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The preperiodic dynatomic curve X n,p is the closure in C 2 of the set consisting of (c, z) such that z is a preperiodic point of the polynomial z → z d + c with preperiod n and period p (n, p ≥ 1). We prove that each X n,p has exactly d -1 irreducible components, these components are all smooth and have pairwise transverse intersections at the singular points of X n,p . We also compute the genus of each component and the Galois group of the defining polynomial of X n,p .

Introduction

It is known that all X 0,p are affine algebraic curves, called the periodic dynatomic curves. These curves have been the subject of several studies in algebraic and holomorphic dynamical systems. The known results for these curves mainly include the smoothness , Milnor [START_REF] Milnor | Periodic Orbits, External Rays and the Mandelbrot Set: An Expository Account[END_REF], Buff-Tan [BT]); irreducibility (Bousch [B], Buff-Tan [BT], Morton [Mo], Lau-Schleicher [LS], Schleicher [S]); the genus (Bousch [B]) and the associated Galois groups (Bousch [B], Morton [Mo], Lau-Schleicher [LS], Schleicher [S]).

In the present work, we study some topological and algebraic properties of preperiodic dynatomic curves.

Definition 1.1. For n ≥ 0, p ≥ 1, a point z is called a p-periodic point if f p c (z) = z but f k c (z) = z for 0 < k < p, and an (n, p)-preperiodic point of f c if f n c (z) is a p-periodic point of f c but f l c (z) is not periodic for any 0 ≤ l < n. Now, for any n ≥ 1, p ≥ 1, define Xn,p = (c, z) ∈ C 2 z is a (n, p)-preperiodic point of f c X n,p := the closure of Xn,p in C 2 .

In fact, as we shall see below, all X n,p are also affine algebraic curves, called the preperiodic dynatomic curves. Limited work has been done for this kind of curves. The special case d = 2 has been previously studied by Bousch [B], who established in this case that for any integers n, p ≥ 1, the curve X n,p is also smooth and irreducible (as the periodic dynatomic curves), and computed its associated Galois group.

The main purpose of this work is to extend these results to arbitrary d ≥ 2. An obvious difference with the previous case is that, for d > 2, the curve X n,p is no longer irreducible: it consists of d -1 irreducible components. We may understand this by a simple observation. Consider the curve X 1,p of (1, p)-preperiodic points, that is, the points z which are not p-periodic, but whose image z 0 = f (z) is. The periodic point z p-1 = f p-1 (z 0 ) is another preimage of z 0 . Because f c (z) = z d + c, we have z = ωz p-1 , where ω is a d-th root of unity. According to the value of ω, we can partition the (1, p)preperiodic points into d -1 classes, and this decomposition is of algebraic nature: it corresponds to a factorization of f p+1 c (z) -f c (z).

We show that these d -1 components are smooth and irreducible. Our approach to smoothness is by using elementary calculations on quadratic differentials and Thurston's contraction principle, following the method of Buff-Tan ([BT]). The approach to irreducibility is based on the connectedness of periodic dynatomic curves and then by an induction on the preperiodic index n. Moreover, we study the features of the singular points of X n,p .

Following Bousch, we compute the genus of each irreducible component and the associated Galois group of the curve X n,p .

Here is a list our main results. They are to be compared with results of periodic dynatomic curves.

Denote by {ν d (p)} p≥1 the unique sequence of positive integers satisfying the recursive relation

d p = k|p ν d (k), integer d ≥ 2 (1.1)
and let ϕ(m) be the Euler totient function (i.e. the number of positive integers less than m and co-prime to m). For n, p ≥ 1, define the numbers

M n,p := ν d (p)d n-2 (d -1) n -1 - [ n-1 p ] t=1 d -tp ,
where [x] denotes the maximal integer less than or equal to x, and

K n,p := ν d (p)(d p-1 -1)d n-1-p [ n-1 p ]-1 t=1 d -t(p-1) - [ n-1 p ]-1 t=1 d -pt + (d [ n-1 p ] -1)ν d (p)d n-2-[ n-1 p ]p
(one can refer to (5.3) and (5.4) for the computation of them). For n, p ≥ 1, set

g p (d) = 1 + dp -d -p -1 2d ν d (p) - d -1 2d k|p,k<p ϕ p k k • ν d (k), g n,p = 1 + 1 2 ν d (p)d n-2 (pd -d -p -1) + 1 2 (M n,p + K n,p ) - 1 2 d n-2 (d -1) k|p,k<p ϕ p k k • ν d (k).
Theorem 1.2. For any d ≥ 2, n, p ≥ 1, the preperiodic dynatomic curve X n,p has the following properties :

1. The set X n,p is an affine algebraic curve. It has d-1 irreducible components and each one is smooth. Moreover, these components are pairwise intersecting at the singular points of X n,p . In particular, if d = 2, the curve X n,p is smooth and irreducible.

2. The genus of every irreducible component of X n,p (in some kind of compactification) is g n,p (d), and all irreducible components are mutually homeomorphic.

3. The Galois group associated with X n,p is the same as that associated with X ≤n,p := ∪ n l=0 X l,p , which consists of all permutations on the roots of the defining polynomial of X ≤n,p that commute with f c and the rotation of argument 1/d.

Here is a tableau comparing these various curves, where S m denotes the group of permutations on {1, . . . , m} and G n,p (d) is the associated Galois group of X n,p . This manuscript is organized as follows:

In section 2, we summarize some preliminaries that will be used in this paper.

In section 3, we will prove that every X n,p is an affine algebraic curve and find its defining polynomial.

In section 4, we give the irreducible factorization of X n,p , and prove that each irreducible factor is smooth and these irreducible components are pairwise intersecting at the singular points of X n,p .

In section 5, we calculate the genus of each irreducible component.

In section 6, we describe X n,p from the algebraic point of view by calculating its associated Galois group.
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Preliminaries

1. Filled in Julia set and Multibrot set. These material can be found in [START_REF] Douady | Étude Dynamique Des Polynômes Complexes, I[END_REF][START_REF] Douady | Exploring the Mandelbrot set: The Orsay Notes[END_REF] and [Eb].

For c ∈ C, we denote by K c the filled-in Julia set of f c , that is the set of points z ∈ C whose orbit under f c is bounded. We denote by M d the Multibrot set in the parameter plane, that is the set of parameters c ∈ C for which the critical point 0 belongs to [START_REF] Douady | Exploring the Mandelbrot set: The Orsay Notes[END_REF]Pro.8.3]). If r c (θ) > 1, then x ∈ C K c is an iterated preimage of 0 and we say that R c (θ) bifurcates at x. If r c (θ) = 1, then x belongs to K c and we say that R c (θ) lands at x.

K c . It is known that M d is connected. Assume c ∈ M d . Then K c is connected. There is a conformal isomorphism φ c : C K c → C D satisfying φ c • f c = φ c d and φ c (∞) = 1 (i,e. φ c (z) z -→ z→∞ 1). The dynamical ray of angle θ ∈ T is defined by R c (θ) := z ∈ C K c | arg φ c (z) = 2πθ . Assume c / ∈ M d . Then K c is a Cantor set and all periodic points of f c are repelling, that is |(f p ) (z)| > 1 for p ≥ 1 and all p-periodic point z. There is a conformal isomorphism φ c : U c → V c between neighborhoods of ∞ in C, which satisfies φ c • f c = φ c d on U c . We may choose U c so that U c contains the critical value c and V c is the complement of a closed disk. For each θ ∈ T, there is an infimum r c (θ) ≥ 1 such that φ -1 c extends analytically along R 0 (θ) ∩ z ∈ C | r c (θ) < |z| . We denote by ψ c this extension and by R c (θ) the dynamical ray R c (θ) := ψ c R 0 (θ) ∩ z ∈ C | r c (θ) < |z| . As |z| r c (θ), the point ψ c (re 2πiθ ) converges to a point x ∈ C ([
There are three kinds of important parameters in M d : super-attracting, parabolic, and Misiurewicz parameters. Recall that a point z is said to be p-periodic if

f p c (z) = z but f k c (z) = z for 0 < k < p. We call c ∈ C • a p-super-attracting parameter if 0 is p-periodic by f c ; • a p-parabolic parameter if f c has a p-periodic point z 0 with (f p ) (z 0 ) = 1 or a m- periodic point z 0 such that m | p and (f m ) (z 0 ) is a p m -th root of unity; • a (n, p)-Misiurewicz parameter if 0 is a (n, p)-preperiodic point of f c .
A well-known result in complex dynamics says that any parabolic cycle of a rational map has a critical point in its basin, whose orbit eventually converges to , but is disjoint with the cycle (see [START_REF] Milnor | Dynamics in One Complex Variable[END_REF]Thm.10.15]). So for the family of unicritical polynomials {f c | c ∈ C}, the three classes of parameters above are pairwise disjoint. We write this point as a lemma, since it will be repeatedly used throughout the paper.

Lemma 2.1. If the critical point 0 is (pre)periodic for f c , then c is not a parabolic parameter.

2. Affine algebraic curve and singularity. These material can be found in [G]. y]. An affine algebraic curve over C is defined as

A polynomial f ∈ C[x, y] is called squarefree if it is not divisible by h(x, y) 2 for any non-constant h(x, y) ∈ C[x,
C = {(x, y) ∈ C 2 | f (x, y) = 0}
where f is a non-constant squarefree polynomial in C[x, y], called the defining polynomial of C. If f = m i=1 f i , where f i are the irreducible factor of f , we say that the affine curve defined by f i is a irreducible component of C.

Let f ∈ C[x, y].
The total degree of f (x, y) as a multivariate polynomial is the highest degree of its terms, denoted by Deg(f ). Correspondingly, we denote by deg x (f ) and deg y (f ) the degrees of f when considered as a polynomial in the variable x and y respectively. The following lemma is repeatedly used in this paper.

Lemma 2.2. (1) If f = f 1 f 2 with f 1 , f 2 ∈ C[x, y], then Deg(f ) = Deg(f 1 )+Deg(f 2 ), deg x (f ) = deg x (f 1 )+deg x (f 2 ) and deg y (f ) = deg y (f 1 )+deg y (f 2 ).
(

) For f 1 , f 2 ∈ C[x, y], if f (x, y) = f 1 (x, f 2 (x, y)), then deg y (f ) = deg y (f 1 ) • deg y (f 2 ). (3) For f 1 , f 2 ∈ C[x, y], if f (x, y) = f 1 (x, f 2 (x, y)) and Deg(f 1 ) = deg y (f 1 ) ≥ 1, Deg(f 2 ) > 1, then Deg(f ) = Deg(f 1 ) • Deg(f 2 ). 2 
Proof.

(1). Refer to [F, section 1.1].

(2). It is straightforward by a simple computation.

