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ABSTRACT

Detection and analysis of astrophysical sources from the forthcom-
ing MUSE instrument is of greatest challenge mainly due to the high
noise level and the three-dimensional translation variantblur effect
of MUSE data. In this work, we use some realistic hypotheses of
MUSE to reformulate the data convolution model into a set of linear
mixing models corresponding to different, disjoint spectral frames.
Based on the linear mixing models, we propose a spatial-spectral un-
mixing (SSU) algorithm to detect and characterize the galaxy spec-
tra. In each spectral frame, the SSU algorithm identifies thepure
galaxy regions with a theoretical guarantee, and estimate spectra
based on a sparse approximation assumption. The full galaxyspectra
can finally be recovered by concatenating the spectra estimates asso-
ciated with all the spectral frames. The simulations were performed
to demonstrate the efficacy of the proposed SSU algorithm.

Index Terms— MUSE instrument, Astrophysical hyperspectral
data, Galaxy spectra, Spatial-spectral unmixing, Sparse representa-
tion

1. INTRODUCTION

MUSE (Multi-Unit Spectroscopic Explorer) is a very powerful inte-
gral field spectrograph, planned to be commissioned at Very Large
Telescope (VLT) in Chile in the near future. MUSE will pro-
vide massive hyperspectral astrophysical data cube with images of
300 × 300 pixels and up to4000 spectral bands, ranging from the
visible to near-infrared (465nm to 930nm) wavelength. The data
provided by MUSE will be in a very noisy condition with highly
spectrally-varied power distribution, caused by the strong parasite
emission of the atmosphere at specific wavelengths and by thein-
strumental limitations. In addition, when observed through MUSE,
each source will be spread in spatial and spectral domains inthe
cube with the three-dimensional point spread function (PSF) due to
the instrument and atmospheric effects [3].

Present efforts for analyzing the MUSE hyperspectral data can
be mainly categorized by two groups: one for very distant galax-
ies [1, 2] while the other for stellar spectra [3]. In [1], under the
hypothesis that spectra should be in sparse form, spectra restoration
from line spread function (LSF) contaminated MUSE data can be
accomplished by solving anℓ1-norm minimization problem, where
a dictionary of elementary spectral features must be advisably given
in advance. In [2], Bourguignon et al. consider the restoration prob-
lem with the PSF taken into account, employ sparse approximations
to solve joint spatial-spectral restoration for full data cube, instead
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of objects only, and use prior knowledge of the field spread func-
tion (FSF) to retrieve the abundance maps. In the other groupthat
considers stellar spectra, [3] presents a instantaneous, spectrally in-
variant linear mixing model and uses existing method, non-negative
matrix factorization (NMF), to extract stellar spectra, but it cannot
distinguish star types.

In this paper, we propose a spatial-spectral unmixing (SSU)al-
gorithm to detect spectra and abundance maps associated with all the
objects in order to characterize very distant emitting astrophysical
sources from the PSF-corrupted MUSE data. We first reformulate
the convolution model (for whole spectral range) into several linear
mixing models associated with distinct, disjoint spectralframes. In
each spectral frame, based on the pure pixel assumption, thepro-
posed SSU algorithm identifies the pure galaxy regions. By consid-
ering the fact that each galaxy spectrum can be well approximated
by suitable sparse representation [1], the estimation of galaxy spec-
tra is formulated as a convexℓ1-norm minimization problem. The
estimation of abundance maps can be formulated as a non-negative
least-squares problem. Both problems can be solved by any available
convex optimization solvers. Finally, the complete estimated spectra
are obtained from those estimates of all the spectral framesthrough
an advisable permutation. Some simulation results are presented to
demonstrate the efficacy of the proposed SSU algorithm.

Notations: R (R+), RN (RN
+ ) andRM×N (RM×N

+ ) denote set
of real (non-negative real) numbers,N × 1 vectors andM × N
matrices, respectively;δ[x] is the discrete-time impulse function of
x; 1 is an all-one column vector with proper dimension;“‖ · ‖p”,
“‖ · ‖F ” and“⌈·⌉” stand for p-norm, Frobenius norm, and ceiling
function, respectively;P⊥

C is the orthogonal complement projector
of matrixC.

