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Theoretical and Experimental
Analysis of a Base-Excited Rotor

In this study, the dynamic behavior of a flexible rotor system subjected to support exci-tation (imposed displacements of its base) is 
analyzed. The effect of an excitation on lateral displacements is investigated from theoretical and experimental points of view. The 
study focuses on behavior in bending. A mathematical model with two gyroscopic and parametrical coupled equations is derived using 
the Rayleigh-Ritz method. The the-oretical study is based on both the multiple scales method and the normal form approach. An 
experimental setup is then developed to observe the dynamic behavior permitting the measurement of lateral displacements when the 
system’s support is subjected to a sinu-soidal rotation. The experimental results are favorably compared with the analytical and 
numerical results. 

1 Introduction

Many industrial applications contain rotor dynamic systems.
They have been extensively studied in the case of fixed bases
�meaning fixed supports� and nowadays the dynamic behavior of
such rotors is well established �1�. However, in systems such as
rotors of aircraft engines during maneuvers of the aircraft or
power plant reactor rotors at the time of seismic activity, the
whole system may be subjected to many sudden imposed dis-
placements. This leads to the appearance of parametric terms in
the equations of motion. As a consequence, an imposed displace-
ment of supports could drastically change the behavior of the rotor
with the system being subjected to parametric instabilities. The
number of works dealing with this specific area of investigation is
quite low. The response of such a rotor support subjected to white
noise excitation was studied using the modal approach developed
by Subbiah et al. �2�. In �3�, the effect of base flexibility was taken
into account in a rotor modeled by additional stiffness matrices
and the effects on Campbell diagram were pointed out. A theoret-
ical model with six base excitation components was proposed by
Suarez et al., �4� in the case of seismic excitation. Likewise,
Beley-Sayettat proposed a general study in �5�. In two papers,
Ganessan and Sankar studied the dynamic behavior of a rotor and
pointed out the complex phenomena observed by using a multiple
scales approach, as well as giving a good explanation of the para-
metric effects �6,7�. Kang et al. studied the influence of the foun-
dation on natural frequencies using finite elements and substruc-
turing techniques �8�. Some other works concern the experimental
investigations of rotors whose support are subjected to motion;
see Edwards et al., �9�. A theoretical approach using an impedance
technique was used by Bonello and Brennan �10�. Recent works
have been related to a shock study �11�. The work presented
herein focuses on the particular behavior of a rotor under a base
rotational motion. This special base excitation exhibits typical dy-
namical behaviors as the one observed for parametrically excited
system. The completeness of this work is achieved by first, build-

ing a theoretical realistic modeling of this phenomenon and sec-
ond, by conducting some dynamical measurements. Concerning
the theoretical part, the dynamical responses are found by time
integration scheme and normal form analysis. The latter is well
suited to analyze quasi-periodic responses.

The present paper is organized as follows: the theoretical model
is presented in Sec. 2 in which a numerical and experimental
stability analysis is also conducted. The setup and its main char-
acteristics are described in the Sec. 3, after which some general
experimental dynamical data are presented using non-typical run-
ning conditions. Particular running conditions are investigated in
Sec. 4. Then, the modeling is used to compare the predicted dy-
namic behaviors with that observed in the setup. The last section
is devoted to the conclusions.

2 Theoretical Model

2.1 Equations of Motion. The investigated rotor is shown in
Fig. 1�a�, and the frames used are illustrated in Fig. 1�b�. The
equations of motion �12� are developed from the Rayleigh-Ritz
method and the derivation of equations is briefly described in
Appendix A. The dynamic modeling of this rotor does not include
the exciter and the stinger. Indeed, their respective compliances
are far away from those of the test rotor. In what follows, the base
excitation is equal to an angular velocity excitation, i.e., rotation

around axis xs, �X=0, Y =0, Z=0, �=�=0 and �=a sin��t�� ex-

pressed in frame R0 �see Appendix B and Fig. 1�. The equations
are time dependent �parametric excitation due to time dependent
stiffnesses� and can be strongly nonlinear, depending on the mo-
tion of the rotor base. In what follows, they are:

mq̈1 − �Iy2q̇2 + �k − �2A cos2��t��q1 = ��B cos��t�

mq̈2 + �Iy2q̇1 + �k − �2C cos2��t��q2 = �2D sin��t� �1�

In the system of Eq. �1�, m is the modal mass �first bending

mode shape� of the rotor, k is the modal stiffness of the rotor �the

bearings are identical�, and Iy2 the inertia of the disk. � and � are
the rotational speed of the rotor and the frequency of the base
excitation of the imposed displacement, respectively. Components