(3). Set d 1 := Deg(f 1 ) and d 2 := Deg(f 2 ). According to the conditions of the lemma, we have deg y (f 1 ) = d 1 ≥ 1 and d 2 > 1. On one hand, since Deg(f 1 ) = deg y (f 1 ) = d 1 , then there is a unique term in f 1 with the form a 1 y d 1 , where a 1 is a non-zero constant. So, by (1) and d 1 ≥ 1, it follows that Deg(a

1 f d 1 2 ) = d 1 d 2 .
On the other hand, any other term of f 1 has the form ax s y t , where a is a non-zero constant and either s + t < d 1 or s + t = d 1 and s ≥ 1. According to point (1) and

d 2 > 1, Deg(x s f t 2 (x, y)) = s + td 2 < d 1 d 2 . So we get Deg(f ) = d 1 d 2 .
Let C be an affine algebraic curve for C defined by f ∈ C[x, y], and let P = (a, b) ∈ C. The multiplicity of C at P , denoted by mult P (C), is defined as the order s of the first non-vanishing term in the Taylor expansion of f at P , i.e.

f (x, y) = ∞ s=0 1 s! s t=0 s t (x -a) t (y -b) s-t ∂ s f ∂x t ∂y s-t (a, b).
If mult P (C) = 1, the point P is called a smooth point of C. If mult P (C) = r > 1, then we say that P is a singular point of multiplicity r. We say that C or f is smooth if any point on C is smooth. Note that the first non-vanishing term is a homogeneous polynomial about x -a and y -b, so all its irreducible factors are linear and they are called the tangents of C at P .

A singular point P of multiplicity r on an affine plane curve C is called ordinary if the r tangents to C at P are distinct.

The following result provides a topological interpretation of the irreducibility of polynomials.

Lemma 2.3. A squarefree polynomial f ∈ C[x, y] is irreducible if and only if the set of smooth points of f is connected.

Periodic dynatomic curves.

In this paper, some of proofs and statements rely on the work of the periodic curves X 0,p . We list the related results in the following lemma. Its proof can be found in [B], [BT], [Eb], [GO], [LS], [START_REF] Milnor | Periodic Orbits, External Rays and the Mandelbrot Set: An Expository Account[END_REF], [S]. Lemma 2.4. Let X 0,p be a periodic dynatomic curve. Then 1. [B, BT] There exists a unique sequence of monic polynomials {Q 0,p ∈ C[z]} p≥1 such that for all p ≥ 1,

Φ 0,p (c, z) := f •p c (z) -z = k|p Q 0,k (c, z).
Moreover, we have Deg(Q

0,p ) = deg z (Q 0,p ) = ν d (p).
2. [BT] Let c 0 be an arbitrary parameter. Then a point z 0 is a root of

Q 0,p (c 0 , z) ∈ C[z]
if and only if one of the three exclusive conditions is satisfied:

(1) z 0 is a p-periodic point of f c 0 and [f •p c 0 ] (z 0 ) = 1, (2) z 0 is a p-periodic point of f c 0 and [f •p c 0 ] (z 0 ) = 1, (3) z 0 is an m-periodic point of f c 0 ,
where m is a proper factor of p, and BT, GO, LS, S] The polynomial Q 0,p is smooth and irreducible for all p ≥ 1 and

[f •m c 0 ] (z 0 ) is a primitive p m -th root of unity. 3. [B,
X 0,p = {(c, z) ∈ C | Q 0,p (c, z) = 0}.
4. [B, BT, GO] The projection π 0,p : X 0,p -→ C, defined by π 0,p (c, z) = c, is a degree ν d (p) (given in (1.1)) branched covering with two kinds of critical points:

(1) C 0,p (primitive) = {(c, z) ∈ X 0,p | (c, z) satisfies condition (2) of point 2}. In this case, (c, z) is a simple critical point.

(2) C 0,p (satellite) = {(c, z) ∈ X 0,p | (c, z) satisfies condition (3) of point 2}. In this case, the multiplicity of the critical point (c, z) is p m -1.

The critical value set of π 0,p consists of the parabolic parameters of period p.

5. [START_REF] Eberlein | Rational Parameter Rays of Multibrot Set[END_REF][START_REF] Milnor | Periodic Orbits, External Rays and the Mandelbrot Set: An Expository Account[END_REF] The projection 0,p : X 0,p -→ C, defined by 0,p (c, z) = z, is a degree ν d (p)/d branched covering, which is injective near each point (c 0 , 0) ∈ X 0,p .

6. [B] The Galois group G 0,p for the polynomial Q 0,p ∈ C[z] consists of the permutations on roots of Q 0,p ∈ C[z] that commute with f c .

3 The defining polynomial for X n,p

The objective of this section is to show that X n,p is an affine algebraic curve and find its defining polynomial.

Recall that C denotes the ring

C[c]. For n ≥ 0, p ≥ 1, set Φ n,p (c, z) = f •(n+p) c (z) - f •n c (z).
Lemma 3.1. The polynomial Φ n,p ∈ C[z] has no repeated roots. Consequently, it is squarefree.

Proof. To prove this lemma, it is enough to show that there exists c 0 ∈ C such that all roots of Φ n,p (c 0 , z) are simple. In fact, given

c 0 ∈ C \ M d , a point z 0 is a root of Φ n,p (c 0 , z) ∈ C[z]
if and only if z 0 is a (l, k)-preperiodic point of f c 0 , where 0 ≤ l ≤ n and k | p. For such a c 0 , the critical point 0 goes to infinity and all periodic points of f c 0 are repelling. It follows that

(∂Φ n,p /∂z)(c 0 , z 0 ) = [f •n c 0 ] (z 0 ) [f •p c 0 ] (z 0 ) -1 = 0,
which completes the proof.

Lemma 3.2. There exists a unique double indexed sequence of squarefree, monic polynomials {Q n,p ∈ C[z]} n,p≥1 , such that for all n, p ≥ 1,

Φ n,p (c, z) = Φ n-1,p (c, z) k|p Q n,k (c, z). (3.1) Moreover, we have Deg(Q n,p ) = deg z (Q n,p ) = ν d (p)(d -1)d n-1 .
Proof. The definition of {Q n,p } n,p≥1 is based on the polynomials {Q 0,p } p≥1 which appear in part 1 of Lemma 2.4. We firstly show that Q 0,p (c, z) divides Q 0,p (c, f c (z)) for any p ≥ 1. Since the polynomials Q 0,p (c, f c (z)) ∈ C[z] are monic, we may perform a Euclidean division to find a monic quotient Q ∈ C[z] and a remainder R ∈ C[z] with degree(R) <degree(Q 0,p ), such that Q 0,p (c, f c (z)) = Q 0,p Q + R. We need to show that R = 0, which enable us to set Q 1,p (c, z) := Q.

Following Lemma 3.1 and part 1 of Lemma 2.4, the polynomial Q 0,p ∈ C[z] does not have repeated factors. So its discriminant ∆ 0,p ∈ C[c] does not identically vanish, and hence ∆ 0,p (c) = 0 outside a finite set. Fix c 0 ∈ C such that ∆ 0,p (c 0 ) = 0. Then any root z 0 of Q 0,p (c 0 , z) is simple. By part 2 of Lemma 2.4, the point z 0 is also a root of Q 0,p (c 0 , f c 0 (z)). As a consequence, R(c 0 , z) = 0 for all z ∈ C. Since this is true for every c 0 outside a finite set, we have R = 0 as required.

For n, p ≥ 1, we define

Q n,p (c, z) := Q 1,p (c, f n-1 c (z)). It is clear that each Q n,p ∈ C[z] is monic. Note that Φ n,p (c, z) = Φ 0,p (c, f n c (z)) for any n, p ≥ 1, then we have Φ n,p (c, z) = Φ 0,p (c, f n c (z)) Lem.2.4 = k|p Q 0,k (c, f n c (z)) = k|p Q 0,k (c, f n-1 c (z))Q 1,k (c, f n-1 c (z)) = k|p Q 0,k (c, f n-1 c (z)) k|p Q 1,k (c, f n-1 c (z)) = Φ 0,p (c, f n-1 c (z)) k|p Q n,k (c, z) = Φ n-1,p (c, z) k|p Q n,k (c, z).
Since each Φ n,p is squarefree (Lemma 3.1), so is each Q n,p .

Repeatedly applying (2) and (3) of Lemma 2.2, we have Deg(

f k c (z)) = deg z (f k c (z)) = d k for k ≥ 1. It follows that Deg(Φ n,p ) = deg z (Φ n,p ) = d n+p for n ≥ 0, p ≥ 1.
Then by the recursive formulas (3.1), (1.1) and (1) of Lemma 2.2, the degree conclusion in the lemma holds.

By the definition of Q n,p , we get the inductive formulas

Q n-1,p (c, f c (z)) = Q n,p (c, z), n ≥ 2; Q 0,p (c, f c (z)) = Q 0,p (c, z)Q 1,p (c, z), n = 1. (3.2)
for each p ≥ 1. This equation implies that we can obtain the properties of Q n,p by induction on n.

In fact, Q n,p (c, z) is the defining polynomial of X n,p . To see this, we will now study the properties of the roots of Q n,p (c 0 , z) ∈ C[z] for an arbitrary parameter c 0 ∈ C. Proposition 3.3. Let n ≥ 1, p ≥ 1 be any pair of integers and c 0 ∈ C be any parameter. Then z 0 ∈ C is a root of Q n,p (c 0 , z) if and only if one of the following 5 mutually exclusive conditions holds:

(1) z 0 is a (n, p)-preperiodic point of f c 0 such that f l c 0 (z 0 ) = 0 for any 0 ≤ l < n and [f p c 0 ] (f n c 0 (z 0 )) = 1. (2) z 0 is a (n, p)-preperiodic point of f c 0 such that f l c 0 (z 0 ) = 0 for any 0 ≤ l < n and [f p c 0 ] (f n c 0 (z 0 )) = 1. (3) z 0 is a (n, m)-preperiodic point of f c 0 such that f l c 0 (z 0 ) = 0 for any 0 ≤ l < n and m is a proper factor of p with [f m c 0 ] (f n c 0 (z 0 )) a primitive p m -th root of unity. (4) z 0 is a (n, p)-preperiodic point of f c 0 such that f l c 0 (z 0 ) = 0 for some 0 ≤ l < n.
(5) f

(n-1) c 0 (z 0 ) = 0 and 0 is a p-periodic point of f c 0 .
We remark that in case (4), the case of l = n -1 never occurs.

Proof. Fix c 0 ∈ C. The proof goes by induction on n.