2. PROBLEM STATEMENT

As reported in [1–3], MUSE data can be modeled by

y[r, λ] = x[r, λ] + w[r, λ] ∈ R, ∀r, λ, (1)

wherey[r, λ] is the value of the MUSE data at voxel[r, λ], x[r, λ]
is the noise-free counterpart, andw[r, λ] is the noise. Also,r ∈ R

2

denotes the 2-D spatial coordinate andλ ∈ R+ denotes the wave-
length. The noise-free MUSE data can be written as:

x[r, λ] =
N
∑

i=1

xi[r, λ], ∀r, λ, (2)

wherexi[r, λ] is the contribution of theith galaxy to the voxel[r, λ]
after taking into account the PSF effect andN is the number of
galaxies. Moreover, suppose that there arePi pixels correspond-
ing to the ith galaxy and each galaxy has a set of pixel indices



Ii = {r1i , r2i , . . . , rPi
i } for i = 1, . . . , N . Hence, theith galaxy

contributionxi[r, λ] in (2) can be further expressed as the following
convolution model:

xi[r, λ] =
∑

z

∑

µ

(

Pi
∑

j=1

ci[j]ai[µ]δ[z − r
j
i ]

)

Hz,µ[r, λ], ∀i, (3)

where
∑Pi

j=1 ci[j]ai[µ]δ[z− r
j
i ] is the contribution of theith galaxy

spectrumai[µ], up to an unknown proportional factorci[j] at jth
pixel in Ii, to the voxel[z, µ], andHz,µ[r, λ] is the contribution of
the PSF of voxel[z, µ] to voxel [r, λ]. Since the PSF is translation
variant, it can not be written in the formH(r− z, λ− µ).

The problem of spatial-spectral unmixing is to estimate the
galaxy spectraa1[λ], . . . , aN [λ], ∀λ from the given MUSE data
cubey[r, λ], ∀r, λ, under the following general assumptions:

(C1) The sum of factors associated with all the pixels in each
galaxy is equal to unity, i.e.,

∑Pi

j=1 ci[j] = 1, i = 1, . . . , N.

(C2) The PSFs are spatially invariant for each galaxyIi, i.e.,

Hz,µ[r, λ] = Hi
µ[r− z, λ], z ∈ Ii, i = 1, . . . , N.

(C3) The PSF is separable in terms of FSFFz,µ[r] ∈ R+ and LSF
Lz,µ[λ] ∈ R+, i.e.,Hz,µ[r, λ] = Fz,µ[r]Lz,µ[λ] ∈ R+.

(C4) The FSF changes slowly spectrally, i.e.,

Fz,µ[r] = Fz,λm [r], µ ∈ Λm,

whereΛm = {λm + i∆λ}KF
i=−KF

for someKF andm =

1, . . . , Q, in which ∆λ is the spectral resolution andQ ,

⌈M/(2KF+1)⌉ is the total number of spectral frames, where
M is the total number of spectral bands. The sum of the FSF
coefficients is equal to unity, i.e.,

∑

r
Fz,µ[r] = 1, ∀z, µ.

(C5) The LSF only spreads over few spectral samples, i.e.,
{

Lz,µ[λ] > 0, if λ ∈ {µ+ k∆λ}KL
k=−KL

Lz,µ[λ] = 0, otherwise

for some smallKL, and the sum of the LSF coefficients is
equal to unity, i.e.,

∑

λ Lz,µ[λ] = 1, ∀z, µ,.
Assumptions(C1), (C4) and(C5) are realistic for MUSE data [3].
Assumption(C2) is due to the fact that all the pixel locations inIi

are basically close to each other. Assumption(C3) is widely used
in the MUSE studies [2,3]. From(C2)− (C4), the FSFs and LSFs
located at the voxels of theith galaxy can be expressed as:

Fz,µ[r] = F i
λm

[r− z], z ∈ Ii, µ ∈ Λm, (4a)

Lz,µ[λ] = Li
µ[λ], z ∈ Ii, (4b)

which will be utilized to derive the linear mixing models of the
MUSE data for different, disjoint spectral frames.