A, B, C, and D of the forcing terms are related to the mechanical
characteristics of the rotor �see Appendix B�. To simplify the task,
the system of Eq. �1� can be rewritten as
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q̈1 + �1q̇2 + �� − f11 cos2��t��q1 = f12 cos��t�

q̈2 − �1q̇1 + �� − f21 cos2��t��q2 = f22 sin��t� �2�

with the following substitutions:

f11 =
A�2

m
, f12 =

B��

m
, f21 =

C�2

m
, f22 =

D�2

m
,

and �1 = − �Iy2 �3�

As observed in the first runs, the experimental rotor setup ex-
hibited a residual unbalanced response. Thus the unbalance is then

defined as a mass mu located on disk at a short distance d from the
geometric center of the shaft. In order to compare the numerical
results to the experimental ones, a special forcing term is added in
the right-hand side of Eq. �2�. Moreover, the amplitudes of the
dynamic responses reveal the existence of a damping factor. This
issue is taken into account by introducing an equivalent viscous

damping factor � in both Eq. �2�. The system of equations is now
rewritten as

q̈1 + �1q̇2 + �q̇1 + �� − f11 cos2��t��q1 = f12 cos��t� + f13 sin��t�

�4�
q̈2 − �1q̇1 + �q̇2 + �� − f21 cos2��t��q2 = f22 sin��t� + f23 cos��t�

with

f13 =
Mu

m
and f23 =

Mu

m
, and Mu = mud �5�

the value of �. Finally, the computed two first natural ��29 Hz

and �35 Hz� frequencies are of same order of magnitude as those
found in Sec. 3.2. These higher values reveal that the bearing
stiffnesses used are slightly too high.

Without going into further detail, the external resonances are
obtained using the procedure described in �13�. The different pos-
sibilities are related to the values of the natural frequencies of the

Campbell diagram, �1 and �2, respectively,

� � �1; � � �2; � �
��1 + �2�

2
; � �

��2 − �1�

2
�6�

The instability zones are shown in Fig. 2. In fact, only the first
three cases will be considered next; the last case is less interesting
because of the low frequency it implies.

2.3 Normal Forms Analysis. The application of the method
of normal forms to previous is not directly suitable. Let the system
of Eq. �4� be transformed with the following equality:

q1�t� = Q1�t� + f�t�

�7�
q2�t� = Q2�t� + g�t�

The time functions f�t� and g�t� are functions of class Cl de-

fined as the solutions of the following linear of Eq. �8�:

f̈ + �1ġ + � ḟ + �f = f12 cos��t� + f13 sin��t�

�8�

g̈ − �1 ḟ + �ġ + �g = f22 sin��t� + f23 cos��t�

Since the system of Eq. �8� consists of two linear coupled dif-

ferential equations of second order, f�t� and g�t� are obtained eas-

ily. Their spectra exhibit two harmonic components located at �
and �.

The new system of Eq. �9� for variables Q1 and Q2 is obtained
after substituting the equality �7� in �4� and using differential
equations �8�

Q̈1 + �1Q̇2 + �Q̇1 + �� − f11 cos2��t��Q1 = f11 cos2��t�f�t�

�9�

Q̈2 − �1Q̇1 + �Q̇2 + �� − f21 cos2��t��Q2 = f21 cos2��t�g�t�

The system of Eq. �9� is now rewritten as a system in complex
valued form containing only differential equations of the first or-
der with third-degree polynomial nonlinearities. Then, the method
of normal forms is applied. The method provides a truncated uni-

form expansion of variables Q1 and Q2 by using near identity
transformations in the terms of normal coordinates. In our case,
truncation is achieved at order three at least. Consequently, the
resonant terms are found to be of order three with a small magni-

tude. Thus, Q1 and Q2 are functions of time whose spectra mainly

Fig. 1 Description of the rotor

Fig. 2 Transition curves between stability and instability areas

The system of Eq. �4� is more realistic than the system of Eq. 
�1�.

