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A non-linear model for the dynamics of an inclined cable
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This article is devoted to the theoretical and experimental investigations of an inclined cable subjected to
the boundary motion condition. A model is presented for predicting non-linear behaviour. The analysis of
basic phenomena is performed using the multiple sc ales method. The c able is modelled with one or two

degrees of freedom for in-plane displacement. Models with one or two degrees of freedom are used for out-
of-plane displac ements. Experiments are c arried out on the mec hanic al model and served to identify
parameters and validate the one-degree of freedom model for in-plane displac ements. Numeric al and
experimental results are in~ good agreement.

1. Introduction

Numerous papers have been devoted to the study of cable vibrations. This is not surprising

since the study of cable dynamics is important and difficult at the theoretical level (hyperbolic

models [1]) and for practical applications (cable-stayed bridges, rope-ways [2], inextensible

whirling strings [3], etc.). Qualitative and quantitative information about the physics of cables are

useful for applications stemming from discrete models and sophisticated numerical models (Finite

Element approaches, etc.) In order to lay out cable structures a theoretical, numerical and
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experimental study of cable damper systems and their effects on non-linear vibrations is presented

in Refs. [4,5]. See also Ref. [6] for the control of cables with active tendons.

Irvine and Caughey [7] did not take into account the quadratic and cubic terms of the partial

differential equations governing the three-dimensional vibrations of a cable. They considered a

linear simplified model. In Ref. [8], Irvine studied a linear model (flat-sag cable) that permitted

him to solve the vibration problem completely and introduced the non-linear model of a taut-flat

cable, though without solving it. The study of a non-linear model was carried out by Carrier,

using specific boundary conditions [9,10]. Meirovitch [11] showed that the undamped non-linear

steady state in a plane response of a taut flat cable is given by the solution of a Duffing equation.

West et al. [12] or Henghold and Russell [13] also studied natural frequencies of cable structures.

Hence it is clear that cable vibrations have to be studied in the framework of non-linear

mechanics.

Nayfeh and Mook [14] reviewed recalled the basic modelling for strings and provide many

references on the topic. Takahashi and Konishi [15,16] presented non-linear free vibrations and

forced responses for a three dimensional case. Benedettini and Rega [17 19] and Benedettini et al.

[20] studied planar non-linear oscillations of an elastic cable suspended between two fixed

supports at the same level under several different resonance conditions. They presented

experimental, analytical and numerical results. Benedettini et al. [21] investigated a four-degree-

of-freedom model of a suspended cable; again Rega et al. [22] considered multi-modal resonances

in a suspended cable studied using a perturbation approach. Non-linear mode interactions were

also investigated by Pilipchuk and Ibrahim for a horizontal cable [23]. Zheng et al. [24] considered

the super-harmonics and internal resonance of a suspended cable with almost commensurable

natural frequencies.

The global bifurcation of strings was investigated by O’Reilly [25]. Vibrations due to the

parametric excitation of a cable stayed structure have been investigated by Lilien and Costa [26].

Fujino et al. [27] built a 3 d.o.f. model of a cable-stayed beam and compared the results of

analytical approaches with experimental results. In his PhD thesis, Khadaroui [28] proposed

several models for simplified cable stayed bridges with at most 3 d.o.f. In particular he introduced

a one degree-of-freedom model of an inclined cable subjected to an external excitation

corresponding to the movement of the deck of the bridge. In this paper a revised version of the

simplified model given by Khadroui [28] is provided. Zhao et al. [29] dealt with a two-degree-of-

freedom model of an inclined cable for a theoretical investigation of in-plane and out-of-plane

motions approximated by the first in-plane and out-of-plane modes. Nielsen and Kierkegaard [30]

also investigated simplified models of inclined cables under super and combinatorial harmonic

excitation: they gave analytical and purely numerical results.

Raouf [31] reviewed the literature and results on the response of cables under stochastic

excitation and on the comparison between analytical (simplified) results and purely numerical

results for approximated models, which are sometimes compared with experimental results.