As n = 1, Q 0,p (c, f c (z)) = Q 0,p (c, z) • Q 1,p (c, z). We claim that z 0 is a common root of Q 0,p (c 0 , z) and Q 1,p (c 0 , z) if and only if z 0 = 0 is a p periodic point of f c 0 .
For sufficiency, we only need to note that, in this case, 0 is a multiple root of Q 0,p (c 0 , f c 0 (z)), but a simple root of Q 0,p (c 0 , z) by part 2 of Lemma 2.4. For necessity, z 0 must be a multiple root of Q 0,p (c 0 , f c 0 (z)). It follows that either f c 0 (z 0 ) is a multiple root of Q 0,p (c 0 , z) or z 0 is a critical point of f c 0 . In the former case, by 4 of Lemma 2.4, c 0 is a parabolic parameter and f c 0 (z 0 ) is a parabolic periodic point. It means that Q 0,p (c 0 , f c 0 (z)) and Q 0,p (c 0 , z) have the same zero multiplicity at z 0 . Then Q 1,p (c 0 , z 0 ) = 0. In the latter case, we have z 0 = 0, and by 2 of Lemma 2.4 0 is a p periodic point of f c 0 . Such c 0 , z 0 correspond to the condition (5). In any other case, z 0 is a root of Q 1,p (c 0 , z) if and only if f c 0 (z 0 ) is a root of Q 0,p (c 0 , z) but z 0 is not periodic. In fact, if z 0 were periodic, it would have the same period and multiplier as its first image. By part 2 of Lemma 2.4, we get that Q 0,p (c 0 , z 0 ) vanishes, which leads to a contradiction. Then part 2 of Theorem 2.4 implies that z 0 satisfies one of the conditions (1), ( 2), ( 3), (4) in Proposition 3.3.

Assume that the proposition is established for 1 1,p (c 0 ,z). By Lemma 2.1,if f c 0 (z 0 ) satisfies property (2) or (3), then the orbit of z 0 does not contain 0. Therefore by the inductive assumption, the point z 0 satisfies one of the 5 exclusive conditions in Proposition 3.3.

≤ l < n. At this time, Q n,p (c, z) = Q n-1,p (c, f c (z)). So for any c 0 ∈ C, z 0 is a root of Q n,p (c 0 , z) if and only if f c 0 (z 0 ) is a root of Q n-
In Proposition 3.3, the zeros of Q n,p (c, z) are divided into 5 classes. We give some notations to denote the sets consisting of zeros of most classes in the following table.

The set

The points in the set

C n,p (primitive) (c, z) satisfies the condition (2) in Proposition 3.3 C n,p (satellite) (c, z) satisfies the condition (3) in Proposition 3.3 C n,p (Misiurewicz) (c, z) satisfies the condition (4) in Proposition 3.3 C n,p (singular) (c, z) satisfies the condition (5) in Proposition 3.3
Recall that for any n, p ≥ 1, the sets Xn,p and X n,p are defined by

Xn,p = (c, z) ∈ C 2 z is a (n, p)-preperiodic point of f c and X n,p := the closure of Xn,p in C 2 .
Proposition 3.4. For n, p ≥ 1, we have

X n,p = (c, z) Q n,p (c, z) = 0 and X n,p \ Xn,p = C n,p (satellite) ∪ C n,p (singular) Proof. Set X := {(c, z) | Q n,p (c, z) = 0}.
Then X is a closed, perfect set. By the definition of Xn,p and Proposition 3.3, we have

X \ C n,p (satellite) ∪ C n,p (singular) = Xn,p ⊂ X (3.3)
We claim that the sets C n,p (satellite) and C n,p (singular) are both finite. If so, we get

X = X \ (C n,p (satellite) ∪ C n,p (singular)) = Xn,p = X n,p ⊂ X.
Hence it remains to check the claim.

If (c 0 , z 0 ) ∈ C n,p (satellite), it satisfies that f n+p c 0 (z 0 )-f n c 0 (z 0 ) = 0 and [f p c 0 ] (f n c 0 (z 0 )) = 1. Hence c 0 is a root of the resultant R ∈ C[c] of the equations f n+p c (z) -f n c (z) = 0 and (f p c ) (f n c (z)) = 1.
For a parameter c outside the Multibrot set, all the periodic points of f c are repelling, so the polynomials

f n+p c (z) -f n c (z) and (f p c ) (f n c (z))
-1 do not have a common root. It follows that R is not identically zero, and hence, its roots form a finite set. If (c 0 , z 0 ) ∈ C n,p (singular), then Q 0,p (c 0 , 0) = 0 by point (5) of Proposition 3.3 and point 2 of Lemma 2.4, whereas the roots of Q 0,p (c, 0) form a finite set.

The irreducible factorization of Q n,p

In this section, we will show that the curve X n,p , n ≥ 1, has d -1 smooth irreducible components and analyze the properties of its singular points. We always assume n ≥ 1 without emphasizing.

Factorization of Q n,p and the features of its singular points

Recall that for f ∈ C[c, z], Deg(f ) denotes the total degree of f and deg z (f ) denotes the degree of the variable z in f .

Lemma 4.1. (Algebraic version)

There exists a unique sequence of monic polynomials

{q j n,p ∈ C[z]} 1≤j≤d-1 such that Q n,p (c, z) = d-1 j=1 q j n,p (c, z).
All points in C n,p (singular) are zeros of q j n,p ∈ C[c, z], and there are no other common zeros for q i n,p and q j n,p with i = j. Moreover, we have Deg(

q j n,p ) = deg z (q j n,p ) = ν d (p)d n-1 . (Topological version) Let V j n,p = {(c, z) ∈ C 2 q j n,p (c, z) = 0} (1 ≤ j ≤ d -1). Then C n,p (singular) ⊂ V j
n,p for each j and V j n,p \ C n,p (singular) 1≤j≤d-1 are pairwise disjoint.

Proof. Recall that C = C[c] and K is a fixed algebraically closed field containing C.

Let ∆ be a root of Q 0,p ∈ C[z]. Then by part 1 of Lemma 2.4, Φ 0,p (c, ∆) = f p c (∆) -∆ = 0. We see from this equation that ∆ is periodic under f c and ∆, . . . , f p-1 c (∆) are roots of Φ 0,p . Note that Φ 0,p (c, 0) = f p c (0) is a polynomial in the variable c of the degree d p-1 , so ∆ = 0. Consequently, ω∆, . . . , ω d-1 ∆ are not roots of Q 0,p , where ω = e 2πi d , because they are not periodic under f c . Then by the equation Q 0,p (c, f c (z)) = Q 0,p (c, z)Q 1,p (c, z) (see (3.2)), we get that ω∆, . . . , ω d-1 ∆ are roots of Q 1,p ∈ C[z]. Let us factorize Q 0,p in K by Q 0,p (c, z) = ν d (p) i=1 (z -∆ i ) (∆ s 1 = ∆ s 2 for s 1 = s 2 ,
because all roots of Φ 0,p ∈ C[z] are simple (Lemma 3.1), and so are Q 0,p (part 1 of Lemma 2.4)). Then Q 1,p can be expressed as

Q 1,p = ν d (p) i=1 (z -ω∆ i ) • • • (z -ω d-1 ∆ i ) = d-1 j=1 ν d (p) i=1 (z -ω j ∆ i ) (4.1)
To see this, we first note that for any s

, t ∈ [1, d-1] and i 1 = i 2 ∈ [1, ν d (p)], ω s ∆ i 1 = ω t ∆ i 2 . But it is impossible because both ∆ i 1 and ∆ i 2 are periodic. Thus {ω∆ i , . . . , ω d-1 ∆ i } ν d (p) i=1 are pairwise distinct roots of Q 1,p ∈ C[z] by the discussion above, then ν d (p) i=1 (z - ω∆ i ) • • • (z -ω d-1 ∆ i ) is a divisor of Q 1,p .
As its degree is (d -1)ν d (p), equal to the degree of Q 1,p , and Q 1,p is monic, we get (4.1). For j ∈ [1, d -1], set

q j 1,p (c, z) = ν d (p) i=1 (z -ω j ∆ i ) = (ω j ) ν d (p) ν d (p) i=1 (ω -j z -∆ i ) = (ω j ) ν d (p) Q 0,p (c, ω -j z). (4.2) Note that d | ν d (p), so (ω j ) ν d (p) = 1. Then q j 1,p (c, z) is a monic polynomial in C[z], satisfying Q 1,p (c, z) = d-1 j=1 q j 1,p (c, z). (4.3) This gives a factorization of Q 1,p in C[z]
. By formula (4.2) and the degree conclusion in point 1 of Lemma 2.4, the total degree Deg(q j 1,p ) and deg z (q j 1,p ) are both ν d (p). For n ≥ 2, we can define q j n,p (c, z) inductively by q j n,p (c, z) = q j n-1,p (c, f c (z)). Using induction, the degree conclusion in the lemma follows directly form (2) and ( 3

) of Lemma 2.2. As Q n,p (c, z) = Q n-1,p (c, f c (z)), we have Q n,p (c, z) = d-1 j=1 q j n,p (c, z). (4.4) This is a factorization of Q n,p (c, z) in C[z].
We are left to prove that each q j n,p (c, z) satisfies the remaining properties announced in the lemma. For n = 1, since q j 1,p (c, z) = Q 0,p (c, ω -j z), then (c 0 , z 0 ) is a common root of q i 1,p (c, z) and q j 1,p (c, z) for some 1 ≤ i = j ≤ d -1 ⇐⇒ both (c 0 , ω -i z 0 ) and (c 0 , ω -j z 0 ) are zeros of Q 0,p (c, z). It follows that ω -i z 0 and ω -j z 0 are both periodic point of f c 0 , hence z 0 = 0. Note that, in case (3) of Lemma 2.4 item 2, the critical point 0 is never periodic (Lemma 2.1), so 0 has period p.

It follows that (c 0 , z 0 ) ∈ C 1,p (singular). On the other hand, if (c 0 , z 0 ) ∈ C 1,p (singular), then (c 0 , ω -i z 0 ) = (c 0 , ω -j z 0 ) = (c 0 , 0) is a zero of Q 0,p (c, z).
For n ≥ 2, the conclusion can be deduced from the case of n = 1 and the definition of q j n,p (c, z).

For convenience, we summarize the definitions of q j 1,p in term of Q 0,p and the inductive definitions of q j n,p (n ≥ 2) in terms of q j n-1,p as a corollary.