2.2 Stability Analysis. System of Eq. �4� includes parametric 
terms qi cos2��t�, which can generate instabilities. The stability is 
studied using the multiple scales method with a development up to 
the first order �see Appendix B�. For this task, the right-hand side 
of Eq. �4� is set to zero and the damping is not considered as it is 
well known that the worst cases of instability appear when damp-
ing is zero �14�.

It is important to point out that large parametric terms lead to 
nonsymmetrical rotor behavior. The natural frequencies had to be 
computed considering the time-averaged Eq. �4�. Consequently, 
the natural frequencies of the rotor at rest are slightly different.

This asymmetry at rest is completely controlled by the term 
�a��2. Furthermore, the natural frequencies are also dependent on
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contain components located at � and �. The numerical results are
now compared to the experimental results for particular running

conditions, i.e., �=n� with n being successively an integer or a
rational number.

3 Experiments on the Excited Rotor Support

3.1 Description of the Experimental Setup. The investi-
gated rotor is shown in Fig. 1�a�, and the frames used are illus-
trated in Fig. 1�b�. The rotor is driven by a servomotor and con-
sists of a flexible shaft with a rigid disk supported by two
bearings. These bearings are strictly identical. We assume that
there is no bearing anisotropy. The mass of the rotor is equal to

mr=1.53 kg. The rotation speed is controlled through a feedback
system. The responses of the vertical and horizontal displacements
of the shaft were measured on planes parallel to the shaft’s cross
section. Contactless sensors are located close to the middle of the
shaft.

An electrodynamic shaker �Gearing & Watson 4700N� was
used to apply the base excitation matching the imposed displace-
ment. The base excitation is considered to be sinusoidal imposed

rotation around the horizontal axis xs �Fig. 1�

�̇s = a� cos��t� �10�

The digital data recording system is shown schematically in
Fig. 4. Lastly, the main characteristics of the setup are presented
in Table. 1.

3.2 Experimental Results for General Running
Conditions. The three parameters that define the experimental

running conditions are: a, the amplitude of the base excitation; �,

the frequency of the base excitation; and �, the rotor frequency.
We first consider the case of general running conditions, that is to

say when � and � are not linked by any mathematical relation-
ship. The amplitude of the angular deviation due to the base ex-
citation is chosen such that the angular deviation is close to

2 deg/s. The dynamic displacement responses are measured at the

middle of the shaft in x direction �q1 variable� and z direction �q2

variable�.
Figure 5�a� displays the phase plane obtained when the running

conditions are: �=40 Hz, �=55 Hz, and a=2�10−5. The shape
of the orbits seems to be a torus. According to these running
conditions, the two first natural frequencies of the rotor were close

to �1�28 Hz and �2�34 Hz. These natural frequencies are

those of the first bending mode in x and z directions, respectively.
They are respectively named as the backward and forward modes.

The first critical speed is found to be close to 2250 rpm. Such
ordinary orbits are difficult to observe as the phase plane does not
appear to be fixed. Figure 5�b� displays the phase plane provided
by a numerical computation �seventh-eighth-order Runge-Kutta�
when running conditions are the previous ones. In a qualitative
point of view, the agreement between the two results is quite
good. Indeed, the orders of magnitude are identical and both phase
planes reveal a quasi-periodic solution. The relative differences
between results could be explained by the fact that the residual
unbalance is not necessary in phase with the base excitation.

The dynamical responses are quasi-periodic functions. As rota-

tional frequency � is low, the three-dimensional �3D� bending
deformed shape of the rotor is a simple combination of two one-
dimensional �1D� first bending deformed shape of a supported-

supported beam in the x and z directions. On the contrary, each
shape vibrates at a different frequency, revealing quasi-periodic
behaviors.