In comparison with the above literature, an inclined cable subjected to external sinusoidal

forcing leading to primary and sub-harmonic resonances is considered here. The work presented

here concerns models with a few degrees of freedom obtained by projecting the continuous model

onto a finite number of linear modes, the (quantitative) comparison between experimental

investigations of planar motions and analytical results obtained for the simplified one degree-of-

freedom non-linear model, and the (qualitative) comparison between experimental results for
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non-planar motions and analytical results (two degree-of-freedom model). It extends and

improves previous work [32].

2. Modellization

Following on from the studies reported by Fujino [27] and Khadraoui [28], a non-linear model

of a cable coupled to a horizontal beam as a simplified model of a cable stayed-bridge is

considered. This work studies the vibrations of an inclined single cable by using a reduced model

(using experimental and numerical analyses). At equilibrium position, the cable is fixed at its ends

A and B, so that its chord defines angle y versus horizontal axis Ox. Planar oscillations are

considered in an Oxy frame where the axis Oy is perpendicular to Ox (see Fig. 1). Non-planar

oscillations can occur in direction Oz, so that Oxyz forms a direct orthogonal frame. The

vibrations of the cable around its equilibrium position are studied and its curvature is taken into

account.

Taking as basis the assumption of small displacements and large deformations for an inclined

cable, a non-linear model is built by three coupled partial differential equations [8]:

mc

@2U

@t2
mcg sin y ¼

@

@s
ðT þ tÞ

dX

ds
þ
@U

@s

� �� �

;

mc

@2V

@t2
mc g cos y ¼

@

@s
ðT þ tÞ

dY

ds
þ

@V

@s

� �� �

;

mc

@2W

@t2
¼

@

@s
ðT þ tÞ

@W

@s

� �� �

; ð1Þ

where mc is the mass of the cable per unit length, g ¼ 9:81m s 2. T is the tension at static

equilibrium. t is the variation of tension corresponding to the movement of a point located at

ðX ;Y ; 0Þ (static equilibrium position) expressed in the local frame by (X þU ;Y þ V ;W ), U is

being the displacement parallel to the initial chord, V is the displacement orthogonal to U in the

cable plane while W is the out-of-plane displacement (see Fig. 1), and s is the curvilinear abscissa.

The following non-dimensional constants are introduced:

s ¼ sL; X ¼ XL; Y ¼ YL; U ¼ UL; V ¼ VL;

W ¼ WL; T ¼ TH; t ¼ tH; t ¼
H=mc

p

L
t; ð2Þ

where L is the cable span and H is the horizontal component of the tension at static equilibrium.

Then, using Hooke’s non-dimensional law in the form:

t ¼ xedef ð3Þ

with a Green Lagrange deformation

edef ¼
dX

ds

@U

@s
þ

dY

ds

@V

@s
þ

1

2

@U

@s

� �2

þ
@V

@s

� �2

þ
@W

@s

� �2
" #

ð4Þ
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with x ¼ x0 cos y and x0 ¼ ES=H where E and S are the Young modulus and the area of the cable

respectively. See Appendix A for other definitions.The final model is then obtained:

@2U

@t 2

@

@s
TðsÞ þ x

dX

ds

� �2
 !

@U

@s
þ x

dX

ds

dY

ds

@V

@s

" #

x
@
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dX

ds
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@s
þ

dY

ds

@V
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� �
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þ

1
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� �2
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� �2
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@s

� �2
!" #

dX

ds
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@U

@s

� �

¼ 0;

@2V
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@s
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ds

� �2
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dX

ds
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ds
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@
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ds
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dX

ds
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ds
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� �

@W

@s
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@s

� �2

þ
@V

@s

� �2

þ
@W

@s

� �2
!" #

@W

@s
¼ 0; ð5Þ

with the boundary conditions Uð0; tÞ ¼ 0; V ð0; tÞ ¼ 0; W ð0; tÞ ¼ 0 at A and ðUðL; tÞ ¼
Z0 cosot sin yÞ; V ðL; tÞ ¼ Z0 cosot cos y; W ðL; tÞ ¼ 0 at B:

Fig. 1. Schematic diagram of the experimental set up.
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2.1. Simplified model with one degree-of-freedom

The longitudinal displacements are neglected and the vibrations of the first planar mode of the

cable are studied. The dimensional displacement V can be written in the form:

VðX ; tÞ ¼ f ðX ÞjðtÞ þ
X

L
Z0 cos y cosot ð6Þ

so that the boundary conditions at both extremities are satisfied. The Irvine function f ðX Þ

providing the vibration according to the first planar mode and verifying the geometrical boundary

conditions at the end of the cable [8] is given by

f
X

L

� �

¼

1 cos o0

X

L

� �

tan
o0

2

� �

sin o0

X

L

� �� �

1 cos
o0

2

� �

tan
o0

2

� �

sin
o0

2

� �� � ð7Þ

and jðtÞ is an unknown modal coordinate.

Using non-dimensional variables, but omitting overbars to simplify the notation and since

@U

@X
51 and

@U

@X
5

@V

@X
ð8Þ

the following equation governing the motion of the cable by using the Ritz Galerkin

method is obtained (with the overbar omitted for j and O derived from o via the non-

dimensional time):

.jþ 2eo0 ’jþ o2
0jþ b1j

2 þ b2j
3 þ b3 cosðOtÞjþ b4 cos

2ðOtÞj

¼ b5 cosðOtÞ þ b6 cos
2ðOtÞ þ b7 sinðOtÞ ð9Þ

with reduced damping e (obtained experimentally via logarithmic decrement) and

o2
0 ¼

C1

C0

þ x
C2

2

C0

; ð10Þ

where C0;C1;C2;C3 and b1–b7 are given in Appendix A.

2.2. Simplified model with 2 d.o.f.

Following the same procedure, as in the previous section, it is possible to develop models of a

cable with 2 (or more) degrees of freedom for example, seeking vibrations that include the first in-

plane and the first out-of-plane modes. The dimensional displacements V and W can be written in

the form:

V ðX ; tÞ ¼ fyðX ÞjyðtÞ þ
X

L
Z0 cos y cosot; ð11Þ

W ðX ; tÞ ¼ fzðX ÞjzðtÞ ð12Þ

so that the boundary conditions at both extremities are satisfied. The Irvine functions

fy and fz for the first in-plane mode and the first out-of-plane mode respectively are defined
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by [8]:

fy
X

L

� �

¼

1 cos o0

X

L

� �

tan
o0

2

� �

sin o0

X

L

� �� �

1 cos
o0

2

� �

tan
o0

2

� �

sin
o0

2

� �� � ; ð13Þ

fz
X

L

� �

¼ sin
pX

L

� �

: ð14Þ

As was done for Eq. (9), the following non-dimensional equations governing the motion of the

cable are obtained (with the overbar omitted for jy and jz):

.jy þ A1 ’jy þ A2jy þ A3 cosðOtÞjy þ A4 cos2ðOtÞjy þ A5j3
y þ A6j2

y þ A7j2
z þ A8j2

zjy

¼ A9 cosðOtÞ A10 cos2ðOtÞ A11O sinðOtÞ A12O2 cosðOtÞ; ð15Þ

.jz þ B1 ’jz þ B2jz þ B3 cosðOtÞjz þ B4 cos2ðOtÞjz þ B5j3
z þ B6jyjz þ B7j2

yjz ¼ 0; ð16Þ

where A1–A12 and B1–B7 are coefficients given in Appendix B.

3. Solving discrete models

In the following, only the one-degree of freedom model is investigated both theoretically and

experimentally. Ordinary differential equations corresponding to discrete models with one or

more degrees of freedom are studied using the multiple scales method. In order to maintain the

same contribution for the non-linear terms and the damping effect, a small dimensionless

parameter e is used for book-keeping. Hence, the method is used to the first order with the

following assumptions:

For one degree of freedom:

e ¼ ee0 and bi ¼ ebi0 for i ¼ 1;y; 7 ð17Þ

For two degrees of freedom:

A20 ¼ A2; B20 ¼ B2; ð18Þ

Ai ¼ eAi0 for i ¼ 1; 3;y; 12 ð19Þ

and

Bi ¼ eBi0 for i ¼ 1; 3;y; 7: ð20Þ

3.1. Primary resonance for 1 d.o.f. model

Assuming, in the usual manner, the frequency expansion as

O ¼ o0 þ es ð21Þ
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the approximate solution is obtained via the multiple scales approach

jðtÞ ¼ r cosðOtþ nÞ þ oðeÞ ð22Þ

with the steady state equations for phase and amplitude verifying:

o0ðO o0Þr 3
b2r

3

8

b4

8
r cosð2nÞ

b4

4
rþ

b5

2
cosðnÞ

b7

2
sinðnÞ ¼ 0; ð23Þ

o2
0erþ

b4

8
r sinð2nÞ

b5

2
sinðnÞ

b7

2
cosðnÞ ¼ 0: ð24Þ

3.2. Sub-harmonic resonance for the 1 d.o.f. system

Assuming the frequency expansion of the form O ¼ 2o0 þ es; the multiple scales approach

leads to:

jðtÞ ¼ r cos
O

2
tþ n

� �

þ oðeÞ: ð25Þ

The steady state equations for phase and amplitude are

ðO 2o0Þo0r

2
3
b2r

3

8

b4

4
r

b3

4
cosð2nÞr ¼ 0; ð26Þ

o2
0erþ

b3

4
r sinð2nÞ ¼ 0: ð27Þ

It is important to note that a trivial solution for the equilibrium position is given by r ¼ 0: Non-

trivial solutions are obtained from:

r2

2
¼

2ðO 2o0Þo0 b4 b23 16ðo2
0eÞ

2
q

3b2
; ð28Þ

r2

2
¼

2ðO 2o0Þo0 b4 þ b23 16ðo2
0eÞ

2
q

3b2
ð29Þ

with the condition:

b23
16

ðo2
0eÞ

2
X0; ð30Þ

where b3 is the parametric term in Eq. (9).

Therefore, for given values of the system parameters, the system may have one or two real

solutions for amplitude r:
The same kind of analysis could also be carried out for the model with 2 degrees of freedom (see

Appendix C).
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3.3. Stability analysis of the sub-harmonic solution for the 1 d.o.f. system

For a sub-harmonic resonance and a one degree of freedom model, the following is used (with

the constant pair r,n for amplitude and phase respectively):

jðtÞ ¼ r cos
O

2
tþ n

� �

; ð31Þ

where r and n are solutions of Eqs. (26) and (27) that includes trivial and non-trivial solutions.

Then stability analysis is studied via linearization in the neighbourhood of the equilibrium

position by replacing ðr; nÞ with ðrþ dr; nþ dnÞ for small drðT1;yÞ and dnðT1;yÞ: Using the

modulation equations expressed with physical parameters (all the quantities have been multiplied

by e) the following system of equations is obtained:

e
@

@T1

dr

dn

 !

¼
J11 J12

J21 J22

" #

dr

dn

 !

; ð32Þ

where

J11 ¼ o0eþ
b3

4o0

sinð2nÞ;

J12 ¼
rb3

2o0

cosð2nÞ;

J21 ¼
3b2

4o0

r;

J22 ¼
b3

2o0

sinð2nÞ: ð33Þ

Noting that J11 ¼ 0; gives

Tr ¼ 2o0e and Det ¼ J21J12; ð34Þ

where Tr, Det are the trace and the determinant of the matrix J, respectively. Thus the stability

analysis may be studied easily via the determinant:

D ¼ ðTrÞ2 4 Det: ð35Þ

It should be noted that according to the values of the parameters a trivial branch plus two

parabolic branches (one stable and one unstable) could be obtained.

4. Description of the experimental system

The experimental set-up for validating the model and showing the main phenomena is described

in this section. A diagram of the set-up for a base excitation along the vertical direction is shown

in Fig. 1. The cable tested was 1.905m long (see Table 1 for the main characteristics of the set-up).

After several tests, a steel wire surrounded by copper wire was chosen instead of a cylindrical

rod (see Fig. 2). The main advantage of this kind of test specimen is its relatively heavy weight per

unit length in comparison to the metallic rod for a similar flexural rigidity.
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At the upper end, a load cell composed of a strain-gauge sensor was inserted between the end of

the cable and the fixed anchorage (pillar). The cell was connected to a signal-conditioning

amplifier (Vishay 2210) and a digital voltmeter was used to measure the static component of the

axial force. During testing, the signal was also plotted on a digital oscilloscope and the static and

dynamic components of the axial tension were recorded.