3. LINEAR MIXING MODEL FORMULATION

From (3) and under(C2), we can have

xi[r, λ] =
∑

µ

ai[µ]

Pi
∑

j=1

ci[j]H
i
µ[r− r

j
i , λ]

=

Q
∑

m=1

(

Pi
∑

j=1

ci[j]F
i
λm

[r− r
j
i ]

)

∑

µ∈Λm

ai[µ]L
i
µ[λ], (5)

where the second equality holds due to (4). Substituting (5)into (2)
yields

x[r, λ]=

Q
∑

m=1

N
∑

i=1

(

Pi
∑

j=1

ci[j]F
i
λm

[r− r
j
i ]

)

∑

µ∈Λm

ai[µ]L
i
µ[λ]. (6)

Considering themth, shorten, spectral frameΨm , {λm +

i∆λ}KF−KL
i=−KF+KL

, by (C5), (6) can be written as

x[r, λ]=

N
∑

i=1

(

Pi
∑

j=1

ci[j]F
i
λm

[r− r
j
i ]

)

∑

µ∈Λm

ai[µ]L
i
µ[λ], λ∈ Ψm,

(7)
which only involves the information of themth spectral frame for
m = 1, . . . , Q.

In order to have a vector-matrix representation of (7), let us per-
form the following change of variables:

• The noise-free data associated with themth frame at pixeln:

xm[n] , [ x[r, λ] ]λ∈Ψm ∈ R
2KF−2KL+1
+ ,

where[ x[r, λ] ]λ∈Ψm denotes a column vector comprisingx[r, λ]
for all λ in the setΨm, andn = (r1 − 1)Z + r2, in which ri is
theith entry ofr andZ is the width of MUSE image.

• Theith galaxy spectrum in themth spectral frame:

a
m
i , [ ai[µ] ]µ∈Λm ∈ R

2KF+1
+ .

• The contribution ofith galaxy (through the FSF) to themth spec-
tral frame at pixeln, or called the abundance fraction:

smi [n] ,

Pi
∑

j=1

ci[j]F
i
λm

[r− r
j
i ] ∈ R+.

• The matrix form of the LSF ofith galaxy associated with themth
spectral frameHm

i ∈ R
(2KF−2KL+1)×(2KF+1)
+ , whose(p, q)th

elementHm
i (p, q) is

Li
λm−(KF−KL)∆λ+(q−1)∆λ[λm−(KF−KL)∆λ+(p−1)∆λ],

which is nonzero over the following set (by(C5))

{(p, q) | 1 ≤ p ≤ 2KF − 2KL + 1, p ≤ q ≤ p+ 2KL}.

With xm[n], am
i , smi [n], Hm

i defined above, and by (1) and (7),
the noisy MUSE pixel vector associated with themth spectral frame
ym[n] , [ y[r, λ] ]λ∈Ψm for m ∈ {1, 2, ..., Q} can be expressed as

ym[n] =
N
∑

i=1

smi [n]Hm
i a

m
i +wm[n], n = 1, ..., L, (8)

wherewm[n] , [ w[r, λ] ]λ∈Ψm ∈ R
2KF−2KL+1 is a zero-mean

Gaussian noise vector with covariance matrixΣm[n], which is a
known diagonal matrix [1], andL is the total number of observed
pixel vectors.

Now, the problem to be solved for each spectral frame becomesa
blind source separation problem for the estimation of galaxy spectra
am
1 , . . . ,am

N , with the given noisy pixel vectorsym[1], . . . ,ym[L]
given by (8) , LSF matrices{Hm

i }Ni=1, and the number of galaxies
N . The full spectraa1, . . . ,aN can finally be obtained from the
spectra estimates of all theQ frames. Based on(C1) − (C4), we
have the following two facts:

(F1) Abundance fractions are non-negative, i.e.,smi [n] ≥
0, ∀ i, n,m.

(F2) Sum of all the abundance fractions ofith galaxy is equal to
unity for each spectral band, i.e.,

∑L
n=1 s

m
i [n] = 1, ∀ i,m.



Besides, we make two assumptions to the linear mixing model (8):

(A1) min{L, 2KF−2KL+1} ≥ N and the LSF corrupted galaxy
spectra{Hm

1 am
1 , . . . ,Hm

Nam
N} are linearly independent.

