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Sequential robust efficient estimation for

nonparametric autoregressive models

Ouerdia Arkoun ∗ Serguei Pergamenchtchikov †

Abstract

We construct efficient robust truncated sequential estimators for the pointwise

estimation problem in nonparametric autoregression models with smooth coeffi-

cients. For Gaussian models we propose an adaptive procedure based on the con-

structed sequential estimators. The minimax nonadaptive and adaptive convergence

rates are established. It turns out that in this case these rates are the same as for

regression models.

Key words: Nonparametric autoregression, Sequential kernel estimator, Robust effi-

ciency, Adaptive estimation.
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1 Introduction

One of the standard linear models in the general theory of time series is the autoregressive

model (see, for example, [1] and the references therein). Natural extensions for such models

are nonparametric autoregressive models which are defined by

yk = S(xk)yk−1 + ξk , 1 ≤ k ≤ n , (1.1)

where S(·) is unknown function, the design xk = k/n and the noise (ξk)1≤k≤n are i.i.d.

unobservable centered random variables, i.e. E ξ1 = 0.
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It should be noted that the varying coefficient principle is well known in the regression

analysis. It permits the use of a more complex forms for regression coefficients and, there-

fore, the models constructed via this method are more adequate for applications (see, for

instance, [9], [23]). In this paper we consider the varying coefficient autoregressive models

(1.1). There is a number of papers which consider these models such as [7], [8] and [4]. In

all these papers, the authors propose some asymptotic (as n→ ∞) methods for different

identification studies without considering optimal estimation issues. To our knowledge,

for the first time the minimax estimation problem for the model (1.1) has been treated in

[3] in the nonadaptive case, i.e. for the known regularity of the function S. Then, in [2] it

is proposed to use the sequential analysis method for the adaptive pointwise estimation

problem in the case when the unknown Hölder regularity is less than one, i.e when the

function S is not differentiable. It turns out that it is only the sequential analysis method

allows to construct an adaptive pointwise estimation procedure for the models (1.1). That

is why, in this paper, we study sequential estimation methods for the smooth function S.

We consider the pointwise estimation at a fixed point z0 ∈]0; 1[ in the two cases: when the

Hölder regularity is known and when the Hölder regularity is unknown, i.e. the adaptive

estimation. In the first case we consider this problem in the robust setting, i.e. we assume

that the distribution of the random variables (ξj)j≥1 in (1.1) belongs to some functional

class and we consider the estimation problem with respect to robust risks which have

an additional supremum over all distributions from some fixed class. For nonparametric

regression models such risks was introduced in [14] for the pointwise estimation problem

and in [16] for the quadratic risks. Later, for the quadratic risks the same approach was

used in [20] for regression model in continuous time. Motivated by this facts, we consider

the adaptive estimation problem for the Gaussian models (1.1). More precisely, we assume

that the function S belongs to a Hölder class with some unknown regularity 1 < β ≤ 2.

Unfortunately, we can not use directly the sequential procedure from [2] for the adaptive

estimation of such functions. Since to obtain an optimal rate for the function with β > 1

we have to take into account the Taylor expansion of the function S at z0 of the order 1.

To study the Taylor expansion for sequential procedures one needs to control the behavior

of the stopping time. Indeed, one needs to keep the stopping time near of the number

of observations. This can not be done by the procedure from [2] since one needs to use

the unknown function S. In this paper we construct a sequential adaptive estimate for

smooth functions and we find an adaptive minimax convergence rate for smooth func-

tions. In Section 2, we present the standard notations used in sequel of the paper. We

describe in detail the statement of the problem and main results in Section 3. In Section 4,

we will study some properties of kernel estimators for the model (1.1) and in Section 5,

we study properties of stopping time for constructed sequential procedure. Section 6 is
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devoted to the asymptotic upper bound and lower bound for the risk of the sequential

kernel estimators. In Section 7 we illustrate the obtained results by numerical examples.

Finally, we give the appendix which contains some technical results.

2 Sequential procedures

2.1 Main conditions

We assume that in the model (1.1) the i.i.d. random variables (ξk)1≤k≤n have a density p

(with respect to the Lebesgue measure) from the functional class Pς defined as

Pς :=

{
p ≥ 0 :

∫ +∞

−∞
p(x) dx = 1 ,

∫ +∞

−∞
x p(x) dx = 0 ,

∫ +∞

−∞
x2 p(x) dx = 1 and sup

k≥1

1

ςk(2k − 1)!!

∫ +∞

−∞
|x|2k p(x) dx ≤ 1

}
, (2.1)

where ς ≥ 1 is some fixed parameter. Note that the (0, 1)-Gaussian density belongs to P.

In the sequel we denote this density by p0. It is clear that for any q > 0

s∗
q
= sup

p∈Pς

Ep |ξ1|q <∞ , (2.2)

where Ep is the expectation with respect to the density p from Pς . To obtain the stable

(uniformly with respect to the function S ) model (1.1), we assume that for some fixed

0 < ε < 1 and L > 0 the unknown function S belongs to the ε - stability set

Θε,L =
{
S ∈ C1([0, 1],R) : ‖S‖ ≤ 1− ε and ‖Ṡ‖ ≤ L

}
, (2.3)

where C1[0, 1] is the Banach space of continuously differentiable [0, 1] → R functions and

‖S‖ = sup
0≤x≤1

|S(x)|. Similarly to [14] and [3] we make use of the family of the weak

stable local Hölder classes at the point z0

U (β)
n

(ε, L, ǫ∗
n
) =

{
S ∈ Θε,L : |Ωh(z0, S)| ≤ ǫ∗

n
hβ
}
, (2.4)

where

Ωh(z0, S) =

∫ 1

−1

(S(z0 + uh)− S(z0)) du

and β = 1 + α is the regularity parameter with 0 < α < 1. Moreover, we assume that

the weak Hölder constant ǫ∗
n
goes to zero, i.e. ǫ∗

n
→ 0 as n→ ∞. Moreover, we define the

corresponding strong stable local Hölder class at the point z0 as
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H(β)(ε, L, L∗) =
{
S ∈ Θε,L : Ω∗(z0, S) ≤ L∗} , (2.5)

where

Ω∗(z0, S) = sup
x∈[0,1]

|Ṡ(x)− Ṡ(z0)|
|x− z0|α

.

