaussian noise vectors with the same covariance as in [21Figr
each pixel to obtain the observed noisy data shown in Fig(ce 3
Two performance indices were used in the simulations. Tbeé ro
mean-square (rms) spectral angle distance between sedgataxy
spectra and their estimates, denoteg éis degrees), was used as the
error performance measure [4]. The computation tif@ secs) of

The above procedure presented in subsections 4.1, 4.2o1.3 fthe algorithm (implemented in Mathworks Matlab R2008a)ning

estimating the galaxy spectf&?”,...,a%} and abundance maps
{871",...,8%} associated with the:th spectral frame is termed as

SSUn and summarized in Table 1 (left part).

4.4. Whole Galaxy Spectra Combining
So far, there is still an ambiguity yet to be solved— ordermagch
of the estimated spectra and abundance maps from framente.fra
It can be resolved by permutingai™*,s;"),« = 1,...,N} so as
to have the best match with that of the first frame. The pertimuta
matrix can be obtained by solving the following problem [6]:

P

m = arg min (25)

Pped

g1 - ngmH 3
P

whereS,, [87,...,8%] and® is the set ofV x N permutation
matrices. Then, we can obtain the column-permutation fixedas

Bm _ Ampm c ]R(2Kp+1)><N7 (26)

whereA,, = [a7",...,a%].

Repeating the above procedure for all the spectral frames
1,...,Q, and concatenating all the obtainé€dgalaxy spectra esti-
mated by (26) provides

A= [BI.BI,... BLT e RV, 27)

where theith column ofA is the final spectrum estimate of thih
galaxy. We summarize the SSU algorithm in Table 1 (right)part

5. SIMULATION AND CONCLUSION

In this section, we use synthetic MUSE data to test the pmidoce
of the proposed SSU algorithm. The results for the estimgddaky

spectra and abundance maps are shown in Figures 3-5 in the sups)

plementary document &ttt p: / / www. ee. nt hu. edu. t w cychi /

SSD_SuppDoc. pdf, due to the space limit. We simulatebax 5
spatial dimension scene, composed of three galaXies 3: One
corresponds to extended source containing two pixels waitkofs

ailj] = 0.5, j = 1,2, while the other two are close sources each (n

of which containingl pixel with factorse;[1] = 1, @ = 2,3, as

in a desktop computer equipped with Core i7-930 CPU 2.80 GHz,
12GB memory was used as the computational complexity measur
The proposed SSU algorithm was applied to the noise-free and
noisy data. The rms spectral angles and computation timaeof t
SSU algorithm for the noise-free data ape = 0.09 (degrees)
andT = 153.16 (secs), respectively, and those for noisy data are
¢ 14.07 (degrees) and” = 173.28 (secs), respectively. The
corresponding results for noise-free and noisy data aredstrated
in Figure 4 and Figure 5, respectively. One can see that the pr
posed SSU algorithm performs well for both cases. Espgciait
the noiseless case, almost perfect unmixing is achievegiia of
some small error (i.e¢ = 0) because thé, -norm minimization is
an approximation for sparse representation of the galaegtsp[7].
In conclusion, we have presented an SSU algorithm to process
MUSE data for estimation of galaxy spectra. The simulat&sults
have shown the superior efficacy of the proposed SSU algoarith
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