(A2) (Pure pixel assumption) The pure pixel region associated with
theith galaxy is identical for all the spectral bands, and there
exists a set of indices{ℓm1 , ..., ℓmN} such thatxm[ℓmi ] =
smi [ℓmi ]Hm

i am
i , ∀ i.

Assumption(A1) describes the fact that the number of galaxies of
interest are less than the number of pixels and the number of spectral
bands in each spectral frame. Assumption(A2) is realistic because
the object field is not very dense, as illustrated in Figure 1.

I1

I2

I3

Fig. 1. Illustration of(A2). Three galaxies located atI1, I2, I3 and
their associated abundance supports (through the FSF) are marked
by respective color regions. The so-called pure pixel regions are
denoted by the oblique line regions.

4. THE PROPOSED SSU ALGORITHM FOR MUSE DATA

In this section, we elaborate the procedure of the proposed SSU al-
gorithm for analyzing MUSE data.

4.1. Noise Pre-Whitening and Noise Reduction
As the covariance matrix of noise at each pixel (i.e.,Σm[n], ∀n) are
known in advance [2], we perform noise-prewhitening as follows

ym[n] , Σm[n]−
1
2ym[n] (9)

=
N
∑

i=1

smi [n]Σm[n]−
1
2 H

m
i a

m
i +Σm[n]−

1
2 wm[n], ∀n,

where the noise termΣm[n]−1/2wm[n] becomes white Gaussian
[1, 2]. Then, by lettingVm ∈ R

(2KF−2KL+1)×N be the matrix
containing the firstN left singular vectors of[ ym[1], . . . ,ym[L] ],
the noise reduced data can be obtained by

ỹm[n] , VmV
T
mym[n] =

N
∑

i=1

smi [n]bm
i + vm[n], ∀n, (10)

where bm
i = VmVT

mΣm[n]−1/2Hm
i am

i , and vm[n] =

VmVT
mΣm[n]−1/2wm[n].

4.2. Pure Pixel Indices Search
The noise reduced data (10) will then be used to estimate purepixel
indices. We first normalize the noise reduced data (10) as

ȳm[n] , ỹm[n]/1T
ỹm[n] =

N
∑

i=1

s̄mi [n]b̄m
i + v̄m[n], ∀n, (11)

where s̄mi [n] = smi [n]1Tbm
i /1T ỹm[n] denotes the normalized

abundance fraction,̄bm
i = bm

i /1Tbm
i denotes theith normalized

LSF corrupted galaxy spectrum, andv̄m[n] = vm[n]/1T ỹm[n] de-
notes the normalized noise. Sincevm[n] is zero-mean, one can eas-
ily show that

N
∑

i=1

s̄mi [n] ∼= 1, ∀n. (12)

It has been shown in [4, Lemma 4] that under(F1), (A1), (A2)

and the absence of noise (i.e.,
∑N

i=1 s̄
m
i [n] = 1, ∀n), the pure pixel

indices can be identified by

ℓmj ∈
{

arg maxn=1,...,L ‖ȳm[n]‖2, j = 1
arg maxn=1,...,L ‖P⊥

Γ1:(j−1)
ȳm[n]‖2, j > 1

(13)

whereΓ1:k = [ȳm[ℓm1 ], . . . , ȳm[ℓmk ]]. We denote the extracted pure
pixel indices in the noisy scenario by{ℓ̂m1 , . . . , ℓ̂mN}.

4.3. Galaxy Spectra Unmixing
Given the pure pixel indices{ℓ̂m1 , . . . , ℓ̂mN} estimated above, by (9)
and(A2), we have

ym[ℓ̂
m
i ]=smi [ℓ̂

m
i ]Σm[ℓ̂

m
i ]−

1
2 H

m
i a

m
i +Σm[ℓ̂

m
i ]−

1
2 wm[ℓ̂

m
i ],∀i. (14)