We assume that the regularity β ≤ β ≤ β, where β = 1+α and β = 1+α for some fixed

parameters 0 < α < α < 1.

Remark 2.1. Note that for the regression models the weak Hölder class was introduced

in [14] for the efficient pointwise estimation. It is clear that it is more large than usual

one with the same Hölder constant, i.e.

H(β)(ε, L, ǫ∗
n
) ⊆ U (β)

n
(ε, L, ǫ∗

n
) .

It should be noted also that for diffusion processes the local weak Hölder class was used

in [13] and [15] for sequential and truncated sequential efficient pointwise estimation re-

spectively. Moreover, in [17] these sequential pintwise efficient estimators were used to

construct adaptive efficient model selection procedures in L2 for diffusion processes.

2.2 Nonadaptive procedure

First, we study a nonadaptive estimation problem for the function S from the functional

class (2.4) of the known regularity β = 1+α. As we will see later to construct an efficient

sequential procedure we need to use S as a procedure parameter. So we propose to use

the first ν observations for the auxiliary estimation of S(z0). In this step we use usual

kernel estimate, i.e.

Ŝν =
1

A
ν

ν∑

j=1

Q(uj) yj−1 yj , Aν =
ν∑

j=1

Q(uj) y
2
j−1

, (2.6)

where the kernel Q(·) is the indicator function of the interval [−1; 1]; uj = (xj − z0)/h

and h is some positive bandwidth. In the sequel for any 0 ≤ k < m ≤ n we set

Ak,m =
m∑

j=k+1

Q(uj) y
2
j−1

, (2.7)

i.e. Aν = A0,ν . It is clear that to estimate S(z0) on the basis of the kernel estimate with

the kernel Q we can use the observations (yj)k
∗
≤j≤k∗, where

k∗ = [nz0 − nh] + 1 and k∗ = [nz0 + nh] . (2.8)
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Here [a] is the integral part of a number a. So for the first estimation we chose ν as

ν = ν(h, α) = k∗ + ι , (2.9)

where

ι = ι(h, α) = [ǫ̃nh] + 1 and ǫ̃ = ǫ̃(h, α) = hα/ lnn .

Next, similarly to [2], we use a some kernel sequential procedure based on the obser-

vations (yj)ν≤j≤n. To transform the kernel estimator in the linear function of observations

we replace the number of observations n by the following stopping time

τH = inf{k ≥ ν + 1 : Aν,k ≥ H}, (2.10)

where {∅} = n and the positive threshold H will be chosen as a positive random variable

measurable with respect to the σ - field {y1, . . . , yν}. Therefore, we get

S∗
h
=

1

H




τH−1∑

j=ν+1

Q(uj) yj−1 yj + κH Q(uτH ) yτH−1 yτH


 1(Aν,n≥H) , (2.11)

where the correcting coefficient κH on the set {Aν,τH
≥ H} is defined as

Aν,τH−1 + κH Q(uτH ) y
2
τH−1

= H

and κH = 1 on the set {Aν,τH
< H}.

Now, to obtain an efficient estimate we need to use the all n observations, i.e. asymp-

totically for sufficiently large n the stopping time τH ≈ n. Similarly to [19], one can show

that τH ≈ γ(S)H as H → ∞, where

γ(S) = 1− S2(z0) . (2.12)

Therefore, to use asymptotically all observations we have to chose H as the number

observations divided by γ(S). But in our case we use k∗ − k∗ observations to estimate

S(z0), Therefore, to obtain optimal estimate we need to define H as (k∗−k∗)/γ(S). taking
into account that k∗ − k∗ ≈ 2nh and that γ(S) is unknown we define the threshold H as

H = H(h, α) = φnh , φ = φ(h, α) =
2(1− ǫ̃)

γ(S̃ν)
, (2.13)

where S̃ν is the projection of the estimator Ŝν in the interval ]− 1 + ε, 1− ε[, i.e.

S̃ν = min(max(Ŝν ,−1 + ε), 1− ε) .

In this paper we chose the bandwidth h in the following form

h = h(β) = (κn)
1

2β+1 , (2.14)
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where the sequence κn > 0 such that

κ∗ = lim inf
n→∞

nκn > 0 and lim
n→∞

nδ κn = 0 (2.15)

for any 0 < δ < 1.

2.3 Adaptive procedure

We will construct an adaptive minimax sequential estimation for the function S from the

functional class (2.5) of the unknown regularity β. To this end we will use the modification

of the adaptive Lepskii method proposed in [2] based on the sequential estimators (2.11).

We set

dn =
n

lnn
and N(β) = (dn)

β
2β+1 . (2.16)

Moreover, we chose the bandwidth h in the form (2.14) with κn = 1/dn, i.e. we set

ȟ = ȟ(β) =

(
1

dn

) 1
2β+1

. (2.17)

We define the grids on the intervals [β , β] and [α , α] as

βk = β +
k

m
(β − β) and αk = α +

k

m
(α− α) (2.18)

for 0 ≤ k ≤ m with m = [ln dn] + 1, and we set

Nk = N(βk) and ȟk = ȟ(βk) .

Replacing in (2.9) and (2.13) the parameters h and α we define

ν̌k = ν(ȟk, αk) and Ȟk = H(ȟk, αk) .

Now using these parameters in the estimators (2.6) and (2.11) we set Šk = S∗
ȟk
(z0) and

ω̌k = max
0≤j≤k

(
|Šj − Šk| −

λ̌

Nj

)
, (2.19)

where

λ̌ > λ̌∗ = 4
√
2

(
β − β

(2β + 1)(2β + 1)

)1/2

.

In particular, if β = 1 and β = 2 we get λ̌∗ = 4(2/15)1/2. We also define the optimal index

as

ǩ = max

{
0 ≤ k ≤ m : ω̌k ≤

λ̌

Nk

}
. (2.20)

The adaptive estimator is now defined as

Ŝa,n = S∗
ȟk

and ȟk = ȟǩ . (2.21)
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Remark 2.2. It should be noted that in the difference from the usual adaptive pointwise

estimation (see, for example, [21], [12], [2] and al.) the threshold λ̌ in (2.19) does not

depend on the parameters L > 0 and L∗ > 0 of the Hölder class (2.5).