Fig. 3 Experimental setup for a base excitation around the
horizontal direction

Fig. 4 Block diagram of the experimental setup

Table 1 Main characteristics of the setup

Length of the shaft �m� L=0.4

Radius of the shaft �m� R1=5�10−3

Radius of the disk �m� R2=0.1

Thickness of the disk �m� h=1�10−2

Young modulus �Pa� E=2.05�1011

Mass per unit volume �kg/m3� 	=7800

Rotation speed range �rpm� �, 0 to 4000

Residual unbalance �kg m� Mu=2.5�10−4

Damping factor �=50/m

Mass of the rotor �kg� mr=1.534
Amplitude of angular

velocity excitation
a=2�10−5

The head of the shaker was linked to the base via a connecting 
push-rod. The shaker was powered by a power control unit �G&W 
DS4� and a function generator �HP33120A�. The displacement of 
the head of the shaker was monitored by an accelerometer and 
held constant in the frequency range of interest. During testing, all 
the measurements were stored and displayed on a real-time digital 
scope. Balancing was done using a classical procedure for 1600, 
1800, and 2000 rpm. The aim is to obtain an acceptable value of 
the displacement �lower than 0.5 mm� at the first critical speed. 
This balancing is achieved on a single plane, and the influence 
coefficients method was used to find the unbalance to be added. 
As a consequence, the residual unbalancing was found to be equal

to Mu =2.5�10−4 kg m and is located on the disk. The two first 
natural frequencies ��i i=1,2� of the rotor, both at rest and in 
rotation, were obtained with a classical impulse �low-amplitude� 
response by measuring the power density spectra of the displace-
ment responses. These natural frequencies are measured when the 
rotor is subjected to its support excitation. As a consequence, they 
may be different to those obtained for the same rotor without 
support excitation. A similar test was used at rest to measure the 
damping factor �. The validations of the numerical simulations 
were based on the experimental data obtained with the rotor setup 
shown in Fig. 3.
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4 Comparisons Between Experimental and Numerical

Results

The aim of this section is to compare experimental dynamical
responses to numerical ones for given particular running condi-
tions. The analytical data are provided by the method of normal
forms neglecting the damping effect. The numerical results corre-
spond to the dynamical responses obtained with a classical time
integration scheme, i.e., the seventh-eighth-order continuous

Runge-Kutta method. All next figures show displacement x�q1� of

the shaft against the displacement z�q2� at the middle of the shaft.

Lastly, the amplitude of the angular excitation is equal to a=2

�10−5.

4.1 Orbits for �=n�, Integer n. In this particular case, the
orbits are “fixed” and match well with periodic solutions. Figure 6

displays the phase plane for �=20 Hz and n=2,3 ,4 ,5.
Numerical and analytical results are in very good agreement

with the experimental data, and the shape and magnitude of the
orbits are well described by the two numerical methods. As the
exciting frequencies are low, the excited deformed shape corre-

sponds to the first modal shape. This shape vibrates mostly at �
and �, shifted by a phase. The periodic solutions could be ex-
plained by the fact that phases between the two harmonic vibra-
tions vanish after a small number of periods. The dynamical be-
havior becomes periodic. The amplitudes of the normal
coordinates are very small in this case: the normal form method
shows that nonlinear effects are actually very small here. This is
why only experimental and numerical results are provided in Secs.
4.2 and 4.3.

4.2 Orbits for �=n�, Rational n. The same phenomenon

occurs when n is a rational number rewritten as

� =
�



� �11�

are never achieved by experiments in this study. In fact, there exist

many primary resonant cases ���0�, some of them can occur

simultaneously,

�1 = � or �1 = �

�2 = � or �2 = � �12�

As the sensitivity of these natural frequencies decreases as � is

low, we next consider that �1 and �2 are only dependent on �.

Figure 8 shows particular orbits when �=20 Hz and � is close to

Fig. 5 Experimental orbits when � and � are ordinary: „a… experimental and „b…
numerical

Fig. 6 Particular orbits when �=n�, n integer „q1 versus q2 in
10−4 m…

where � and�are integers. In this case, the higher�is, the more 
complicated the shape of the orbit becomes. Figure 7 shows par-
ticular orbits when �=40 Hz and n=1/2,  2/3, and 3/4. The cor-
relation between experimental and numerical results is very good.