Also, we suppose that each galaxy spectrumam
i can be sparsely

represented by a dictionary [1]:

a
m
i = Dmu

m
i , i = 1, . . . , N, (15)

whereum
i is a sparse vector, andDm ∈ R

(2KF+1)×22604 is the dic-
tionary matrix composed of line spectra, step-like spectraand con-
tinuous spectra. Substituting (15) into (14) yields

ym[ℓ̂mi ]=Σm[ℓ̂mi ]−
1
2 H

m
i Dmµ

m
i +Σm[ℓ̂mi ]−

1
2wm[ℓ̂mi ], ∀i, (16)

where Σm[ℓ̂mi ], Hm
i , Dm are known a priori, and µ

m
i ,

smi [ℓ̂mi ]um
i should be sparse sinceum

i is sparse. Hence, we
can estimateµ̂m

i , ∀i by solving the following ℓ1-norm mini-
mization problem subject to the maximum fitting error in (16)
upper-bounded byε ,

√
2KF − 2KL + 1 (standard deviation of

Σm[ℓ̂mi ]−1/2wm[ℓ̂mi ]):

µ̂
m
i =arg min

‖ym[ℓ̂mi ]−Σm[ℓ̂mi ]
−

1
2 H

m
i Dmµ

m
i ‖2≤ε

‖µm
i ‖1, ∀i. (17)

The scaled galaxy spectra can be estimated by

smi [ℓ̂mi ]am
i = smi [ℓ̂mi ]Dmu

m
i = Dmµ̂

m
i , ∀i. (18)

By (9) and (18), we can estimate the scaled abundance fractions

κm
i [n] , smi [n]/smi [ℓ̂mi ], ∀i, n, (19)

by solving the non-negative least-squares problem

min
κm
i [n]≥0,

i=1,...,N

‖ym[n] −
N
∑

i=1

κm
i [n]Σm[n]−

1
2 H

m
i Dmµ̂

m
i ‖2. (20)

Note that (17) and (20) are convex and can be solved by any stan-
dard convex optimization solvers, such as CVX [5]. The issuethat
remains is how to fix the scaling ambiguitysmi [ℓ̂mi ] in (18) and (19).
Under(F2) and (19), we can further estimate the scale factors by

L
∑

n=1

κm
i [n] =

L
∑

n=1

smi [n]/smi [ℓ̂mi ] = 1/smi [ℓ̂mi ]

=⇒ ŝmi [ℓ̂mi ] = 1/

L
∑

n=1

κ̂m
i [n], i = 1, . . . , N. (21)



Table 1. The pseudo-codes of the proposed SSUm and SSU algorithms.

SSUm Algorithm SSU Algorithm

Given {ym[n]}Ln=1, N , {Σm[n]}Ln=1, {Hm
i }Ni=1 andDm.

Step 1. obtainym[n], ∀n by (9), ỹm[n], ∀n by (10) andȳm[n], ∀n by
(11). Then, obtain{ℓ̂m1 , . . . , ℓ̂mN} by (13).

Step 2. obtainµ̂m
i , ∀i by (17) and then obtain{κ̂m

i [n]}Ni=1, ∀n by (20).
Step 3. obtainâm

i , ∀i by (22).
Step 4. obtain{ŝmi [n]}Ni=1, ∀n by (23) and then obtain̂smi , ∀i by (24).
Step 5. output {âm

1 , . . . , âm
N} as the estimated galaxy spectra and

{ŝm1 , . . . , ŝmN} as the estimated abundance maps.

Given {ym[1], . . . ,ym[L]}Qm=1, N , and initialm = 1.
Step 1. obtain{(âm

1 , ŝm1 ), . . . , (âm
N , ŝmN )} by the proposed SSUm algo-

rithm.
Step 2. obtainP̂m by (25).

Step 3. obtainB̂m by (26).
Step 4. if m < Q, then setm := m+ 1, and go toStep 1,

else output the theith column ofÂ = [B̂T
1 , B̂

T
2 , . . . , B̂

T
Q]

T as
the estimated spectrum of theith galaxy for alli.