Corollary 4.2. For any p ≥ 1, 1 ≤ j ≤ d -1, and ω = e 2πi d , we have

q j 1,p (c, z) = Q 0,p (c, ω -j z), q j n,p (c, z) = q j n-1,p (c, f c (z)), n ≥ 2.
Example: Here are some examples of Q n,p and their decomposition. Let d = 3. Suppose p = 1, then we have

Q 0,1 (c, z) = z 3 + c -z, Q 1,1 (c, z) = c 2 + cz + z 2 + 2cz 3 + z 4 + z 6 = (z 3 + c -e -2 3 πi z)(z 3 + c -e -4 3 πi z) = q 1 1,1 (c, z) • q 2 1,1 (c, z). and Q 2,1 (c, z) = 3c 2 + 3c 4 + (c 6 + 3c + 10c 3 + 6c 5 )z 3 + (1 + 12c 2 + 15c 4 )z 6 +(6c + 20c 3 )z 9 + (1 + 15c 2 )z 12 + 6cz 15 + z 18 = (1 -e -2 3 πi )c + c 3 + (3c 2 -e -2 3 πi )z 3 + 3cz 6 + z 9 × (1 -e -4 3 πi )c + c 3 + (3c 2 -e -4 3 πi )z 3 + 3cz 6 + z 9 = q 1 2,1 (c, z) • q 2 2,1 (c, z). Suppose p = 2, then we have Q 0,2 (c, z) = 1 + c 2 + cz + z 2 + 2cz 3 + z 4 + z 6 and Q 1,2 (c, z) = 1 + 2c 2 + c 4 -(c + c 3 ) -z 2 + (3c + 4c 3 )z 3 -3c 2 z 4 +(1 + 6c 2 )z 6 -3cz 7 + 4cz 9 -z 10 + z 12 = 1 + c 2 + e -2 3 πi z + e -4 3 πi z 2 + 2cz 3 + e -2 3 πi z 4 + z 6 × 1 + c 2 + e -4 3 πi z + e -2 3 πi z 2 + 2cz 3 + e -4 3 πi z 4 + z 6 = q 1 1,2 (c, z) • q 2 1,2 (c, z)
From Lemma 4.1, we see that in the case d ≥ 3, the polynomial Q n,p is both reducible and non-smooth, because C n,p (singular), which is non-empty, belongs to the set of singular points of Q n,p .

We now turn to the study of the components q j n,p (c, z). The following theorem is the core of this section.

Theorem 4.3. Given d ≥ 2, for any n, p ≥ 1, j ∈ [1, d -1], the polynomial q j n,p (c, z) is smooth and irreducible.
The proof of this theorem is postponed to § 4.2.

By this theorem, all components V j n,p are Riemann surfaces. Together with Lemma 4.1, this implies that the singularity set of X n,p is equal to C n,p (singular). The next proposition characterizes the features of these singularities.

Proposition 4.4. Given d ≥ 2, for n, p ≥ 1, each singularity (c 0 , z 0 ) of X n,p has multiplicity d -1. Furthermore, if f l c 0 (z 0 ) = 0 for some 0 ≤ l ≤ n -2, then X n,p has one tangent of multiplicity d -1 at (c 0 , z 0 ); otherwise, the singularity (c 0 , z 0 ) is ordinary.

Proof. Let (c 0 , z 0 ) be a singular point of X n,p . Since each component of X n,p is smooth and they are pairwise intersecting at (c 0 , z 0 ), then the first non-vanishing term of Q n,p (c, z) at (c 0 , z 0 ) is d -1. Hence the multiplicity of the singularity (c 0 , z 0 ) is d -1.

If n = 1, by (5) of Proposition 3.3, the fact that (c 0 , z 0 ) ∈ C 1,p (singular) implies that z 0 = 0 and (c 0 , 0) ∈ X 0,p . According to Lemma 2.1 c 0 is not a parabolic parameter. Then it follows from part 4 of Lemma 2.4 that (c 0 , 0) is not a critical point of π 0,p , and hence ∂Q 0,p /∂z (c 0 , 0) = 0. Meanwhile, according to part 5 of Lemma 2.4, ∂Q 0,p /∂c (c 0 , 0) = 0. Thus Q 0,p (c, z) has a local expression Q 0,p (c, z) = a 0,p (c -c 0 ) + b 0,p z + higher order terms around (c 0 , 0) with a 0,p , b 0,p = 0. It follows that

q j 1,p (c, z) = Q 0,p (c, ω -j z) = a 0,p (c -c 0 ) + b 0,p ω -j z + higher order terms
Therefore the tangents of V j 1,p (1 ≤ j ≤ d -1) at (c 0 , 0) are pairwise distinct. For n ≥ 2, we denote by a j n,p (c -c 0 ) + b j n,p (z -z 0 ) the equation of the tangent of V j n,p at (c 0 , z 0 ). By the formula q j n,p (c, z) = q 1,p (c, f n-1 c (z)) (Corollary 4.2), we have that where a is a non-zero constant, i.e., X n,p has the tangent c = c 0 of multiplicity d -1 at (c 0 , z 0 ). In the other cases, we get (f n-1 c 0 ) (z 0 ) = 0. Combining this point and the fact that a 0,p , b 0,p = 0, it is not difficult to check that the pairs (a j n,p , b j n,p )(1 ≤ j ≤ d -1) are pairwise non-colinear. Hence the tangents of V j n,p (1 ≤ j ≤ d -1) at (c 0 , z 0 ) are pairwise distinct, that is, (c 0 , z 0 ) is ordinary.

       a j n,p = ∂q j n,p ∂c (c 0 , z 0 ) = ∂q j 1,p ∂c (c 0 , 0) + ∂q j 1,p ∂z (c 0 , 0) ∂f n-1 c ∂c (c 0 , z 0 ) = a 0,p + b 0,p ω -j ∂f n-1 c ∂c (c 0 , z 0 ) b j n,p = ∂q j n,p ∂z (c 0 , z 0 ) = ∂q j 1,p ∂z (c 0 , 0)(f n-1 c 0 ) (z 0 ) = b 0,p ω -j (f n-1 c 0 ) (z 0 ) If there exists 0 ≤ l ≤ n -2 such that f l c 0 (z 0 ) = 0, then (f n-1 c 0 ) (z 0 ) = 0,
4.2 Proof of the smoothness and irreducibility of q j n,p

The objective here is to prove Theorem 4.3.

The approach to prove the smoothness is similar to that in [BT]. The idea is to prove that some partial derivative of q j n,p is non vanishing. Following A. Epstein, we will express this derivative as the coefficient of a quadratic differential of the form (f c ) Q -Q. Thurston's contraction principle gives (f c ) Q -Q = 0, whence our partial derivative is non-zero.

The approach to the irreducibility is based on the connectedness of periodic curve X 0,p . Then we will show the connectivity of V j n,p using a branched covering by induction on the preperiodic index n.

Here we list some definitions and results about quadratic differentials and Thurston's contraction principle. All their proofs can be found in [BT] and [Le].

We use Q(C) to denote the set of meromorphic quadratic differentials on C whose poles (if any) are all simple. If Q ∈ Q(C) and U is a bounded open subset of C, the norm

Q U := U |q|
is well defined and finite.

For f : C → C a non-constant polynomial and Q = q dz 2 a meromorphic quadratic differential on C, the pushforward f * Q is defined by the quadratic differential

f * Q := T q dz 2 with T q(z) := f (w)=z q(w) f (w) 2 . If Q ∈ Q(C), then f * Q ∈ Q(C) also.
The following lemma is a weak version of Thurston's contraction principle.

Lemma 4.5. If f : C → C is a polynomial and if Q ∈ Q(C), then f * Q = Q.
The formulas below appeared in [Le] chapter 2, we write them together as a lemma.

Lemma 4.6 (Levin). For f = f c , we have

         f * dz 2 z = 0 f * dz 2 z -a = 1 f (a) dz 2 z -f (a) - dz 2 z -c if a = 0 (4.5)
To prove the irreducibility of q j n,p , we need the following Lemma.

Lemma 4.7. For each n, p ≥ 1, 1 ≤ j ≤ d -1, the polynomial q j n,p (c, 0) (in the variable c) has degree ν d (p)d n-2 .

Proof. For n = 1, we see that q j 1,p (c, 0) = Q 0,p (c, 0) from Corollary 4.2. Then the result follows directly from point 5 of Lemma 2.4.

For n ≥ 2, q j n,p (c, 0) = q j 1,p (c, f n-1 (0)). Since Deg(q j 1,p ) = deg z (q j 1,p ) = ν d (p) (see Lemma 4.1) and Deg(f n-1 c (0)) = d n-2 (which is easily checked), we have Deg(q j n,p (c, 0)) = Deg(q j 1,p (c, z)) • Deg(f n-1 c (0)) = ν d (p)d n-2
by ( 2) and (3) of Lemma 2.2. Then the proof is completed.

Proof of Theorem 4.3. The proof goes by induction on n.

For n = 1, as q j 1,p (c, z) = Q 0,p (c, ω -j z) and Q 0,p (c, z) is smooth and irreducible, we know that q j 1,p (c, z) are smooth and irreducible. Assume that for 1 ≤ l < n, the polynomial q j l,p (c, z) are smooth and irreducible. Then we will show that q j n,p (c, z) are smooth and irreducible. Now fix any j

0 ∈ [1, d -1].
Smoothness of q j 0 n,p : As q j 0 n,p (c, z) = q j 0 n-1,p (c, f c (z)), for any (c 0 , z 0 ) a zero of q j 0 n,p (c, z), we have

         ∂q j 0 n,p ∂c (c 0 , z 0 ) = ∂q j 0 n-1,p ∂c (c 0 , w 0 ) + ∂q j 0 n-1,p ∂z (c 0 , w 0 ) ∂q j 0 n,p ∂z (c 0 , z 0 ) = ∂q j 0 n-1,p ∂z (c 0 , w 0 ) • f c 0 (z 0 ) (4.6)
where w 0 = f c 0 (z 0 ). Then if z 0 = 0, by the smoothness of V j 0 n,p (assumption of induction), [∂q j 0 n,p /∂c](c 0 , z 0 ) and [∂q j 0 n,p /∂z](c 0 , z 0 ) can not be equal to 0 simultaneously, it follows that q j 0 n,p (c, z) is smooth at (c 0 , z 0 ). So we are left to prove that q j 0 n,p (c, z) is smooth at (c 0 , 0) ∈ V j 0 n,p . In this situation, c 0 is either a p-periodic super-attracting parameter or a (n, p)-Misiurewicz parameter, and [∂q j 0 n,p /∂z](c 0 , 0) = 0. So we have to show [∂q j 0 n,p /∂c](c 0 , 0) = 0. In the former case f n-1 c 0 (0) = 0, then p|n -1. Since q j 0 n,p (c, z) = q j 0 1,p (c,

f n-1 c (z)), we have ∂q j 0 n,p ∂c (c 0 , 0) = ∂q j 0 1,p ∂c (c 0 , 0) + ∂q j 0 1,p ∂z (c 0 , 0) ∂f n-1 c ∂c (c 0 , 0) (4.7)
Note that Q 0,p (c 0 , 0) = 0 and p|n -1, then differentiating both sides of the equation

f n-1 c (z) -z = k|n-1 Q 0,k (c, z),
which is raised in point 1 of Lemma 2.4, with respect to c and z respectively at the point (c 0 , 0), we have that