3 Main results

3.1 Robust efficient estimation

The problem is to estimate the function S(·) at a fixed point z0 ∈]0, 1[, i.e. the value

S(z0). For this problem we make use of the risk proposed in [3]. Namely, for any estimate

S̃ = S̃n(z0) (i.e. any measurable with respect to the observations (yk)1≤k≤n function) we

define the following robust risk

Rn(S̃n, S) = sup
p∈Pς

ES,p|S̃n(z0)− S(z0)| , (3.1)

where ES,p is the expectation taken with respect to the distribution PS,p of the vector

(y1, ..., yn0
) in (1.1) corresponding to the function S and the density p from Pς .

With the help of the function γ(S) defined in (2.12), we describe the sharp lower

bound for the minimax risks with the normalizing coefficient

ϕn = n
β

2β+1 . (3.2)

Theorem 3.1. For any 0 < ε < 1

lim
n→∞ inf

S̃
sup

S∈U(β)
n

(ε,L,ǫ∗
n
)

γ−1/2(S)ϕnRn(S̃n, S) ≥ E|η| , (3.3)

where η is a Gaussian random variable with the parameters (0, 1/2).

Now we give the upper bound for the minimax risk of the sequential kernel estimator

defined in (2.11).

Theorem 3.2. The estimator (2.6) with the parameters (2.13) – (2.14) and κn = n−1

satisfies the following inequality

limn→∞ sup
S∈U(β)

n
(ε,L,ǫ∗

n
)

γ−1/2(S)ϕnRn(Ŝa,n, S) ≤ E|η| ,

where η is a Gaussian random variable with the parameters (0, 1/2).

Remark 3.3. Theorems 3.1 and 3.1 imply that the estimator (2.6), with the parameters

(2.14) is asymptotically robust efficient with respect to class Pς .
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3.2 Adaptive estimation

Now we consider the Gaussian model (1.1), i.e. assume that the random variables (ξj)j≥1

are N (0, 1). The problem is to estimate the function S at a fixed point z0 ∈]0, 1[, i.e.
the value S(z0). For any estimate S̃n of S(z0) (i.e. any measurable with respect to the

observations (yk)1≤k≤n function), we define the adaptive risk for the functions S from

H(β)(ε, L, L∗) as

Ra,n(S̃n) = sup
β∈[β;β]

sup
S∈H(β)(ε,L,L∗)

N(β)ES|S̃n − S(z0)| , (3.4)

where N(β) is defined in (2.16), ES = ES,p0
is the expectation taken with respect to the

distribution PS = PS,p0
.

First we give the lower bound for the minimax risk. We show that with the convergence

rate N(β) the lower bound for the minimax risk is strictly positive.

Now we give the upper bound for the minimax risk of the sequential kernel estimator

defined in (2.11).

First we give the lower bound for the minimax risk. We show that with the convergence

rate N(β) the lower bound for the minimax risk is strictly positive.

Theorem 3.4. There exists L∗
0
> 0 such that for all L∗ > L∗

0
, the risk (3.4) admits the

following lower bound:

lim inf
n→∞

inf
S̃n

Ra,n(S̃n) > 0 ,

where the infimum is taken over all estimators S̃n.

The proof of this theorem is given in [2].

To obtain an upper bound for the adaptive risk (3.4) of the procedure (2.21) we need

to study the family (S∗
h
)α≤α≤α.

Theorem 3.5. The sequential procedure (2.11) with the bandwidth h defined in (2.14) for

κn = lnn/n satisfies the following property

lim sup
n→∞

sup
α≤α≤α

(Υn(h))
−1 sup

S∈H(β)(ε,L,L∗)

sup
p∈Pς

ES,p|S∗
h
− S(z0))| <∞

where Υn(h) = hβ + (nh)−1/2.

Using this theorem we can establish the minimax property for the procedure (3.4).

Theorem 3.6. The estimation procedure (3.4) satisfies the following asymptotic property

lim sup
n→∞

Ra,n(Ŝa,n) <∞ . (3.5)
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Remark 3.7. Theorem 3.4 gives the lower bound for the adaptive risk, i.e. the convergence

rate N(β) is best for the adapted risk. Moreover, by Theorem 3.6 the adaptive estimates

(2.21) possesses this convergence rate. In this case, this estimates is called optimal in

sense of the adaptive risk (3.4)

4 Properties of Ŝν

We start with studying the properties of the estimate (2.13). To this end for any q > 1

we set

̺∗
q
=

(12(1 + κ∗))
q

(εκ∗)
2q

(
b∗
q

(
r∗
q
s∗
q
+ s∗

2q
+ 1
)
+ 2(1 + L)q r∗

2q

)
, (4.1)

where

r∗
q
= 2q−1

(
|y0|q + s∗

q

(
1

ε

)q)
and b∗

q
=

18qq3q/2

(q − 1)q/2
.

Now we obtain a non asymptotic upper bound for the tail probability for the deviation

∆̂ν = Ŝν − S(z0) . (4.2)

Proposition 4.1. For any q > 1, h > 0 and a > Lh

sup
S∈Θε,L

sup
p∈Pς

PS,p

(
|∆̂ν | > a

)
≤ M1,q (lnn)

q h(1−α)q +
M2,q

[ι(a− Lh)2]q/2
,

where M1,q = 2q ̺∗
q
and M2,q = 2q b∗

q
s∗
q
r∗
q
.

Proof. First, we write the estimation error as follows

∆̂ν = Bν +
1

Aν

ζν ,

where ζν =
∑ν

j=1
Q(uj) yj−1 ξj and

Bν =
1

Aν

ν∑

j=1

Q(uj) (S(xj)− S(z0)) y
2
j−1

.

Note that |Bν | ≤ Lh for any S ∈ Θε,L. Putting v = ι/2 we can write

PS,p

(
|∆̂ν | > a

)
= PS,p

(
|∆̂ν | > a , Aν < v

)
+PS,p

(
|∆̂ν | > a , Aν ≥ v

)

≤ PS,p (Aν < v) +PS,p

(
Lh+

|ζν |
Aν

> a,Aν ≥ v

)

≤ PS,p (Aν < v) +PS,p

( |ζν|
Aν

> a− Lh,Aν ≥ v

)
. (4.3)
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Now, for any R → R function f and numbers 0 ≤ k ≤ m− 1 we set

̺k,m(f) =
1

nh

m∑

j=k+1

f(uj) y
2
j−1

− 1

γ(S)

1

nh

m∑

j=k+1

f(uj) . (4.4)

Using this function we can estimate the first term on the left-hand side of (4.3) as

PS,p(Aν < v) = PS,p


̺k

∗
,ν(Q) +

1

nh γ(S)

ν∑

j=k
∗
+1

Q(uj) <
v

nh




= PS,p

(
̺k

∗
,ν(Q) < − ι

2nh

)

≤ PS,p

(
|̺k

∗
,ν(Q)| > ǫ̃/2

)
≤
(
2

ǫ̃

)q

ES,p|̺k
∗
,ν(Q)|q .