The stress was applied at the lower end. A moving part, including a stressing anchorage for the

axial force control system, was linked to the head of a 4700N Gearing & Watson electro-dynamic

shaker via a connecting push-rod. The shaker, with a custom table and air suspension, was used to

apply the base excitation matching the imposed displacement of the roadway of the bridge (deck).

The moving part was guided vertically by two slide bearings. The shaker was powered by a power

control unit (G&W DS4) and a function generator (HP33120A). The displacement of the head of

the shaker was monitored and held constant by an accelerometer, as the excitation frequency was

varied around the frequency studied.

A specific sub-system (stressing anchorage) composed of a thread, a nut and a compression

spring was used for the adjustment of the static axial force in the cable (see Fig. 3). In the working

Table 1

Main characteristics of the set up

Length of the cable L ¼ 1:905m

Weight per unit length mc ¼ 0:177 kg/m

Inclination of the cable y ¼ 27:5�

Initial stress 80NoT0o200N

Powered amplitude 0.025mmoZ0o0:150mm

Initial tension 60 180N

Frequency 5HzoO o25Hz

Fig. 2. Test specimen: steel wire surrounded by copper wire.
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configuration, the sub-system was mechanically locked on the moving part. Due to gravity, the

cable was slightly bent in the static configuration and the initial axial force was 4N.

Measurement of the vertical displacement of the cable was measured with an opto-lineic camera

(Sysmat OM5) located at the middle of the cable. The linear-array camera, which detects the

presence of the cable without contact (see Fig. 1), is equipped with a hardware-implemented peak

detector to locate the position of the cable with respect to a reference point. Measurements were

acquired, displayed on a scope and stored in real time at a sampling time of 1/500 s. A low-pass

filter (9002 Frequency Devices) was used for filtering and magnifying the signal from a 4096 pixel-

cell camera. The accuracy of the signal measured depends to a large extent on the quality of the

lenses, the distance between the camera and cable, the cable/board contrast and the amplification

of the low-pass filter. In testing mode, a spotlight was used to light the cable while a dark board

was placed behind it.

In case of out-of-plane motion, another camera, oriented in the second plane, was used to

measure horizontal displacement.

The first linear natural frequencies of the cable were obtained with a classical impulse (low

amplitude) response by measuring the frequency spectra. A similar test was used to measure the

damping ratio for several initial tensions.

5. Experimental results

Cable parameters such as stiffness, length, angle, etc, are chosen while the influence of other

parameters is examined. These other parameters are tension T0 (so that H ¼ T0 cos y) and the

amplitude of excitation Z0: The changes in the excitation frequency were made very gradually and

Fig. 3. Sub system assembly with the stressing anchorage.
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transients were allowed to die out before the amplitude of the response was recorded. An

automatic procedure with a step frequency of 0.01Hz was used to both increase and decrease the

excitation frequency.

5.1. Primary resonance for 1 d.o.f.

5.1.1. Influence of parameters

The experimental results for the primary resonance are given in Fig. 4. In this case, amplitude

Z0 ¼ 0:075mm is weak and tension T0 has different values from 80 to 180N. The amplitude of the

in-plane vibrations, measured in the middle of the cable with the camera, is plotted versus the

excitation frequency. As foreseen, increasing the tension shifted the resonance phenomenon and

the jump due to hysteresis, from a weaker frequency (6Hz) to a higher frequency (9Hz).