             ∂f n-1 c ∂c (c 0 , 0) = ∂Q 0,p ∂c (c 0 , 0) k|n-1 k =p Q 0,k (c 0 , 0) -1 = ∂Q 0,p ∂z (c 0 , 0) k|n-1 k =p Q 0,k (c 0 , 0) (4.8) Since q j 0 1,p (c, z) = Q 0,p (c, ω -j 0 z), then ∂q j 0 1,p ∂c (c 0 , 0) = ∂Q 0,p ∂c (c 0 , 0), ∂q j 0 1,p ∂z (c 0 , 0) = ω -j 0 ∂Q 0,p ∂z (c 0 , 0).
By substituting these two formulas into equation (4.7) and applying equation (4.8), we find

∂q j 0 n,p ∂c (c 0 , 0) = ∂Q 0,p ∂c (c 0 , 0) + ω -j 0 ∂Q 0,p ∂z (c 0 , 0) ∂Q 0,p ∂c (c 0 , 0) k|n-1 k =p Q 0,k (c 0 , 0) = ∂Q 0,p ∂c (c 0 , 0) 1 + ω -j 0 ∂Q 0,p ∂z (c 0 , 0) k|n-1 k =p Q 0,k (c 0 , 0) = ∂Q 0,p ∂c (c 0 , 0)(1 -ω -j 0 ). (4.9)
By point 5 of Lemma 2.4, [∂Q 0,p /∂c](c 0 , 0) = 0, then so is [∂q j 0 n,p /∂c](c 0 , 0). In the latter case, since

∂Q n,p ∂c (c 0 , 0) = 1≤j =j 0 ≤d-1 q j n,p (c 0 , 0) • ∂q j 0 n,p ∂c (c 0 , 0)
and the point (c 0 , 0) is not a zero of j =j 0 q j n,p (c, z) by Lemma 4.1, we only have to show [∂Q n,p /∂c](c 0 , 0) = 0. Furthermore, since

∂Φ n,p ∂c (c 0 , 0) = Φ n-1,p (c 0 , 0) • k|p,k<p Q n,k (c 0 , 0) • ∂Q n,p ∂c (c 0 , 0) and Φ n-1,p (c 0 , 0) • k|p,k<p Q n,k (c 0 , 0) = 0, it is equivalent to show [∂Φ n,p /∂c](c 0 , 0) = 0.
We shall choose a meromorphic quadratic differential with simple poles such that

(f c 0 ) * Q = Q + ∂Φ n,p ∂c (c 0 , 0) • dz 2 z -c 0 .
Then by Lemma 4.5, we obtain [∂Φ n,p /∂c](c 0 , 0) = 0.

We shall use the following notations:

z k := f •n+k c 0 (0), δ k := f c 0 (z k ) = dz d-1 k , 0 ≤ k ≤ p -1 y l := f l c 0 (0), ε l := f c 0 (y l ) = dy d-1 l , 1 ≤ l ≤ n -1
With these notations and a bit of calculations, we get

∂Φ n,p ∂c (c 0 , 0) = ∂f •(n+p) c ∂c (c 0 , 0) - ∂f •n c ∂c (c 0 , 0) = (δ 0 • • • δ p-1 -1)(ε n-1 • • • ε 1 + • • • + ε n-1 ε n-2 + ε n-1 + 1) + δ p-1 • • • δ 1 + • • • + δ p-1 + 1 Denote (δ 0 • • • δ p-1 -1)(ε n-1 • • • ε 1 + • • • + ε n-1 ε n-2 + ε n-1 + 1) by α. Let Q = p-1 k=0 ρ k z -z k dz 2 + n-1 l=1 λ l z -y l dz 2 be a quadratic differential in Q(C). Here ρ k (0 ≤ k ≤ p -1), λ l (1 ≤ l ≤ n -1
) are undetermined coefficients (note that y 1 = c 0 ). Applying Lemma 4.6 and writing f for f c 0 , we have

f * Q = p-1 k=0 ρ k δ k dz 2 z -z k+1 - dz 2 z -c 0 + n-2 l=1 λ l ε l dz 2 z -y l+1 - dz 2 z -c 0 + λ n-1 ε n-1 dz 2 z -z 0 - dz 2 z -c 0 = ρ p-1 δ p-1 + λ n-1 ε n-1 dz 2 z -z 0 + ρ 0 δ 0 dz 2 z -z 1 + • • • + ρ p-2 δ p-2 dz 2 z -z p-1 + α - n-1 l=1 λ l ε l dz 2 z -y 1 + λ 1 ε 1 dz 2 z -y 2 + • • • + λ n-2 ε n-2 dz 2 z -y n-1 -α + p-1 k=0 ρ k δ k dz 2 z -c 0 We want to choose Q so that f * Q -Q = -α + p-1 k=0 ρ k δ k dz 2 z -c 0
It amounts then to solve the following linear system on the unknown coefficient vector (ρ 0 , . . . , ρ p-1 , λ 1 , . . . , λ n-1 ) :

                      1 δ 0 -1 • • • • • • 1 δ p-2 -1 -1 1 δ p-1 1 ε n-1 1 + 1 ε 1 1 ε 2 1 ε 3 • • • 1 ε n-2 1 ε n-1 1 ε 1 -1 det(A) = (-1) n-1 α δ 0 • • • δ p-1 • ε 1 • • • ε n-1
Then whether α = 0 or not, this linear system has non-zero solutions, and one of its solutions is

                         ρ 0 = δ 0 • • • δ p-1 ρ 1 = δ 1 • • • δ p-1 . . . ρ p-1 = δ p-1 λ 1 = (δ 0 • • • δ p-1 -1) • ε n-1 • • • ε 1 . . . λ n-2 = (δ 0 • • • δ p-1 -1) • ε n-1 ε n-2 λ n-1 = (δ 0 • • • δ p-1 -1) • ε n-1 (4.10)
Therefore, for (ρ 0 , . . . , ρ p-1 , λ 1 , . . . , λ n-1 ) satisfies (4.10), we have

f * Q -Q = -α + p-1 k=0 ρ k δ k dz 2 z -c 0 = - ∂Φ n,p ∂c (c 0 , 0) • dz 2 z -c 0 As a consequence [∂Φ n,p /∂c](c 0 , 0) = 0.
Irreducibility of q j 0 n,p : For n ≥ 2, q j n,p (c, z) is defined by q j n,p (c, z) = q j n-1,p (c, f c (z)). Interpreting these equations from a topological view, we obtain a sequence of maps

℘ j n,p : V j n,p -→ V j n-1,p , (c, z) → (c, f c (z)) | n ≥ 2, p ≥ 1, 1 ≤ j ≤ d -1 .
Note that for n = 1, we can also define a map ℘ j 1,p : V j 1,p → X 0,p by ℘ j 1,p (c, z) = (c, f c (z)). By the smoothness of V j n,p , we can check the following results.

• The map ℘ j 1,p : V j 1,p → X 0,p is a homeomorphism. To see this, notice that q j 1,p (c, z) = Q 0,p (c, ω -j z) (Corollary 4.2), so we can define a map φ j 1,p from X 0,p to V j 1,p by mapping a point (c 0 , w 0 ) ∈ X 0,p to (c 0 , ω j z 0 ) ∈ V j 1,p , where z 0 is the point in the orbit of w 0 under f c 0 with f c 0 (z 0 ) = w 0 . By a simple computation, we can see that

φ j 1,p • ℘ j 1,p = id V j 1,p
and ℘ j 1,p • φ j 1,p = id X 0,p . Hence ℘ j 1,p is a homeomorphism.

• For n ≥ 2, the map ℘ j n,p : V j n,p → V j n-1,p is a degree d branched covering with critical set D j n,p = (c, 0) | q j n,p (c, 0) = 0 . and each critical point has multiplicity d -1.

In fact, a point (c 0 , w 0 ) ∈ V j n-1,p \ ℘(D j n,p ) has d preimages (c 0 , z 1 ), . . . , (c 0 , z d ) under ℘ j n,p , where z 1 , . . . , z d are preimages of w 0 under

f c 0 . Fix i ∈ [1, d]. If [∂q j
n,p /∂z](c 0 , z i ) = 0, then by equation (4.6), [∂q j n-1,p /∂z](c 0 , w 0 ) = 0. It implies that some neighborhoods of (c 0 , z i ) and (c 0 , w 0 ) can be parameterized by c respectively. Using such two local coordinates, the map ℘ j n,p has a local expression c → c near (c 0 , z i ), which means that ℘ j n,p is a local homeomorphism near (c 0 , z i ). If [∂q j n,p /∂z](c 0 , z i ) = 0, then by equation (4.6), the fact of z i = 0 and the smoothness of q j n,p , we have that [∂q j n-1,p /∂z](c 0 , w 0 ) = 0 and

∂q j n,p ∂c (c 0 , z i ) = ∂q j n-1,p ∂c (c 0 , w 0 ) = 0
It implies that some neighborhoods of (c 0 , z i ) and (c 0 , w 0 ) can be parameterized by z respectively, and c (z i ) = 0. Using such two local coordinates, the map ℘ j n,p has a local expression z → f c(z) (z) near (c 0 , z i ). Since z i = 0, then df c(z) (z) dz z=z i = dz i = 0, which still means that ℘ j n,p is a local homeomorphism near (c 0 , z i ). By the discussion above, we can see that

℘ j n,p : V j n,p \ (℘ j n,p ) -1 (℘(D j n,p )) → V j n-1,p \ ℘(D j n,p
) is a degree d covering. On the other hand, for any point in ℘ j n,p (D j n,p ), it has only one preimage, which belongs to D j n,p . Hence we have that ℘ : V j n,p → V j n-1,p is a degree d branched covering (because (℘ j n,p ) -1 (℘(D j n,p )) = D j n,p and D j n,p is finite) and the local degree of ℘ j n,p at each point of D j n,p is d.

By the smoothness of q j 0 n,p (c, z) and the inductive assumption of irreducibility, we know that V j 0 n-1,p and each connected component of V j 0 n,p is a Riemann surface. Then the restriction of ℘ j 0 n,p on any connected component of V j 0 n,p is also a branched covering. Lemma 4.7 implies that the critical set D j 0 n,p of ℘ j 0 n,p is non-empty. Since each critical point has multiplicity d -1, the set V j 0 n,p must be connected. By Lemma 2.3 and the smoothness of q j 0 n,p , we conclude that

q j 0 n,p (c, z) is irreducible in C[c, z].
5 Genus of the compactification of V j n,p

In the previous section, we have seen that X n,p consists of d -1 Riemann surfaces V j n,p which are pairwise intersecting at the singular points of X n,p . In order to give a complete topological description of X n,p , we also need the topological characterization of each V j n,p . In fact, by adding an ideal boundary point at each end of V j n,p , we obtain a compactification of V j n,p , denoted by V j n,p , such that V j n,p is a compact Riemann surface (in § 5.1 ). The genus of V j n,p is calculated (in § 5.2). Topologically, X n,p is completely determined by the number of its singular points, the genus of V j n,p and the number of ideal boundary points added on V j n,p (or the number of ends of V j n,p ).