Therefore, using here Lemma 8.3 we get

PS,p(Aν < v) ≤ 2q ̺∗
q
(lnn)q h(1−α)q ,

where the coefficient ̺∗
q
is defined in (4.1). The last term on the right-hand side of (4.3)

can be estimated as

PS,p

(
1

Aν

|ζν| > a− Lh , Aν ≥ v

)
≤ PS,p (|ζν| > v(a− Lh))

≤ 1

vq(a− Lh)q
ES,p|ζν |q .

Now in view of the Burkhölder inequality, it comes

ES,p|ζν |q = ES,p




ν∑

j=1

Q(uj) yj−1 ξj




q

≤ b∗
q
ES,p




ν∑

j=1

Q2(uj) y
2
j−1

ξ2
j




q/2

= b∗
q
ES,p




k
∗
+ι∑

j=k
∗
+1

y2
j−1

ξ2
j




q/2

,

and after applying the Hölder inequality, we obtain

ES,p|ζν |q ≤ b∗
q
ιq/2−1

k
∗
+ι∑

j=k
∗
+1

ES,p y
q
j−1

ξq
j
≤ b∗

q
s∗
q
r∗
q
ιq/2 .

Therefore,

PS,p

(
1

Aν

|ζν | > a− Lh,Aν ≥ v

)
≤

2q b∗
q
s∗
q
r∗
q

ιq/2(a− Lh)q
.

Hence Proposition 4.1
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Proposition 4.2. Let the bandwidth h be defined by the conditions (2.14)–(2.15). Then,

for all m ≥ 1 and 0 < δ < 1

lim
n→+∞

sup
α≤α≤α∗

h−m sup
S∈Θε,L

sup
p∈Pς

PS,p

(
|∆̂ν | > δǫ̃

)
= 0 .

Proof. By applying Proposition 4.1 for a = δǫ̃, we obtain that for sufficiently large n ≥ 1,

for which δǫ̃ > 2Lh, and for any m ≥ 1 and q > m/(1− α)

h−mPS,p(|∆̂ν | > δǫ̃) ≤ h−mM1,q (lnn)
qh(1−α)q +

M2,qh
−m

(ι(δǫ̃− Lh)2)q/2

≤ M1,q (lnn)
q κ

(1−α)q−m

2β+1
n

+
2q M2,q

δq
h−(m+q/2)

nq/2ǫ̃3q/2
n

≤ M1,q (lnn)
qκ

(1−α)q−m

2β+1
n

+
2q M2,q(lnn)

3q/2

δq(κnn)
q/2

κ
q(1−α/2)−m

2β+1
n

.

Taking into account here the conditions (2.15) we come to Proposition 4.2.

5 Properties of stopping time τH

First we need to study some asymptotic properties of the term (2.7).

Proposition 5.1. Assume that the threshold H is chosen in the form (2.13) and the

bandwidth h satisfies the conditions (2.14) - (2.15). Then for any m ≥ 1

lim sup
n→∞

sup
α≤α≤α

h−m sup
S∈Θε,L

sup
p∈Pς

PS,p(Aν,n < H) <∞ .

Proof. Using the definition of H in (2.13) we obtain

PS,p(Aν,n < H) = PS,p


 1

nh

n∑

j=ν+1

Q(uj) y
2
j−1

<
H

nh




= PS,p


̺ν,k∗(Q) +

1

γ(S)

k∗∑

j=ν+1

Q(uj)∆uj < φ


 .

Note that
k∗∑

j=ν+1

Q(uj)∆uj =
k∗ − k∗ − ι

nh
≥ 2− ι+ 2

nh
.

Taking into account that ε2 ≤ γ(S) ≤ 1, we obtain
∣∣∣∣∣

1

γ(Ŝν)
− 1

γ(S)

∣∣∣∣∣ ≤
2

ε4
|∆̂ν | . (5.1)

11



This yields

PS,p

(
Aν,n < H

)
≤ PS,p




k∗∑

j=ν+1

Q(uj)y
2
j−1

< H , |∆̂ν | ≤ δǫ̃


+PS,p

(
|∆̂ν | > δǫ̃

)

≤ PS,p

(
̺ν,k∗(Q) < −2ǫ̃n +

ǫ̃n
ε2

+
4

ε4
δǫ̃+

3

ε2nh

)

+PS,p

(
|∆̂ν | > δǫ̃

)
.

Therefore for δ < ε4/8 and sufficiently large n ≥ 1 we obtain that

PS,p

(
Aν,n < H

)
≤ PS,p

(
|̺ν,k∗(Q)| > ǫ̃n/2

)
+PS,p

(
|∆̂ν | > δǫ̃

)
.

Lemma 8.3 and Proposition 4.2 imply Proposition 5.1.

Now for any weighted sequence (wj)j≥1 we set

Zn =

n∑

j=τH−1

Q(uj)wj y
2
j−1

+ (1− κH)wτH
Q(uτH ) y

2
τH−1

. (5.2)

Proposition 5.2. Assume that the threshold H is chosen in the form (2.13) and the

bandwidth h satisfies the conditions (2.14) - (2.15). Moreover, let (wj)j≥1 be a sequence

bounded by a constant w∗, i.e. sup
j≥1

|wj| ≤ w∗. Then

lim sup
n→∞

sup
α≤α≤α

h−α sup
S∈Θε,L

sup
p∈Pς

ES,p|Zn|
nh

= 0 . (5.3)

Proof. It is clear that Zn = 0 if Aν,n < H , and on the set {Aν,n ≥ H} this term can be

estimated as

|Zn| ≤ w∗




n∑

j=ν+1

Q(uj) y
2
j−1

−H


 = w∗(Aν,n −H) ,

i.e. |Zn| ≤ w∗(Aν,n −H)+, where (x)+ = max(0, x). Therefore,

|Zn|
nh

≤ w∗

∣∣∣∣∣

∑n

j=ν+1
Q(uj) y

2
j−1

nh
− φ

∣∣∣∣∣

≤ |̺ν,n(Q)|+
∣∣∣∣∣

∑n

j=ν+1
Q(uj)

γ(S)nh
− φ

∣∣∣∣∣ .