Substituting (21) into (18) and (19), the estimated galaxy spectra and
abundance fractions in themth spectral frame can be recovered by

â
m
i = Dmµ̂

m
i

L
∑

n=1

κ̂m
i [n], ∀i. (22)

ŝmi [n] = κ̂m
i [n]/

L
∑

n=1

κ̂m
i [n], ∀i, n. (23)

The estimates by (23) are collected as column vectors

ŝ
m
i = [ŝmi [1], . . . , ŝmi [L]]T , ∀i. (24)

The above procedure presented in subsections 4.1, 4.2, 4.3 for
estimating the galaxy spectra{âm

1 , . . . , âm
N} and abundance maps

{ŝm1 , . . . , ŝmN} associated with themth spectral frame is termed as
SSUm and summarized in Table 1 (left part).

4.4. Whole Galaxy Spectra Combining
So far, there is still an ambiguity yet to be solved— order mismatch
of the estimated spectra and abundance maps from frame to frame.
It can be resolved by permuting{(âm

i , ŝmi ), i = 1, . . . , N} so as
to have the best match with that of the first frame. The permutation
matrix can be obtained by solving the following problem [6]:

P̂m = arg min
Pm∈Φ

∥

∥

∥
Ŝ1 − ŜmPm

∥

∥

∥

F
, (25)

whereŜm = [ŝm1 , . . . , ŝmN ] andΦ is the set ofN ×N permutation
matrices. Then, we can obtain the column-permutation fixedÂm as

B̂m = ÂmP̂m ∈ R
(2KF+1)×N , (26)

whereÂm = [âm
1 , . . . , âm

N ].
Repeating the above procedure for all the spectral framesm =

1, ..., Q, and concatenating all the obtainedQ galaxy spectra esti-
mated by (26) provides

Â = [B̂T
1 , B̂

T
2 , . . . , B̂

T
Q]

T ∈ R
M×N , (27)

where theith column ofÂ is the final spectrum estimate of theith
galaxy. We summarize the SSU algorithm in Table 1 (right part).

5. SIMULATION AND CONCLUSION

In this section, we use synthetic MUSE data to test the performance
of the proposed SSU algorithm. The results for the estimatedgalaxy
spectra and abundance maps are shown in Figures 3-5 in the sup-
plementary document athttp://www.ee.nthu.edu.tw/cychi/
SSD_SuppDoc.pdf, due to the space limit. We simulate a5 × 5
spatial dimension scene, composed of three galaxiesN = 3: One
corresponds to extended source containing two pixels with factors
c1[j] = 0.5, j = 1, 2, while the other two are close sources each
of which containing1 pixel with factorsci[1] = 1, i = 2, 3, as

shown in Figure 3(a). The associated three galaxy spectra were
generated by linear, random superposition of the synthesized dic-
tionary [1]. The synthetic noise-free data were generated following
(6) for Q = 2, where FSFs all are3× 3 circular Gaussian with dif-
ferent variances, and LSFs are of2KL+1 = 11-point Gaussian with
different variances, shown in Figure 3(b). Then we added zero mean
Gaussian noise vectors with the same covariance as in [2, Fig. 1] for
each pixel to obtain the observed noisy data shown in Figure 3(c).
Two performance indices were used in the simulations. The root-
mean-square (rms) spectral angle distance between simulated galaxy
spectra and their estimates, denoted asφ (in degrees), was used as the
error performance measure [4]. The computation timeT (in secs) of
the algorithm (implemented in Mathworks Matlab R2008a) running
in a desktop computer equipped with Core i7-930 CPU 2.80 GHz,
12GB memory was used as the computational complexity measure.

The proposed SSU algorithm was applied to the noise-free and
noisy data. The rms spectral angles and computation time of the
SSU algorithm for the noise-free data areφ = 0.09 (degrees)
andT = 153.16 (secs), respectively, and those for noisy data are
φ = 14.07 (degrees) andT = 173.28 (secs), respectively. The
corresponding results for noise-free and noisy data are demonstrated
in Figure 4 and Figure 5, respectively. One can see that the pro-
posed SSU algorithm performs well for both cases. Especially, for
the noiseless case, almost perfect unmixing is achieved in spite of
some small error (i.e.,φ ≈ 0) because theℓ1-norm minimization is
an approximation for sparse representation of the galaxy spectra [7].

In conclusion, we have presented an SSU algorithm to process
MUSE data for estimation of galaxy spectra. The simulation results
have shown the superior efficacy of the proposed SSU algorithm.
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