Compactification of V j n,p

Denote by π j n,p : V j n,p → C the projection from V j n,p to the parameter plane, i.e., π j n,p (c, z) = c. It is easy to see

π j n,p = π 0,p • ℘ j 1,p • • • • • ℘ j n-1,p • ℘ j n,p (5.1) 
where π 0,p is the projection from X 0,p to the parameter plane and ℘ j n,p is defined in the proof of irreducibility. It follows that π j n,p is a degree ν d (p)d n-1 branched covering. To study the critical points of π j n,p , we define a subset C crit n,p (singular) of C n,p (singular) by

C crit n,p (singular) = {(c, z) ∈ C n,p (singular) | f l c (z) = 0 for some 0 ≤ l ≤ n -2} (5.2)
Lemma 5.1. For any l, p ≥ 1, the critical set of π j l,p is the union of C j l,p (primitive), C j l,p (satellite), C j l,p (Misiurewicz) and C crit l,p (singular), where C j l,p (M) := C l,p (M) ∩ V j l,p and M indicates different properties.

Proof. We first note that (c 0 , z 0 ) is a critical point of π j l,p if and only if [∂q j l,p /∂z](c 0 , z 0 ) = 0. By part 4 of Lemma 2.4 and the fact that ℘ j 1,p is homeomorphic (which is shown in the proof of irreducibility of q j l,p ), the critical set of π j 1,p is C j 1,p (primitive) ∪ C j 1,p (satellite). In the case l = 1, C l,p (Misiurewicz) and C crit l,p (singular) are empty. For l ≥ 2, by Corollary 4.2, we have q j l,p (c, z) = q j 1,p (c, f l-1 c (z)). Then a point (c 0 , z 0 ) is critical for π j l,p if and only if

∂q j l,p ∂z (c 0 , z 0 ) = ∂q j 1,p ∂z (c 0 , f l-1 c 0 (z 0 )) • (f l-1 c 0 ) (z 0 ) = 0
It is equivalent that either (c 0 , f l-1 c 0 (z 0 )) is a critical point of ℘ j 1,p or f l c 0 (z 0 ) = 0 for some 0 ≤ q ≤ n -2. By Proposition 3.3, the former case happens if and only if (c 0 , z 0 ) ∈ C j l,p (primitive) ∪ C j l,p (satellite), and the latter case happens if and only if (c 0 , z 0 ) ∈ C j l,p (Misiurewicz) ∪ C crit l,p (singular).

From this Lemma, we see that the critical value set of π j n,p is contained in the union of parabolic, super-attracting and Misiurewicz parameters. Hence C \ M d contains no critical values. It follows that each connected component of (℘ j n,p ) -1 (C \ M d ), called an end of V j n,p , is conformal to C \ D. By adding an ideal boundary point at the infinitely far boundary, each end of V j n,p is conformal to the unit disk, and then V j n,p becomes a compact Riemann surface. This gives a kind of compactification of V j n,p and we will calculate in the next subsection the genus of this compact Riemann surface.

More precisely, set { E j n,p,i } (1 ≤ i ≤ m j n,p ) the ends of V j n,p . Denote by ∞ j n,p,i the point added at the infinitely far boundary of E j n,p,i . Then the surface

V j n,p := V j n,p ∪ {∞ j n,p,i } m j n,p i=1
is a compactification of V j n,p and E j n,p,i := E j n,p,i ∪ {∞ j n,p,i } is called an end of V j n,p . In this case, the map π j n,p can be extended to

π j n,p : V j n,p -→ C by setting π j n,p (∞ j n,p,i ) = ∞.

Calculation of the genus of

V j n,p Now, for any n, p ≥ 1, j ∈ [1, d -1],
we have obtained a branched covering π j n,p : V j n,p → C of degree ν d (p)d n-1 between two compact Riemann surface. By the Riemann-Hurwitz formula, we have 2 -2g j n,p + total number of critical points of π j n,p = 2ν d (p)d n-1 .

where g j n,p denotes the genus of V j n,p . So in order to calculate the genus of V j n,p , we only need to count the number of critical points of π j n,p counting with multiplicity. By Lemma 5.1, we know that the critical points of π j n,p consists of the points of C j n,p (primitive), C j n,p (satellite), C j n,p (Misiurewicz), C crit n,p (singular) and maybe some added ideal boundary points. So we will count them class by class.

• Counting the points of C j n,p (primitive) and C j n,p (satellite). In [B], Bousch counts the number of critical points in C 0,p (primitive) and C 0,p (satellite). His argument can be directly extended to our case (see also [START_REF] Silverman | The Arithmetic of Dynamical Systems[END_REF]Thm. 4.17]). so we only list the result without the counting process. The number of critical points counted with multiplicity of π j n,p in C j n,p (primitive) and C j n,p (satellite) are

d n-1 p (d -1)ν d (p)/d - k|p,k<p (ν d (k)/d)(d -1)ϕ(p/k) and d n-1 k|p,k<p (ν d (k)/d)(d -1)ϕ(p/k)k(p/k -1).
• Counting the points of C j n,p (Misiurewicz). Recall that D j s,p = {(c, 0) ∈ C 2 q j s,p (c, 0) = 0}, s ≥ 2, is the set of critical points of ℘ j s,p . By Proposition 3.3, if (c, 0) ∈ D j s,p , then c is either a (s, p)-Misiurewicz parameter or a p-super-attracting parameter. So we divide the set D j s,p into two sets

D j s,p (Misiurewicz) = {(c, 0) ∈ D j s,p | c is a Misiurewicz parameter} and D j s,p (period) = {(c, 0) ∈ D j s,p
| c is a super-attracting parameter} By the definition of C j n,p (Misiurewicz), we have

C j n,p (Misiurewicz) = n s=2 (h j n,s,p ) -1 (D j s,p (Misiurewicz)),
where

h j n,s,p := ℘ j s+1,p • • • • • ℘ j n,p : V j n,p -→ V j s,p
Fix any s ∈ [2, n]. Since the degree of q j s,p (c, 0) is ν d (p)d s-2 (Lemma 4.7) and [∂q j s,p /∂c](c, 0) = 0 at each (c, 0) ∈ D j s,p (this point is shown in the proof of smoothness of q j s,p (c, z)), we get #D j s,p = ν d (p)d s-2 . By point (5) of Proposition 3.3, the set D j s,p (period) is non-empty if and only if p|s -1. In this case, we also see that

D j s,p (period) = {(c, 0) | Q 0,p (c, 0) = 0}, then #D j s,p (period) equals to ν d (p)/d if p|s -1 and 0 otherwise. It follows that #D j s,p (Misiurewicz) = ν d (p)d s-2 , if p s -1; ν d (p)d s-2 -ν d (p)/d, if p|s -1.
Note that the critical value set of h j n,s,p is disjoint from D j s,p (Misiurewicz), so

#(h j n,s,p ) -1 (D j s,p (Misiurewicz)) = #D j s,p (Misiurewicz) • d n-s
and each point in (h j n,s,p ) -1 (D j s,p (Misiurewicz)) is a critical point of π j n,p with multiplicity d -1. Therefore the number of critical points counting with multiplicity of π j n,p in C j n,p (Misiurewicz), denoted by M n,p , is equal to

M n,p : = n s=2 #D j s,p (Misiurewicz) • d n-s • (d -1) = ν d (p)d n-2 (d -1) n -1 - [ n-1 p ] t=1 d -tp .
(5.3)

• Counting the points of C crit n,p (singular). Recall that C crit n,p (singular) consists of points of the form (c, z) with f n-1 c (z) = 0 and such that there exists l between 0 and n -2 (both included) with f l (z) = 0 and s.t. 0 is p-periodic.

We divide the set C n,p (singular) into several subsets C t n,p (singular) which consists of points (c, z) ∈ C n,p (singular) such that

n -1 -tp = min{ l | f l c (z) = 0 }
The index t can take the values 0, . . . , [ n-1 p ], where [x] denotes the maximal integer less than or equal to x, and the sets C t n,p are pairwise disjoint and form a partition of C n,p (singular). From (5.2), we see that C crit n,p (singular) is the union of C t n,p (singular), t ≥ 1. Then we get #C crit n,p (singular) = 0 if n -1 < p. So in the following discussion, we only concern the case of n -

1 ≥ p, i,e., [ n-1 p ] ≥ 1. Let t ≥ 1. A point (c, z) ∈ C t n,p (sigular) if and only if (c, 0) ∈ D j tp+1,p (period), f n-1-tp c (z) = 0 and (f n-1-tp c ) (z) = 0. Hence C t n,p (sigular) = (h j n,tp+1,p ) -1 (D j tp+1,p (period)) \ (h j n,(t+1)p+1,p ) -1 (D j (t+1)p+1,p (period)) if (t + 1)p + 1 ≤ n, and C t n,p (sigular) = (h j n,tp+1,p ) -1 (D j tp+1,p (period)) otherwise. So we have #C t n,p (sigular) = d n-1-tp • ν d (p)/d, if t = [ n-1 p ]; d n-1-tp • ν d (p)/d -d • d n-1-(t+1)p • ν d (p)/d, if 1 ≤ t < [ n-1 p ].
On the other hand, the map h j n,tp+1,p : V j n,p → V j tp+1,p is injective in a neighborhood of any point (c, z) ∈ C t n,p (sigular), and the map π j kp+1,p : V j tp+1 → C has the local degree d t at the point (c, 0), so the number of critical points counting with multiplicity in C t n,p (sigular) is (d t -1)#C t n,p (sigular). Then the total number of critical points counting with multiplicity in C n,p (sigular), in the case of [ n-1 p ] ≥ 1, is

K n,p : = [ n-1 p ] t=1 (d t -1)#C t n,p (sigular) = ν d (p)(d p-1 -1)d n-1-p (ξ n,p -ζ n,p ) + (d [ n-1 p ] -1)ν d (p)d n-2-[ n-1 p ]p
(5.4) where ξ n,p :=

[ n-1 p ]-1 t=1 d -t(p-1) and ζ n,p := [ n-1 p ]-1 t=1 d -pt .
Note that when [ n-1 p ] = 0, the number computed by formula (5.4) is 0, which is still equal to the number of C crit n,p (singular). So the number K n,p , defined by (5.4), is equal to the number of critical points counting with multiplicity in C crit n,p (singular) in all cases.

• Counting the ideal boundary points.

In [B], [START_REF] Milnor | Periodic Orbits, External Rays and the Mandelbrot Set: An Expository Account[END_REF], Bousch and Milnor show that the local degree of π 0,p at each ideal boundary point is 2 (in the case of d = 2) by analysing the asymptotic behavior of f c (z) as (c, z) goes to an ideal boundary point on X 0,p . Their argument can be easily generalized to our case with degree d ≥ 2. Just to be self-contained we give an alternative proof using the monodromy action (Lemma 5.3 below). By Lemma 5.3, the local degree of V j n,p at each ideal boundary point is d. It follows that the number of ideal boundary points is ν d (p)d n-2 because π j n,p is a degree ν d (p)d p-1 branched covering. So the number of critical points counting with multiplicity is equal to ν d (p)d n-2 (d -1).