Taking into account that
∑n

j=ν+1
Q(uj) = k∗ − k∗ − ι ≤ 2nh we obtain

12



ES,p|Zn|
nh

≤ ES,p |̺ν,k∗(Q)|+ 2

∣∣∣∣∣
1

γ(S)
− 1

γ(Ŝν)

∣∣∣∣∣+
2

ε2
ǫ̃

≤ ES,p |̺ν,k∗(Q)|+
4

ε4
ES,p

∣∣∣∆̂ν(z0)
∣∣∣+ 2

ε2
ǫ̃ .

Moreover, note that

ES,p

∣∣∣∆̂ν(z0)
∣∣∣ = ES,p

∣∣∣∆̂ν(z0)
∣∣∣ 1{|∆̂ν(z0)|≤ǫ̃}

+ ES,p

∣∣∣∆̂ν(z0)
∣∣∣ 1{|∆̂ν(z0)|>ǫ̃}

≤ ǫ̃+ 2PS,p

(∣∣∣∆̂n0
(z0)

∣∣∣ > ǫ̃
)
.

Therefore,Lemma 8.3 and Proposition 4.1 imply immediately (5.3).

6 Proofs

6.1 Proof of Theorem 3.1

First, similarly to the proof of Theorem 2.1 from [3] we choose the corresponding para-

metric functional family Su,δ(·) in the following form

Su,δ(x) =
u

ϕn
Vδ

(
x− z0
h

)
, (6.1)

with the function Vδ defined as

Vδ(x) = δ−1

∫ ∞

−∞
Q̃δ(u)g

(
u− x

δ

)
du ,

where Q̃δ(u) = 1{|u|≤1−2δ}+21{1−2δ≤|u|≤1−δ} with 0 < δ < 1/4 and g is some even nonneg-

ative infinitely differentiable function such that g(z) = 0 for |z| ≥ 1 and
∫ 1

−1
g(z) dz = 1.

One can show (see [14]) that for any b > 0 and 0 < δ < 1/4 there exists n∗ = n∗(b, L, δ) > 0

such that for all |u| ≤ b and n ≥ n∗

Su,δ ∈ U (β)
n

(ε, L, ǫ∗
n
) .

Therefore, in this case for any n ≥ n∗

ϕn sup
S∈U(β)

n
(ε,L,ǫ∗

n
)

γ−1/2(S)Rn(S̃n, S) ≥ sup
S∈U(β)

n
(ε,L,ǫ∗

n
)

γ−1/2(S)ES,p0
ψn(S̃n, S)

≥ γ∗(n, b)
1

2b

∫ b

−b

ESu,δ,p0
ψn(S̃n, Su,δ)du ,

13



where γ∗(n, b) = inf |u|≤b γ
−1/2(Su,δ). The definitions (2.12) and (6.1) imply that for any

b > 0

lim
n→∞

sup
|u|≤b

|γ(Su,δ)− 1| = 0 .

Therefore, by the same way as in the proof of Theorem 2.1 from [3] we obtain that for

any b > 0 and 0 < δ < 1/4

lim
n→∞ inf

S̃
sup

S∈U(β)
n

(ε,L,ǫ∗
n
)

γ−1/2(S)ϕnRn(S̃n, S) ≥ I(b, σδ) , (6.2)

where

I(b, σδ) =
max(1, b−

√
b)

b

σδ√
2π

∫ √
b

−
√
b

e−σ2
δ
u2

2 du ,

with σ2
δ
=
∫ 1

−1
V 2
δ (u) du. It is easy to check that σ2

δ
→ 2 as δ → 0. Limiting b → ∞ and

δ → 0 in (6.2) yield the inequality (3.3). Hence Theorem 3.1.

6.2 Proof of Theorem 3.2

First we set

κ̌j = 1{τH 6=j} + κH 1{τH=j} . (6.3)

Then taking this into account we can represent the estimate error as

S∗
h
− S(z0) = −S(z0) 1(Aν,n<H) + hβ Bn(h) 1(Aν,n≥H) +

1√
H
ζn(h) 1(Aν,n≥H) , (6.4)

where

Bn(h) =

∑τH
j=ν+1

κ̌j Q(uj) (S(xj)− S(z0)) y
2
j−1

hβ H
and

ζn(h) =

∑τH
j=ν+1

κ̌j Q(uj) yj−1 ξj√
H

.

First we study the term Bn(h). To this end we introduce

B∗
n
=

n∑

j=ν+1

Q(uj) b
∗
j
y2
j−1

, b∗
j
=
S(xj)− S(z0)

h
1{k

∗
≤j≤k∗} .

It is clear that for any S from U (β)
n

(ε, L, ǫ∗
n
)

sup
j≥1

|b∗
j
| ≤ L .

Therefore, using Proposition 5.2 for the sequence (5.2) with wj = b∗
j
we obtain

lim sup
n→∞

sup
α≤α≤α

h−α sup
S∈U(β)

n
(ε,L,ǫ∗

n
)

sup
p∈Pς

ES,p|
∑τH

j=ν+1
κ̌j Q(uj) b

∗
j
y2
j−1

− B∗
n
|

nh
= 0 . (6.5)
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Moreover, putting

f1(u) = Q(u)
S(z0 + hu)− S(z0)

h
,

we obtain
B∗

n

nh
=

1

γ(S)

n∑

k=1

f1(uj)∆uj −
1

γ(S)

ν∑

k=1

f1(uj)∆uj + ̺ν,n(f1) . (6.6)

Using the definition of Ωh(z0, S) in (2.4) we can represent the first term as

n∑

k=1

f1(uj)∆uj =
1

h
Ωh(z0, S)−

∫ 1

uk∗

f1(u)du+

k∗∑

k=k
∗

∫ uj

uj−1

(
f1(uj)− f1(u)

)
du .