When the tension was fixed at T0 ¼ 80N, and Z0 was changed from Z0 ¼ 0:025 to 0:075mm,

two critical effects could be seen (see Fig. 5):

* the amplitude of vibration increased with Z0; and
* the frequency, where high vibration amplitudes jumped to low vibration amplitudes (hysteresis

phenomenon), increased with Z0:

5.1.2. Comparison theory/experiment

The behaviour is strongly non-linear and from an experimental point of view, the first in-plane

or out-of-plane mode vibration of the cable could be observed to alternate for low frequencies

6.5 7.0 7.5 8.0 8.5 9.0

External harmonic frequency (Hz)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

6.0

 L
a

te
ra

l 
d

is
p

la
c
e

m
e

n
t 

(c
m

)

Fig. 4. The influence of varying Z0 on the primary resonance. Experimental displacements at the middle of the cable for

Z0 ¼ 0:0125mm. (a) T0 ¼ 80N (??), (b) T0 ¼ 125N ( ), (c) T0 ¼ 160N ( � ) and (d) T0 ¼ 185N ( ).
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(from 5 to 10Hz) under certain conditions. Since this study is focused on the in-plane mode only,

some specific initial conditions may be applied at the beginning of the procedure before obtaining

a non-linear stabilized in plane vibration motion, before slowly increasing (or decreasing) the

control parameter (the excitation frequency).

The classical hysteresis phenomenon is clearly observed with H ¼ 80 cos yN; y ¼ 27:5�;
Z0 ¼ 0:05mm (see Fig. 6a). For the same parameter values, good qualitative agreement is

observed between the experimental results and the approximate theoretical results given by the

multiple scale investigation (see Fig. 6b). The quantitative agreement can be obtained if careful

consideration is given to the influence of damping and the non-dimensional parameter x0: In fact

x0 is not clearly calculated from the theoretical expressions occurring in the model and the

measurements from the experimental device. Thus in order to compare the experimental and

theoretical results, a procedure is introduced to set the correct parameter x0 and damping in the

theoretical model. Therefore x0 is calibrated for the theoretical curve from the experimental

results.

The theoretical eigenfrequency o2
0 is estimated from the experimental curve with x0; which is

computed with Eq. (10), so that the maximal amplitudes are in good agreement. The damping is

then also estimated in the theoretical model to calibrate the maximal amplitude of the vibrations.

Damping was also measured using a logarithmic decrement from the measured data. The

measured and identified parameters are presented in Table 2.

Good quantitative agreement is then obtained between the experiments and the results of the

model using identified parameters (see Fig. 7), where the measured and computed amplitudes are

plotted versus the frequency of external periodic stresses.

5.2. Results for subharmonic resonance

In this section, the results are presented according to the same procedure as in the previous

section. In addition, stability analysis is presented before comparing theoretical and experimental

results.
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Fig. 5. The influence of varying T0 on the primary resonance. Experimental displacements at the middle of the cable for

T0 ¼ 80N. (a) Z0 ¼ 0:075mm ( ), (b) Z0 ¼ 0; 050mm (??) and (c) Z0 ¼ 0:025mm ( ).
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5.2.1. Influence of parameters

The same parameters (stiffness, length, angle, etc.) as in the previous section are considered.

The influence of tension T0 (with given amplitude Z0) and the influence of the amplitude of

external stress Z0 (with given tension T0) on the experimental results are examined.

In Fig. 8, the results are presented for the in-plane vibrations. The amplitude of the

displacement (at the middle of the cable) is plotted versus frequency o close to the subharmonic
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Fig. 6. Primary resonance at the middle of the cable for T0 ¼ 80N; Z0 ¼ 0:05mm: (a) experimental results and (b)

fitted (E).
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resonance of order 2, for three different amplitudes of excitation. Supercritical bifurcation curves

appear. As can be predicted, the higher Z0 is, the higher the amplitude is at given frequency o.

This is in agreement with the qualitative behaviour given by the simplified analytical model.

In Fig. 9, the amplitude of the vibrations (at the same location) is presented versus o; for several
values of tension in the cable. The influence of T0 on the response is that predicted qualitatively by

the simplified analytical model: the supercritical parabolic branches start from the trivial branch

at a frequency value that increases with T0: Non-trivial and some parts of trivial branches are

obtained by slowly varying the value of the external frequency o.

The values of the parameters have been chosen so that the sub-harmonic response is ‘far from’

the frequency value of the second in-plane mode.

Table 2

Comparison between measured and fitted results

Fitted Measured

T0 80N 80N

Z0 0.05mm 0.05mm

Frequency 6.3Hz 6.1Hz

e 0.6% 0.3 0.5%

x0 From (10) NA
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Fig. 7. Primary resonance, amplitude versus excitation frequency: fitted (3) and experimental (E).
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5.2.2. Comparison theory/experiment

Several experiments were carried out and good qualitative agreement was observed each time.