4.3 Orbits When � is Close to �1 or �2. It is now interest-

ing to look at the cases where � is close to one of the resonant

frequencies �1 and �2. These resonant frequencies depend both 
on the values of � and �. It should be noted that the resonant 
conditions are difficult to obtain by experiments because of low 
damping values. Consequently, the primary resonant conditions
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one of the resonant frequencies.
The orbits are fixed because it is still possible to find a rational

number as the ratio between � and �. This situation is equivalent
to the previous one of Sec. 4.2.

Lastly, Figure 9 shows several orbits obtained when �
=40 Hz. In all cases, comparison between the experimental and
numerical results reveals that the modeling of the setup provides
accurate results.

5 Conclusions

This paper outlines several results of measurements and com-
putations on a rotor with a base excitation. A simplified model
based on the Rayleigh-Ritz method is used. From these equations,
using the method of multiple scales appears that instabilities may
exist for specific displacement of the support. The normal form
method is used to study the dynamic behavior of the parametri-
cally excited rotor. The comparison between the results obtained
with analytical methods, experimental investigations on the setup
and a step-by-step computation is quite satisfactory.

By and large, it appears that the normal form method is very
suitable for studying this kind of phenomena even though the
nonlinearity effect is small. Likewise, the method can be easily
applied to a system subjected to large parametric excitations. Fur-

ther developments will concern a more sophisticated rotor includ-
ing geometrical nonlinearities and internal damping.
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Nomenclature
a � amplitude of the support excitation

A ,B ,C ,D � components of the forcing terms

d � distance from the geometric center of the
shaft

f ij � reduced components of external forces vec-

tor �i=1 to 2, j=1 to 3�
f�y�, g�y�, h�y� � displacement function first and second par-

tial derivatives

Iai , Imi , Iyi, � intermediate constant values �i=1 to 2�
Ix , Iz � area moments of inertia of the shaft

IDa , IDm � asymmetric and symmetric components of
the tensor inertia of the disk

Ia , Im � asymmetric and symmetric components of
the tensor inertia of the shaft

L � length of the shaft

l1 � location of the center of the disk

MD � mass of the disk

M1 ,M2 ,M5 � intermediate constant values of mass

mu � mass unbalance

mij ,cij ,kij � components of mass, gyroscopic and damp-
ing matrices

m � components of mass matrix in the case of a
base excitation

qi ,Qi ,Fqi � generalized independent coordinates and
forces

R0�x0 ,y0 ,z0� � fixed initial frame

Rs�xs ,ys ,zs� � frame fixed to the rotor base

R�x ,y ,z� � frame fixed to the disk

S � area of the shaft section,

X ,Y ,Z � Translational motions of the support

u�y� ,w�y� � displacements along x and z directions

Greek Symbols

�̇s , �̇s , �̇s � components of the angular velocity of the
support

� � viscous damping factor

� ,
 ,� � successive rotations from R to Rs

Fig. 7 Particular orbits when �=n�, n rational

Fig. 8 Particular orbits when �=20 Hz

Fig. 9 Particular orbits when �=40 Hz
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� � constant angular velocity of the rotor

�1 ,�2 � natural frequencies of the system

� � frequency of the external excitation

	 � mass per unit volume

Appendix A: Derivation of the Equations for the Sim-

plified Model

The basic assumptions for the energies are as follows �12�:
Energy of the disk. The disk, which is located in C at a con-

stant coordinate l1 from the point A �see Fig. 1�b��, is assumed to
be rigid and is characterized by its kinetic energy.

Energy of the shaft. The elementary kinetic energy for a cur-
rent point of coordinates �a thin shaft section� is seen as a gener-
alization of the case of the disk. Moreover, the motion of the
support does not modify the strain energy of the shaft �1�.

Mass unbalance. The kinetic energy of the mass unbalance is

the kinetic energy of a mass mu located on the disk at a distance d
from the geometric center of the shaft.

The angles � and 
 �Fig. 1� are considered to be small, the

angular velocity of the rotor is considered to be constant, S is the

constant cross section of the shaft, 	 is the mass per unit volume,

and Ix and Iz are the moments of inertia. The displacement func-

tion f�y� chosen for the Rayleigh-Ritz method is the exact first

mode shape of a beam assumed to be simply supported at both
ends and with a constant cross section in bending �secondary ef-

fects are not considered here�. Hence, g�y� and h�y� are the first

and second derivatives of the displacement function, respectively.