Note now that for any S from U (β)
n

(ε, L, ǫ∗
n
)

sup
−1≤u≤1

|f1(u)| ≤ L and sup
−1≤u≤1

|ḟ1(u)| ≤ L ,

and, therefore,
∣∣∣∣∣

∫ 1

uk∗

f1(u)du

∣∣∣∣∣ ≤
L

nh
and

∣∣∣∣∣∣

k∗∑

k=k
∗

∫ uj

uj−1

(
f1(uj)− f1(u)

)
du

∣∣∣∣∣∣
≤ 2L

nh
.

The last bounds imply immediately

lim sup
n→∞

sup
α≤α≤α

h−α sup
S∈U(β)

n
(ε,L,ǫ∗

n
)

∣∣∣∣∣

n∑

k=1

f1(uj)∆uj

∣∣∣∣∣ = 0 .

Taking into account Lemma 8.3 in (6.6) we get

lim sup
n→∞

sup
α≤α≤α

h−α sup
S∈U(β)

n
(ε,L,ǫ∗

n
)

sup
p∈Pς

ES,p|B∗
n
|

nh
= 0 .

Therefore, in view of (6.5)

lim sup
n→∞

sup
α≤α≤α

sup
S∈U(β)

n
(ε,L,ǫ∗

n
)

sup
p∈Pς

ES,p |Bn(h) = 0 .

To study the last term in (6.3) note that the definition of the stopping time in (2.10)

implies

sup
n≥ν+1

sup
h
∗
≤h≤h∗

sup
S∈Θε,L

sup
p∈Pς

ES,p |ζn(h)|2 ≤ 1 . (6.7)

Therefore, in view of Lemma 8.5 we obtain

lim
n→∞

sup
S∈Θε,L

sup
p∈Pς

∣∣∣ES,p |ζn(h)|1(Aν,n≥H) − E|ζ∞|
∣∣∣ = 0 ,

where ζ∞ ∼ N (0, 1), i.e. E|ζ∞| =
√

2/π. Moreover, in view of Proposition 4.2 and the

bound (5.1) we get

lim
n→∞

sup
S∈Θε,L

sup
p∈Pς

ES,p

∣∣∣∣
ϕ2
n

γ(S)H
− 1

2

∣∣∣∣ = 0 .

From this and Proposition 5.1 it follows Theorem 3.2.
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6.3 Proof of Theorem 3.5

First, note that the representation (6.4) implies

ES,p|S∗
h
− S(z0)| ≤ PS,p(Aν,n < H) + hβ ES,p|Bn(h)| 1(Aν,n≥H)

+ ES,p

( |ζn(h)|√
H

1(Aν,n≥H)

)
. (6.8)

Let us show, that

lim sup
n→∞

sup
α≤α≤α

sup
S∈H(β)(ε,L,L∗)

sup
p∈P

ES,p |Bn(h)| <∞ . (6.9)

Indeed, setting

ϑj =
S(xj)− S(z0)

h
− Ṡ(z0) uj , (6.10)

we can represent Bn(h) as

Bn(h) =
h−α

H
Ṡ(z0)B̃n +

h−α

H
B̂n , (6.11)

where

B̃n =

τH∑

j=ν+1

κ̌j Q(uj) uj y
2
j−1

and B̂n =

τH∑

j=ν+1

κ̌j Q(uj)ϑj y
2
j−1

.

Using now Proposition 5.2 for the sequence (5.2) with wj = uj we obtain that

lim sup
n→∞

sup
α≤α≤α

h−α sup
S∈Θε,L

sup
p∈Pς

ES,p|Ṽn − B̃n|
nh

= 0 ,

where

Ṽn =

n∑

j=ν+1

Q(uj) uj y
2
j−1

.

We can represent this term as

Ṽn = ̺ν,n(Q1) +
1

γ(S)

n∑

j=ν+1

Q1(uj)∆uj

= ̺ν,n(Q1) +
1

γ(S)




k∗∑

j=k
∗
+1

uj ∆uj −
k
∗
+ι∑

j=k
∗
+1

uj ∆uj


 ,

where Q1(u) = Q(u) u. Moreover, taking into account here, that
∣∣∣∣∣∣

k∗∑

j=k
∗
+1

uj ∆uj

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∫ uk∗

uk
∗

u du+

k∗∑

j=k
∗
+1

∫ uj

uj−1

(
uj − u

)
du

∣∣∣∣∣∣
≤ 4

nh
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and
∣∣∣∣∣∣

k
∗
+ι∑

j=k
∗
+1

uj ∆uj

∣∣∣∣∣∣
≤ ǫ̃+

1

nh
,

we obtain
1

nh
ES,p |Ṽn| ≤ ES,p |̺ν,n(Q1)|+

1

ε2

(
5

nh
+ ǫ̃

)
.

Now Lemma 8.3 yields

lim sup
n→∞

sup
α≤α≤α

h−α sup
S∈Θε,L

sup
p∈Pς

ES,p|Ṽn|
nh

= 0

and, therefore,

lim sup
n→∞

sup
α≤α≤α

h−α sup
S∈Θε,L

sup
p∈Pς

ES,p|B̃n|
nh

= 0 . (6.12)

To estimate the last term in (6.11) note, that for any function S from H(β)(ε, L, L∗) and

for k∗ ≤ j ≤ k∗ the coefficients (6.10) can be estimated as

|ϑj| =
∣∣∣∣
∫ uj

0

(
Ṡ(z0 + hu)− Ṡ(z0)

)
du

∣∣∣∣ ≤ L|uj | hα ≤ L∗ hα .

Therefore,

lim sup
n→∞

sup
α≤α≤α

h−α sup
S∈H(β)(ε,L,L∗)

sup
p∈P

1

nh
ES,p |B̂n| <∞ .

Now the property (6.12) implies the inequality (6.9). Therefore, using Proposition 5.1 and

the inequality (6.7) in (6.8), we come to Theorem 3.2.