By the Riemann-Hurwitz formula, we have

g j n,p = 1 + 1 2 ν d (p)d n-2 (pd -p -1 -d) + 1 2 (M n,p + K n,p ) - 1 2 d n-2 (d -1) k|p,k<p kν d (k)ϕ(p/k).
Here is a genus computation of some examples.

d n p ν d (p) M n,p K n,p g n,p 3 1 1 3 0 0 0 3 2 1 3 4 2 1 2 2 2 2 2 0 0 2 3 2 2 7 1 1 2 2 3 6 6 0 2
Corollary 5.2. Fix n, p ≥ 1, the surfaces V j n,p , 1 ≤ j ≤ d -1 are pairwise homeomorphic.

Proof. Topologically, the surface V j n,p is completely determined by the genus and the number of ideal boundary points of V j n,p , whereas these two numbers are independent of j. . The map π :

E j n,p,i -→ C \ M d is a covering of degree d j n,p,i . Fix c 0 ∈ C \ (M d ∪ R M d (0)), d j n,p,i = #(π -1 (c 0 ))
. Since E j n,p,i is connected, the monodromy group induced by π, denoted by Mon(π), acts on π -1 (c 0 ) transitively. Then fixing any point (c 0 , z 0 ) ∈ π -1 (c 0 ), the set π -1 (c 0 ) is exactly the orbit of (c 0 , z 0 ) under Mon(π). Let c t : [0, 1] → C \ M d be a oriented simple closed curve based at c 0 such that c t intersects R M d (0) at only one point c t 0 . Let z t be the (n, p)-preperiodic point of f ct obtained from the analytic continuation of z 0 along c t . Note that as c varies in C \ (M d ∪ R M d (0)), the (n, p)-preperiodic points of f c , the dynamical rays R c (0) and R c (θ c + s)/d (s ∈ Z d ) move continuously. Consequently, we have

ι ct (z t ) = ι c 0 (z 0 ) for t ∈ [0, t 0 ) ι ct (z t ) = ι c 0 (z 1 )
for t ∈ (t 0 , 1] Furthermore, on one hand, z t and R ct (0) move continuously for t ∈ [0, 1]. On the other hand, when c t passes through R M d (0), the dynamical rays

R ct (θ t + s)/d (s ∈ Z d ) move discontinuously and jump from R ct -(θ t -+ s)/d to R ct + (θ t + + s + 1)/d , t -< t 0 < t + . So if ι c 0 (z 0 ) = β n . . . β 1 1 . . . p , then ι c 0 (z 1 ) = (β n + 1) . . . (β 1 + 1)( 1 + 1) . . . ( p + 1) (5.5)
Hence the map σ ct , an element of Mon(π) induced by c t , maps (c 0 , z 0 ) to (c 0 , z 1 ) with z 1 satisfying (5.5). Since π 1 (C \ M d , c 0 ) = c t , then we have

π j n,p E j n,p,i -1 (c 0 = (c 0 , z) ι c 0 (z) = (β n + s) . . . (β 1 + s)( 1 + s) . . . ( p + s), s ∈ Z d As a consequence, d j n,p,i = d.
6

The Galois group of Q n,p (c, z)

The objective here is to study X n,p from the algebraic point of view by calculating its associated Galois group.

Recall that C denotes the ring C[c] and K is a fixed algebraically closed field containing C. Since the characteristic of C(c) is 0, any polynomial f ∈ C[z] induces a finite Galois extension C(c)(f ) over C(c) (see [START_REF] Weintraub | Galois Theory[END_REF]Thm. 3.2.6,2.7.14]), where C(c)(f ) is the splitting field of f , and hence a Galois group G(f ) := Gal(C(c)(f )/C(c)). In particular, we denote the Galois group of Q n,p by G n,p .

For each n ≥ 0, p ≥ 1, denote R n,p the set of roots of

Q n,p ∈ C[z]. By (3.2), we have f c (R n,p ) = R n-1,p if n ≥ 1 and f c (R 0,p ) = R 0,p . Let us consider R ≤n,p := 0≤l≤n R l,p .
Then f c (R ≤n,p ) ⊂ R ≤n,p and the action of f c induces a directed graph structure consisting of a certain number of disjoint cycles of order p, on each vertex of which is attached a tree of height n. More precisely, for each 0 ≤ l ≤ n, we consider the roots in R l,p as the vertices of level l, and two vertices ∆ 1 , ∆ 2 ∈ R ≤n,p are connected by an oriented edge from ∆ 1 to ∆ 2 if f c (∆ 1 ) = ∆ 2 . Thus R ≤n,p has a graph structure, and we denote this graph by R T ≤n,p (see Figure 1). Example. For d = 3, p = 4, n = 2, the directed graph R T ≤2,4 has 18 connected component, which are pairwise isomorphic. We draw one in the following. On the other hand, note that R ≤n,p is the set of roots of

Q ≤n,p := n l=0 Q l,p ∈ C[z].
So, correspondingly, we consider the Galois group G ≤n,p of Q ≤n,p . Firstly, we have the following simple result.

Proposition 6.1. For each n ≥ 0, p ≥ 1, we have G n,p = G ≤n,p .

Proof. By (3.2), any root of Q l,p ∈ C[z] (0 ≤ l ≤ n) can be written as a polynomial with coefficients in C of roots of Q n,p . It follows that the splitting field of Q ≤n,p = Π n l=0 Q l,p over C(c) is the same as that of Q n,p over C(c). Hence G ≤n,p = G n,p . By this proposition, computing the Galois group G n,p is equivalent to computing the group G ≤n,p . Let σ be an element in G ≤n,p . Since it fixes the base field C(c) pointwise, we have σ(R l,p ) = R l,p and f c • σ = σ • f c . Hence σ induces an automorphism of the graph R T ≤n,p , i.e., σ is a permutation on each l-level vertices of R T ≤n,p , and ∆ 1 , ∆ 2 ∈ R ≤n,p are connected by an edge from ∆ 1 to ∆ 2 if and only if σ(∆ 1 ), σ(∆ 2 ) are connected by an edge from σ(∆ 1 ) to σ(∆ 2 ). Clearly, different elements of G ≤n,p induce different automorphisms of R T ≤n,p . So G ≤n,p can be seen as a subgroup of Aut(R T ≤n,p ), the automorphic group of the graph R T ≤n,p . In the case d = 2, Bousch [B] proved that G ≤n,p Aut(R T ≤n,p ) H ≤n,p (f c ), where H ≤n,p (f c ) denotes the set of all permutations on R ≤n,p that commute with f c . In the general case, the result is similar but needs a small modification. We will exhibit this point in the following.

Let σ be an element of the Galois group G ≤n,p . As σ fixes the field C(c) pointwise, it must satisfy the following two conditions:

(P1) σ commutes with f c , i.e., σ • f c = f c • σ. (P2) σ commutes with the rotation of argument 1/d. That is, if σ(∆) = ∆ for ∆, ∆ ∈ R ≤n,p , then σ(ω j ∆) = ω j ∆, where ω = e 2πi d and 1 ≤ j ≤ d -1
Therefore, if a permutation on R ≤n,p wants to be a candidate of elements in the Galois group G ≤n,p , it should satisfy the conditions (P1) and (P2).

In fact, in the case of d = 2, the condition (P1) implies (P2). To see this, let ∆ n-1 be a root of Q n-1,p (n ≥ 1) and ∆ n , -∆ n be the preimages of ∆ n-1 under f c . Let σ be an element of G ≤n,p and set ∆ n := σ(∆ n ). By condition (P1) σ must map -∆ n to -∆ n , then the condition (P2) holds. Therefore, it is possible for (P1) to be a sufficient condition for a permutation on R ≤n,p to be an element of G ≤n,p , and Bousch [B] proved this point.

However, the situation has a little difference in the case of d ≥ 3. Following the notations ∆ n-1 , ∆ n , ∆ n and σ as above. In this case, ∆ n-1 has at least 3 preimages, which are ∆ n , ω∆ n , . . . , ω d-1 ∆ n . By condition (P1), we only know that σ maps {ω∆ n , . . . , ω

d-1 ∆ n } bijectively to {ω ∆ n , . . . , ω d-1 ∆ n }, but can not get σ(ω j ∆ n ) = ω j ( ∆ n ) for 1 ≤ j ≤ d -1.
So, in case of d ≥ 3, the condition (P2) can not be omitted.

What we would like to prove is that, except (P1) and (P2), no other restrictions are imposed on G ≤n,p . The proof is similar to that of Theorem 4 in Chapter III of [B].

Theorem 6.2. The Galois group G ≤n,p consists of all permutations on R ≤n,p which commute with f c and the rotation of argument 1/d.

Proof. We denote r d the rotation of argument 1/d, and H ≤n,p (f c , r d ) the set of permutations on R ≤n,p which commute with f c and r d . By the definition, it is not difficult to check that H ≤n,p (f c , r d ) leaves each R l,p , and hence R ≤l,p invariant for 0 ≤ l ≤ n.

Define a group homomorphism

φ n : G ≤n,p → H ≤n,p (f c , r d )
such that φ n (σ) is the restriction of σ to R ≤n,p . According to the discussion above, we just need to prove the surjectivity of φ n .

Note first that the result is true for n = 0 following 6 of Lemma 2.4.

For n = 1, since H ≤1,p (f c , r d ) leaves R 0,p invariant, there is a natural homomorphism from H ≤1,p (f c , r d ) to H ≤0,p (f c , r d ) with τ → τ | R 0,p . This homomorphism has an inversion which maps τ ∈ H ≤0,p (f c , r d ) to τ ∈ H ≤1,p (f c , r d ) such that τ | R 0,p = τ and τ (ω j ∆) = ω j τ (∆) for each ∆ ∈ R 0,p , j ∈ [1, d -1]. Thus H ≤1,p (f c , r d ) H ≤0,p (f c , r d ).
Note that G 1,p = G 0,p (because the splitting fields of Q 0,p and Q 1,p over C(c) coincide), then the result is true for n = 1.

Now we argue by induction on

n. Assume that φ n-1 : G ≤n-1,p → H ≤n-1,p (f c , r d ) is surjective (n ≥ 2).
Let τ ∈ H ≤n,p (f c , r d ). As τ commutes with f c , it leaves R ≤n-1,p invariant. Then τ | n-1 , the restriction of τ on R ≤n-1,p , belongs to H ≤n-1,p (f c , r d ). By the assumption of induction, there is an element σ n-1 of G ≤n-1,p with φ n-1 (σ n-1 ) = τ | n-1 . According to the Galois theory (see [START_REF] Weintraub | Galois Theory[END_REF]Thm. 2.88]), we can find an element σ of G ≤n,p such that its restriction on the splitting field of Q ≤n-1,p over C(c) coincides with σ n-1 . Set τ := τ • φ n (σ) -1 , then τ ∈ H ≤n,p (f c , r d ) and it fixes R ≤n-1,p pointwise. Now it remains to prove that G ≤n,p contains τ , i.e., there exists σ ∈ G ≤n,p with φ n (σ ) = τ , because if so, τ = φ n (σ )φ n (σ) = φ n (σ σ), which implies φ n is surjective.