Good quantitative agreement can be obtained if the tension, the damping and Z0 are prevented

from varying during the experiment. In practice, this constancy is difficult to ensure. For instance,

when T0 ¼ 130N, Z0 ¼ 0:15mm, e ¼ 3% and x0 (calculated during experiments), some small

fluctuations occur so that Z0 is in the range [0.15:0.155mm] and T0 in the range [130N:135N].

Thus, the eigenfrequency measured is 7.4Hz (theoretical value: 7.2Hz).

The results for such an experiment are given in Fig. 10, where the amplitude (at L/2) is plotted

versus o and good quantitative agreement is obtained. It should be noted that in some

0.0

1.0

2.0

3.0

4.0

5.0

6.0

12 13 14 15 16 17

  
  

L
a

te
ra

l 
d

is
p

la
c
e

m
e

n
t 

(c
m

)

External harmonic frequency (Hz)

Fig. 8. Sub harmonic resonance, amplitude versus excitation frequency: Z0 ¼ 0:06mm (3), Z0 ¼ 0:09mm (E) and

Z0 ¼ 0:16mm, (�).
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Fig. 9. Sub harmonic resonance, amplitude versus excitation frequency: T0 ¼ 80N (3), T0 ¼ 130N (�).
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experimental results (not presented here) the stable branch does not persist because of the

occurrence of higher (in-plane or out-of-plane) modes.

6. Conclusions

This paper presented a modified model for the dynamic behaviour of an inclined cable. Both

primary and sub-harmonic resonances have been studied from a theoretical point of view by using

the multiple scales method. The one degree of freedom model is devoted to in-plane motion and is

easily extended to 2 degrees of freedom for in-plane and out-of-plane motions. The model has

been validated from the experimental point-of-view on a specific set-up using a shaker and

contactless sensors. Due to potential applications in the field of civil engineering, the influence of

parameters such as tension and amplitude of external excitation (corresponding to the motion of a

bridge deck) has been presented. The results presented show good agreement between prediction

and experimentation and validate the model. Sophisticated dynamical behaviours have been

observed in the setup for coupled and uncoupled motions. Further investigations of the two

degrees of freedom model and analytical developments have to be carried out in order to study the
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Fig. 10. Sub harmonic resonance, amplitude versus excitation frequency, experiment ( ) and theoretical stable

branch (3).
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contribution of coefficients of non-linear terms and parametric terms in the mathematical model.

In addition, it may be interesting to discuss and study the effect of external stochastic excitation.
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Appendix A. Coefficient for the simplified model with one degree of freedom

The first eigenfrequency o0 of the cable is obtained from [7]:

tg
o0

2

� �

¼
o0

2

4

l2
o0

2

� �3

ðA:1Þ

with

l2 ¼
x0Z

2
0

1þ ðZ20=8Þ
ðA:2Þ

and

Z0 ¼
8z

cos2y
and g ¼

z

L
; ðA:3Þ

where z corresponds to the deflection at middle of the cable.

Coefficients b1;y; b7 and C0;y;C3 are given by

b1 ¼
3C1C2

2C0

gx; b2 ¼
C2

1

2C0

g2x; b3 ¼
C1

C0

xgZ0 sin y;

b4 ¼
C1

2C0

xg2Z2
0 cos2 y; b5 ¼

Z0

C0

ðC3O
2 cos y C2x sin yÞ;

b6 ¼
C2

2C0

xgZ2
0 cos2 y; b7 ¼

C3

C0

2eo0OZ0 cos y; ðA:4Þ

C0 ¼

Z 1

0

f 2ðX Þ dX C1 ¼

Z 1

0

f 02ðX Þ dX ;

C2 ¼

Z 1

0

f 0ðX ÞY 0 dX C3 ¼

Z 1

0

Xf ðX Þ dX : ðA:5Þ
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Appendix B. Coefficient for the simplified model with two degree of freedom