6.4 Proof of Theorem 3.6

First of all, note that the coefficient φ defined in (2.13) will be more than one for sufficient

large n for which ǫ̃ ≤ 1/2. So, using the representation (6.4), we get for any 1 ≤ j ≤ m

|Šj − S(z0)| ≤ 1Γj
+ (ȟj)

β |Bn(ȟj)|+
1√
nȟj

|ζ̃n(ȟj)| , (6.13)

where Γj = {Aν,n(ȟj) < Ȟj}, ζ̃n(ȟj) = ζ̃n(ȟj) 1(Aν,n(ȟj)≥Ȟj)
, the random functions Bn(h)

and ζn(h) are defined in (6.4). We set

i0 =

[
m(β − β)

β − β

]
.
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This means that

0 ≤ β − βi0 <
β − β

m
.

Therefore, taking into account the definition of m in (2.18), we obtain that for any fixed

integer − <∞ < l <∞




0 < lim infn→∞
N(β)

Ni0+l

≤ lim sup
n→∞

N(β)

Ni0+l

<∞ ;

0 < lim infn→∞
h(β)

ȟi0+l

≤ lim sup
n→∞

h(β)

ȟi0+l

<∞ .

(6.14)

These inequalities and Theorem 3.5 imply

lim sup
n→∞

sup
β≤β≤β

N(β) sup
S∈H(β)(ε,L,L∗)

ES̟(i0, z0) <∞ , (6.15)

where ̟(i0, z0) = |Ši0−1 − S(z0)| + |Ši0
− S(z0)| + |Ši0+1 − S(z0)|. Now considering the

estimator Ŝa,n, one has

|Ŝa,n − S(z0)| ≤ I1 + I2 +̟(i0, z0) , (6.16)

where I1 = |Ŝa,n − S(z0)|1{ǩ≥i0+2} and I2 = |Ŝa,n − S(z0)|1{ǩ≤i0−2}. We start with the

term I1. We have

|Ŝa,n − S(z0)|1{ǩ≥i0+2} ≤ |Ŝa,n − Ši0
|1{ǩ≥i0+2} + |Ši0

− S(z0)|1{ǩ≥i0+2} .

Moreover,

|Ŝa,n − Ši0
| 1{ǩ≥i0+2} ≤ ω̌ǩ 1{ǩ≥i0+2} +

λ̌

Ni0

≤ λ̌

Nǩ

1{ǩ≥i0+2} +
λ̌

Ni0

≤ λ̌

N(β)
+

λ̌

Ni0

.

The inequalities (6.14)–(6.15) imply immediately

lim sup
n→∞

sup
β≤β≤β

N(β) sup
S∈H(β)(ε,L,L∗)

ES I1 <∞ .

Now we study the term I2. From (6.13) it follows that

I2 ≤


1Γǩ

+ (ȟǩ)
β |Bn(ȟǩ)|+

1√
nȟǩ

|ζ̃n(ȟǩ)|


 1{ǩ≤i0−2} .

Therefore,

ES I2 ≤ mI∗
1
(S) + I∗

2
(S)

i0−2∑

j=0

ȟβ
j
+Ψn(S) , (6.17)
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where I∗
1
(S) = max0≤l≤m PS (Γl), I

∗
2
(S) = max0≤l≤m ES|Bn(ȟl)| and

Ψn(S) =
1√
n

i0−2∑

j=0

1√
ȟj

ES |ζ̃n(ȟj)| 1{ǩ=j} .

Note now, that for any 0 ≤ j ≤ i0 and for sufficiently large n (for which ln dn ≥ m/2) we

get

N(β)ȟβ
j
≤ e−β∗(i0−j) , β∗ =

β(β − β)

(2β + 1)(2β + 1)
,

i.e.

N(β)

i0−2∑

j=0

ȟβ
j
≤ eβ

∗

eβ∗ − 1
.

So, Proposition 5.1 and the inequality (6.9) yield

lim sup
n→∞

N(β) sup
S∈H(β)(ε,L,L∗)


mI∗

1
(S) + I∗

2
(S)

i0−2∑

j=0

ȟβ
j


 < ∞ .

Let us consider now the last term (6.17). To this end note that for 0 ≤ j ≤ i0 − 2

{ǩ = j} ⊆ {ω̌j+1 ≥ λ̌/Nj+1} ⊆ ∪j+1
l=0

{|Šl − S(z0)| ≥ λ̌/Nl} .

Therefore,

Ψn(S) ≤
1√
n

i0−2∑

j=0

1√
ȟj

j+1∑

l=0

ES |ζ̃n(ȟj)| 1{|Šl−S(z0)|≥λ̌/Nl} .

Taking into account that ȟj+1/ȟj ≤ e, we can rewrite the last inequality as

Ψn(S) ≤
e√
n

i0−1∑

j=1

1√
ȟj

j∑

l=0

ES |ζ̃n(ȟj)| 1{|Šl−S(z0)|≥λ̌/Nl} . (6.18)

Now, taking into account the inequality (6.7), we get

ES |ζ̃n(ȟj)| 1{|Šl−S(z0)|≥λ̌/Nl} ≤
√
PS(Γl) + ES |ζ̃n(ȟj)| 1{ȟβ

l |Bn(ȟl)|≥λ̌1/Nl}

+ ES |ζ∗| 1{|ζ∗|≥
√
lnnλ̌1}

where λ̌1 = λ̌/2 and ζ∗ = max1≤j≤m |ζ̃n(ȟj)|. In view of the Hölder and Chebyshev

inequalities and making use of the upper bound (8.11) we obtain

ES |ζ̃n(ȟj)| 1{ȟβ
l |Bn(ȟl)|≥λ̌1/Nl}

≤ (µ∗
4
)1/4(I∗

2
(S))3/4

λ̌
3/4
1

(
Nlȟ

β
l

)3/4
.
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where the term I∗
2
(S) is defined in (6.17). Using these bounds in (6.18) we get

Ψn(S) ≤
em2

√
n ȟ0

√
I∗
1
(S) +

e(µ∗
4
)1/4(I∗

2
(S))3/4

λ̌
3/4
1

Υ∗
n

+
em2

√
n ȟ0

ES |ζ∗| 1{|ζ∗|≥λ̌1

√
lnn} , (6.19)

where

Υ∗
n
=

1√
n

i0−1∑

j=1

(
Nj ȟ

β
j

)1/4 (
Nj ȟ

α
j

)1/2
υ∗
j

and υ∗
j
=

j∑

l=0

(
Nlȟ

β
l

Njȟ
β
j

)3/4

.