For the two lateral modal displacements q1 and q2, these assump-
tions lead to

u�y,t� = f�y�q1�t� = sin��y

L
�q1�t�

�A1�

w�y,t� = f�y�q2�t� = sin��y

L
�q2�t�

Introducing this displacement function into the kinetic energy of
the system �12�, Lagrange’s equations are applied, leading to the
general equations of motion in a compact form

	m11 m12

m21 m22


	q̈1

q̈2


 + 	c11 c12

c21 c22


	q̇1

q̇2


 + 	k11 k12

k21 k22


	q1

q2


 = 	 f1

f2



�A2�

where the different terms in the matrices depend both on the char-

acteristics of the rotor and on the motion of the rotor support �X,

Y, Z are the imposed translational motions of the support and �̇s,

�̇s, �̇s are the imposed angular velocities of the support, all ex-

pressed in R0 frame�. The general forms are those presented in
�12� and are recalled in what follows:

Mass Matrix

m11 = M2 + Im2 − Ia2 cos�2�t�

m22 = M2 + Im2 + Ia2 cos�2�t� �A3�

m12 = m21 = Ia2 sin�2�t�

Gyroscopic and Damping Matrix

c11 = − c22 = 2Ia2� sin�2�t�

c12 = �̇S�2M2 + 2Im2 − Iy2� − �Iy2 + 2Ia2� cos�2�t� �A4�

�

Stiffness Matrix

k11 = k + �̇S
2�Im2 − Iy2� − �̇S

2�M2 + Im2 − Iy2� − �̇S
2M2 + �̇S�Iy2

+ ���̇S
2 − �̇S

2 − 2��̇S�Ia2 − ka� cos�2�t� − ��̈S

+ �̇S�̇S�Ia2 sin�2�t�

k22 = k + �̇S
2�Im2 − Iy2� − �̇S

2�M2 + Im2 − Iy2� − �̇S
2M2 + �̇S�Iy2

+ ��− �̇S
2 + �̇S

2 + 2��̇S�Ia2 + ka� cos�2�t�

+ ��̈S − �̇S�̇S�Ia2 sin�2�t�

�A5�

k12 = ��̇S�̇S + �̈S��M2 + Im2 − Iy2� + ���̇S
2 − �̇S

2 + 2��̇S�Ia2

+ ka� sin�2�t� − ��̈S + �̇S�̇S�Ia2 cos�2�t�

k21 = ��̇S�̇S − �̈S��M2 + Im2� − Iy2�̇S�̇S + ���̇S
2 − �̇S

2 + 2��̇S�Ia2

+ ka� sin�2�t� − ��̈S + �̇S�̇S�Ia2 cos�2�t�

External Forces

f1 = mudf�l1�⌊− ��̈S + �̇S�̇S� cos��t� + ���̇S + ��2 + �̇S
2� sin��t�⌋

+ �M5 + Im1���̈S − �̇S�̇S� + Iy1�̇S�� + �̇S� + M1��̇S�2Ẏ + �̇SX

− �̇SZ� − �̇S�2Ż + �̇SY − �̇SX� − Ẍ − �̈SZ + �̈SY� + Ia1�− ��̈S

+ �̇S�̇S + 2��̇S� cos�2�t� + �− �̈S + �̇S�̇S + 2�r� sin�2�t��

�A6�

f2 = mudf�l1����̈S − �̇S�̇S� sin��t� + ���̇S + ��2 + �̇S
2� cos��t��

− �M5 + Im1���̈S + �̇S�̇S� + Iy1�̇S�� + �̇S� + M1�− �̇S�2Ẏ + �̇SX

− �̇SZ� + �̇S�2Ẋ + �̇SZ − �̇SY� − Z̈ + �̈SX − �̇SY� + Ia1��− �̈S

+ �̇S�̇S + 2��̇S�cos�2�t� + ��̇S + �̇S�̇S + 2��̇S� sin�2�t��

In order to point out the effect of the mean inertia and asym-
metry, the following notation is used:

IDm =
IDx + IDz

2
and IDa =

IDx − IDz

2
�A7�

The following terms are characteristics of the rotor and time de-
pendent:

Im1 = IDmg�l1� +�
0

L

	Img�y�dy

Ia1 = IDag�l1� +�
0

L

	Iag�y�dy �A8�

Im2 = IDmg2�l1� +�
0

L

	Img2�y�dy

Ia2 = IDag2�l1� +�
0

L

	Iag2�y�dy

Iy1 = IDyg�l1� + 2�
0

L

	Img�y�dy �A9�

Iy2 = IDyg
2�l1� + 2�

0

L

	Img2�y�dy
c21 = −  ˙ 

S�2M2 + 2Im2 − Iy2� + �Iy2 + 2Ia2� cos�2�t� 
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M1 = MDf�l1� +�
0

L

	Sf�y�dy

M2 = MDf2�l1� +�
0

L

	Sf2�y�dy �A10�

M5 = MDl1f�l1� +�
0

L

	Syf�y�dy

k = E�
0

L

Imh2�y�dy

�A11�

ka = E�
0

L

Iah2�y�dy

Appendix B: Parametric Equations in Case of an Im-

posed Rotation

In the case of a sinusoidal imposed rotation of the base �̇s

=a� cos��t�, Eqs. �A3�–�A11� are modified and lead to new com-

ponents, thus, Eq. �A2� becomes

mq̈1 − �Iy2q̇2 + �k + a2�2�Im2 − Iy2� cos2��t��q1

= Iy1a�� cos��t� + Mu sin��t�

�B1�
mq̈2 + �Iy2q̇1 + �k − a2�2M2 cos2��t��q2

= �M5 + Im1�a�2 sin��t� + Mu cos��t�

where m11=m22=m and m12=m21=0. Thus, parametric terms such

as qi cos2��t� are included in the system of equations. Equations

�B1� can be rewritten as

mq̈1 − �Iy2q̇2 + kq1 = �2A cos2��t�q1 + ��B cos��t� + Mu sin��t�

�B2�
mq̈2 + �Iy2q̇1 + kq2 = �2C cos2��t�q2 + �2D sin��t� + Mu cos��t�

where the following substitutions have been made:

A = a2�Iy2 − Im2�; B = Iy1a; C = a2M2; D = a�M5 + Im1�

�B3�

Then the equations are ordered by using a small bookkeeping

parameter � �13�. In our case, only the terms depending on the
support motion are concerned.

mq̈1 − �Iy2q̇2 + kq1 = ��2A cos2��t�q1 + ���B cos��t�

+ Mu sin��t�

�B4�
mq̈2 + �Iy2q̇1 + kq2 = ��2C cos2��t�q2 + ��2D sin��t�

+ Mu cos��t�

Now, the multiple scales method is applied up to the first order
with

q1�t,�� = q10�T0,T1,T2, . . . � + �q11�T0,T1,T2, . . . � + O��2�

�B5�
q2�t,�� = q20�T0,T1,T2, . . . � + �q21�T0,T1,T2, . . . � + O��2�

Substituting Eqs. �B5� into �B4� and equating coefficients of

like power �, this yields to a set of equations

mD0
2q10 − �Iy2D0q20 + kq10 = Mu sin��t�

�B6�
mD0

2q20 + �Iy2D0q10 + kq20 = Mu cos��t�

and

mD0
2q11 − �Iy2D0q21 + kq11 = − 2mD0D1q10 + �Iy2D1q20

+ A�2 cos2��t�q10 + B�� cos��t�

�B7�
mD0

2q21 + �Iy2D0q11 + kq21 = − 2mD0D1q20 − �Iy2D1q10

+ C�2 cos2��t�q20 + D�2 sin��t�

A study of �B7� shows that interesting resonant terms are ob-
tained for

2� − �1 � �1 or � � �1

2� − �1 � �2 and �2� − �2 � �1� or � �
��1 + �2�

2

�B8�
2� − �2 � �2 or � � �2

2� + �1 � �2 or � �
��2 − �1�

2

where �1 and �2 are the natural frequencies of the rotor �corre-
sponding to backward and forward modes�, which are explicitly

depending on � �1�.
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