A1 ¼ c1g
T0

mc

;

r

A2 ¼
C1

C0

þ x
C2

2

C0

; A3 ¼
C1

C0

xgZ0 sin y;

A4 ¼
C1

2C0

xg2Z2
0 cos2 y; A5 ¼

C2
1

2C0

g2x; A6 ¼
3C1C2

2C0

gx;

A7 ¼
C2C4

2C0

gx: A8 ¼
C1C4

2C0

g2x: A9 ¼
Z0

C0

C2xsin y;

A10 ¼
C2

2C0

xgZ2
0 cos2 y; A11 ¼

C3

C0

e1Z0 cos y; A12 ¼
C3

C0

Z0 cos y; ðB:1Þ

B1 ¼ c2g
T0

mc

r

; B2 ¼
C4

C5

; B3 ¼
C4

C5

xgZ0 sin y;

B4 ¼
C4

2C5

xg2Z2
0 cos2 y; B5 ¼

C2
4

2C5

g2x; B6 ¼
C2C4

C5

gx;

B7 ¼
C1C4

2C5

g2x; ðB:2Þ

where local coefficients C0 and C5 are as follow:

C0 ¼

Z 1

0

f 2
y ðX Þ dX ; C1 ¼

Z 1

0

f 02y ðX Þ dX ; C2 ¼

Z 1

0

f 0yðX ÞY 0 dX ;

C3 ¼

Z 1

0

XfyðX Þ dX ; C4 ¼

Z 1

0

f 02z ðX Þ dX ; C5 ¼

Z 1

0

f 2z ðX Þ dX : ðB:3Þ

Appendix C. Model with two degrees of freedom

C.1. Primary resonance for a 2 d.o.f. system

Assuming that frequencies op and oop of the in-plane and out-of-plane respectively are close to

each other

op ¼ A20
p

; ðC:1Þ

oop ¼ B20
p

¼ A20
p

þ en: ðC:2Þ

The primary resonance corresponds to

O ¼ op þ es ðC:3Þ

and the multiple scales in time method provides solutions in the form:

jy ¼ a cosðOtþ aÞ; ðC:4Þ
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jz ¼ b cosðOtþ bÞ; ðC:5Þ

where a; b; a and b verify

aopðO opÞ
3
8
A5a3 1

8
A4a cosð2aÞ 1

4
A4a 1

2
cosðaÞðA9þ O2A12Þ

þ 1
2
A11sinðaÞO 1

4
A8ab2 1

8
A8ab2 cosð2a 2bÞ ¼ 0;

1
2
A1aop þ

1
8
A4a sinð2aÞ þ 1

2
sinðaÞðA9þ O2A12Þ þ 1

2
A11cosðaÞO

þ 1
8
A8ab2sinð2a 2bÞ ¼ 0;

b½opðO oopÞ
3
8
B5b2 1

8
B4cosð2bÞ 1

4
B4 1

4
B7a2 1

8
B7a2cosð2a 2bÞ� ¼ 0;

b½ 1
2
B1op þ

1
8
B4sinð2bÞ 1

8
B7a2 sinð2a 2bÞ� ¼ 0: ðC:6Þ

C.2. Sub-harmonic motions for a 2 d.o.f. system

Again assuming op and oop are close together and

O ¼ 2op þ es ðC:7Þ

solutions in the form:

jy ¼ a cos
O

2
tþ a

� �

; ðC:8Þ

jz ¼ b cos
O

2
tþ b

� �

ðC:9Þ

are obtained, with

a op

O

2
op

� �

3
8
A5a2 1

4
A4 1

4
A3cosð2aÞ 1

4
A8b2 1

8
A8b2 cosð2a 2bÞ

	 


¼ 0;

a 1
2
A1op þ

1
4
A3sinð2aÞ þ 1

8
A8b2sinð2a 2bÞ

� �

¼ 0;

b op

O

2
oop

� �

3
8
B5b2 1

4
B4 1

4
B3cosð2bÞ 1

4
B7a2 1

8
B7a2cosð2a 2bÞ

	 


¼ 0;

b 1
2
B1op þ

1
4
B3sinð2bÞ 1

8
B7a2sinð2a 2bÞ

� �

¼ 0: ðC:10Þ
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