Set κ l := ν d (p)(d -1)d l-1 for each l ≥ 1 (which is the number of roots of Q l,p ), and denote

R n,p = {∆ i n , ω∆ i n , . . . , ω d-1 ∆ i n ; } κ n-1 i=1
Since τ fixes R ≤n-1,p pointwise and commutes with both f c , r d , it can be expressed as a product

τ = κ n-1 i=1 s i , s i + 1, • • • , d -1, 0, • • • , s i -1 ,
where (s i , s i + 1, • • • , d -1, 0, • • • , s i -1) is the cyclic permutation on (∆ i n , . . . , ω d-1 ∆ i n ) mapping ∆ i n to ω s i ∆ i n and so on. Notice that all these cyclic permutations (s i , . . . , s i -1) are commutable.

The argument in this paragraph is a classical correspondence between the Galois theory and the covering theory; see [Z] for the detail. Let V n,p be the set of singular values of the projection π : X n,p → C. Then π n,p restricts to a cover from the complement of the preimage of V n,p in X n,p to the complement of V n,p in C. For all c 0 not in V n,p , there is thus an action of π 1 (C \ V n,p , c 0 ) on the roots Z n,p = {z i n , . . . , ω d-1 z i n }

κ n-1 i=1

of Q n,p (c 0 , z), which is seen as a polynomial in the variable z and with complex coefficients. By the correspondence between the Galois theory and the covering theory (see [Z, Thm. 1]), there is a (non-unique) choice of bijection between the roots of Q n,p ∈ C[z] and the roots of Q n,p (c 0 , z) ∈ C[z] such that the set of permutations induced by the Galois group on the set R ≤n,p is conjugated by this bijection to the set of permutations on Z n,p induced by π 1 (C\V n,p , c 0 ). Thus we get a surjective (not injective, usually) morphism from π 1 (C \ V n,p , c 0 ) to the Galois group. Moreover, this bijection is such that any polynomial relation between the ∆ i n with coefficient in C(c) will give a relation between the z i n , with c 0 being substituted to c. It implies that the action of π 1 (C \ V n,p , c 0 ) on Z n,p preserves commutation with multiplication by ω.

Therefore, by the discussion above, to obtain the required permutation τ , we only need to find a path in the basic group π 1 (C \ V n,p , c 0 ) such that its monodromy action on {(z i n , . . . , ω d-1 z i n )}

κ n-1 i=1 induces the same permutation as τ . We now show the following result, which is sufficient: for any i ∈ [1, κ n-1 ], there exists a path in π 1 (C \ V n,p , c 0 ) such that its monodromy action induces the permutation (s i , s i + 1, • • • , s i -1).

Fix any i ∈ [1, κ n-1 ]. Suppose that {(c 0 , z i n ), (c 0 , ωz i n ), . . . , (c 0 , ω d-1 z i n )} belong to V t n,p . Let ĉ be an (n, p)-Misiurewicz parameter with (ĉ, 0) ∈ V t n,p . Such ĉ exists because the set D t n,p (Misiurewicz) is non-empty (see section 5.2 item 2). By (3.2), (ĉ, ĉ) ∈ X n-1,p .

Since ĉ is a Misiurewicz parameter and the orbit of ĉ does not contain 0, then the point (ĉ, ĉ) belongs to no sets in Lemma 5.1 in the case l = n -1. Hence w = ĉ is a simple root of the equation Q n-1,p (ĉ, w) = 0 (in w). So by the Implicit Function Theorem, the equation Q n-1,p (c, w) = 0 admits a unique solution w = w(c) close to ĉ fullfilling w(ĉ) = ĉ. Thus, a neighborhood of (ĉ, 0) in X n,p can be written as

(c, z c ) ∪ (c, ωz c ) ∪ • • • ∪ (c, ω d-1 z c ) | |c -ĉ| <
where z c is one of the preimages of w(c) under f c nearby 0.

When c makes a small turn around ĉ, the set {z c , . . . , ω d-1 z c } gets a cyclic permutation with ω j z c mapped to ω j+1 z c , because π n,p is a degree d covering in a punctured neighborhood of (ĉ, 0) (which is shown in §5.2 item 2), and the other (n, p)-preperiodic points of f c remain fixed, since π n,p is injective around each point (ĉ, ξ) with ξ a non-zero (n, p)preperiodic point of f ĉ. So if we choose a path γ ∈ π 1 (C \ V n,p , c 0 ) homotopic to ĉ, the induced permutation by its monodromy action gives the cyclic permutation (2, . . . , d, 1) on (z * n , . . . , ω d-1 z * n ) for a (n, p)-preperiodic point z * n of f c 0 fullfilling (c 0 , z * n ) ∈ V t n,p , and keeps the other (n, p)-preperiodic points of f c 0 fixed. Now we join (c 0 , z i n ) and (c 0 , z * n ) by a curve from (c 0 , z i n ) to (c 0 , z * n ) in V t n,p \ π -1 n,p (V n,p ), and denote its projection under π n,p by β. Then β ∈ π 1 (C \ V n,p , c 0 ) and the path β • γ s i • β -1 is what we expect.

Applying this theorem, we can also characterize the Galois group Following Bousch [START_REF] Bousch | Sur quelques problèmes de dynamique holomorphe[END_REF]Chap. 3,III] and Silverman ([Sil, § 3.9]), we express the Galois group G n,p (n ≥ 2) as a wreath product. Definition 6.4. Let G be a group and Σ be a subgroup of S m , where S m denotes the set of permutations on {1, . . . , m}. Denote by Σ G m the wreath product of G and Σ. As a set, it consists of g = σ(g 1 , • • • , g m ) where g i ∈ G and σ ∈ Σ. The multiplication is defined by

g • h = σ g (g 1 , • • • , g m ) • σ h (h 1 , • • • , h m ) = σ g • σ h (g σ h (1) • h 1 , • • • , g σ h (m) • h m ).
Under this multiplication law, Σ G m is a group with g -1 = σ -1 g g -1 σ -1 g (1) , • • • , g -1 σ -1 g (1) and unit element (1, . . . , 1).

In [B], Bousch showed that the Galois group G 0,p is isomorphic to the wreath product S ν d (p)/p (Z/pZ) ν d (p)/p (see also [START_REF] Silverman | The Arithmetic of Dynamical Systems[END_REF]§ 3.9]). From the proof of Theorem 6.2, we have seen that G 1,p = G 0,p , so G 1,p S ν d (p)/p (Z/pZ) ν d (p)/p .

For n ≥ 2, we can give inductively an isomorphic model of G n,p by a wreath product.

Recall that κ n = ν d (p)(d -1)d n-1 (n ≥ 1) is the number of roots of Q n,p .

[Z]
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Fix d ≥ 2 .

 2 For c ∈ C, set f c (z) = z d + c. For p ≥ 1, define X0,p := (c, z) ∈ C 2 | f p c (z) = z and for all 0 < k < p, f k c (z) = z .X 0,p := the closure of X0,p in C 2 .

  By abuse of notation, we will identify polynomials in C[c, z] as polynomials in C[z] with C = C[c]. Denote by K a fixed algebraically closed field containing C. Let f ∈ C[c, z]. By the zeros of f ∈ C[c, z], we mean the points (c, z) ∈ C 2 with f (c, z) = 0. By the roots of f ∈ C[z], we mean the roots of f in K when it is considered as a polynomial in C[z]. Recall that {ν d (p)} p≥1 is a unique sequence of positive integers satisfying the recursive relation d p = k|p ν d (k), Deg(f ) denotes the total degree of f and deg z (f ) denotes the degree of f as a polynomial in C[z].

  and hence b j n,p = 0. It follows that the first non-vanishing term of Q n,p at (c 0 , z 0 ) is a(c -c 0 ) d-1

Lemma 5. 3 .

 3 All ideal boundary points are critical points of π j n,p with multiplicity d -1.Proof. To prove this lemma, we first give a symbolic description of the dynamics on the filled-in Julia set for a parameter outside the Multibrot set.If c ∈ C M d , the Julia set of f c is a Cantor set. If c ∈ R M d (θ) with θ = 0 not necessarily periodic, the dynamical rays R c (θ/d) . . . R c (θ + d -1)/dbifurcate on the critical point. The set R c (θ/d)∪. . .∪R c (θ+d-1)/d ∪{0} decomposes the complex plane into d connected components. We denote by U 0 the component containing the dynamical ray R c (0) and by U 1 , . . . , U d-1 the other components in counterclockwise order. The orbit of a point x ∈ K c has an itinerary with respect to this partition. In other words, to each x ∈ K c , we can associate a sequence in Z N d whose j-th entry is equal to k if f •j-1 c (x) ∈ U k . This gives a map ι c : K c → Z N d , which is bijective for any c ∈ C \ M d . Moreover, the dynamic of f c on K c is conjugate to shift on Z N d via the map ι c . Now let π := π j n,p E j n,p,i

  Figure 1. A connected component of R T ≤2,4 .

  G ≤n,p by the automorphisms of the directed graph R T ≤n,p , as in the d = 2 case. For d ≥ 3, denote by Aut(R T n,p , r d ) the set of automorphisms of R T ≤n,p that commute with the rotation of argument 1/d, and by H ≤n,p (f c , r d ) the set of permutations on R ≤n,p that commute with f c and the rotation of argument 1/d. Corollary 6.3. For n ≥ 0, p ≥ 1, G ≤n,p Aut(R T n,p , r d ) H ≤n,p (f c , r d ).

Proposition 6.5. For n ≥ 2, we have G n,p ∼ = G n-1,p (Z/dZ) κ n-1 , where the action of G n-1,p on (1, 2, ..., κ n-1 ) comes from the action of G n-1,p on the roots of Q n-1,p , of which there are exactly κ n-1 .

Proof. For n ≥ 2, we denote (∆ i n-1 )

and denote

We define a group homomorphism

, where σ| n-1 is the restriction of σ on the splitting field of Q n-1,p over C(c), and the i-th digit in (s 1 , . . . , s κ n-1 ) is s i if and only if once

The injectivity of W is straightforward by the action of G n,p on R ≤n,p and the subjectivity of W is due to Theorem 6.2.

Before ending this section, we give a computation of G n,p for some small n, p. Note that although G 1,p is isomorphic to a subgroup S ν d (p)/p (Z/pZ) ν d (p)/p of S ν d (p) , it is indeed a subgroup of S ν d (p)(d-1) . So mimicking the action of G 1,p on {ω∆ 1 1 , . . . , ω∆