Let us estimate the term Υ∗
n
. To this end note, that for any 0 ≤ j < i0 and for sufficiently

large n (for which ln dn ≥ m/2)

(
Njȟ

β
j

)1/4
= exp

{
βj − β

4(2βj + 1)
ln dn

}
≤ e−β∗

1
(i0−j) with β∗

1
=

β − β

8(2β + 1)
,

and (
Nj ȟ

α
j

)1/2
= exp

{
βj − α

2(2βj + 1)
ln dn

}
≤ 1√

ȟ(β)
=

√
dn

N(β)
,

where ȟ(β) is defined in (2.17). Similarly for any 0 ≤ l ≤ j ≤ i0 we get

(
Nlȟ

β
l

Nj ȟ
β
j

)3/4

= exp

{
3(βl − βj)(2β + 1)

4(2βl + 1)(2βj + 1)
ln dn

}
≤ e−β∗

2
(j−l) , β∗

2
=

3(β − β)

8(2β + 1)
.

This means that the sequence (υ∗
j
)j≥1 is bounded, i.e.

sup
j≥1

υ∗
j
≤ eβ

∗

2

eβ
∗

2 − 1
.

Therefore,

lim
n→∞

N(β) Υ∗
n
= 0 . (6.20)

The last term in (6.19) can be estimated through Lemma 8.10, i.e.

ES ζ
∗ 1{ζ∗≥λ̌1

√
lnn} ≤ m max

1≤j≤m
ES |ζ̃n(ȟj)| 1{|ζ̃n(ȟj)|≥λ̌1

√
lnn}

≤ 2mλ̌1
√
lnn e−

1
8
λ̌2
1
lnn + 2m

∫ +∞

λ̌1

√
lnn

e−z2/8 dz .
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Therefore, for sufficiently large n (when λ̌1
√
lnn ≥ 1) we get that

ES ζ
∗ 1{ζ∗≥λ̌1

√
lnn} ≤ 2m

(
λ̌1

√
lnn + 4

)
n−λ̌2

1
/8 . (6.21)

Now the definition of the parameter λ̌ in (2.19) yields

lim sup
n→∞

N(β)m2

√
n ȟ0

sup
S∈H(β)(ε,L,L∗)

ES |ζ∗| 1{|ζ∗|≥λ̌1

√
lnn} = 0 .

Hence Theorem 3.6.

7 Numerical examples

We illustrate the obtained results by the following simulation which is established using .

7.1 Nonadaptive estimation

In this section we illustrate the results obtained in the case of nonadaptive estimation

The purpose is to estimate, at a given point z0, the function S defined over [0; 1] by

S(x) = (x− z0) |x− z0|α (7.1)

for z0 = 1/
√
2 and α = 0, 3. Taking into account that for this function

Ωh(z0, S) = 0

we obtain that for any

0 < ε ≤ 1−
(

1√
2

)β

, L ≥ β and ǫ∗
n
> 0 (7.2)

the function (7.1) belongs to the class U (β)
n

(ε, L, ǫ∗
n
) with β = 1, 3.

The numerical results approximate the asymptotic risk of a estimators defined in (2.11)

used due to the calculation of an expectation (it performs an average for M = 30000

simulations) and the finite number of observations n. Here we calculate for the estimator

the quantity

Rn =
1

M

M∑

k=1

∣∣S∗,k
h

− S(z0)
∣∣ .

For the standard Gaussian random variables (ξj)j≥1 in (1.1), and by varying the num-

ber of observations n, we obtain different risks listed in the following table: we obtain:

21



n 1000 5000 10000 20000

Rn 0.034 0.021 0.017 0.012

For random variables (ξj)j≥1 reduced from uniform random variables on [−1, 1], we

obtain :

n 1000 5000 10000 20000

Rn 0.038 0.022 0.018 0.014

For random variables (ξj)j≥1 centered and reduced from exponential random variables

with parameter 1, we obtain :

n 1000 5000 10000 20000

Rn 0.028 0.016 0.012 0.010

7.2 Numerical result for non sequential kernel estimator

Now we give the numerical results for the kernel estimator defined as

Ŝn(z0) =
1∑n

k=1 Q(uk) y
2
k−1

n∑

k=1

Q(uk) yk−1 yk .

For the standard Gaussian random variables (ξj)j≥1 in (1.1), and by varying the num-

ber of observations n, we obtain different risks listed in the following table:

n 1000 5000 10000 20000

Rn 0.046 0.026 0.02 0.015

7.3 Adaptive estimation

In this case we estimate the function (7.1) for z0 = 1/
√
2 and α = 0, 7. Obviously, that

this function belongs to class H(β)(ε, L, L∗) with β = 1, 7, L∗ = 1 and for any ε and L

satisfying the conditions (7.2).

In the adaptive estimation we take the lower regularity β = 1.6 and the higher regu-

larity β = 1.8.

We model the sequential adaptive procedure Ŝa,n = S∗
ȟ
defined in (2.21). Numeri-

cal results approximate the asymptotic risk for this procedure by the calculation of an

expectation via M = 30000 simulations.

Ra,n =
1

M

M∑

k=1

|Ŝk
a,n

− S(z0)|

By varying the number of observations n, we obtain different risks listed in the follow-

ing table:
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n 1000 5000 10000 20000

Ra,n 0.021 0.013 0.009 0.007

8 Appendix

8.1 Concentration properties of the process (1.1)

In this section, we study the deviation (4.4) for the model (1.1).

Lemma 8.1. For any q > 1 and 0 < ε < 1 the random variables yk in (1.1) satisfy the

following inequality:

sup
n≥1

sup
0≤k≤n

sup
S∈Θε,L

sup
p∈Pς

ES,p |yk|q ≤ r∗
q
, (8.1)

where r∗
q
is defined in (4.1).

Proof. From (1.1) we obtain that for any k ≥ 1

yk = y0

k∏

l=1

S(xl) +

k∑

i=1

k∏

l=i+1

S(xl) ξi .

Therefore, for S ∈ Θε,L and 1 ≤ k ≤ n,

|yk|q ≤ 2q−1


|y0|q +




k∑

j=1

(1− ε)k−j |ξj|




q
 .

Moreover, the Hölder inequality gives




k∑

j=1

(1− ε)k−j |ξj|




q

≤




k∑

j=1

(1− ε)k−j




q−1 


k∑

j=1

(1− ε)k−j |ξj|q



≤
(
1

ε

)q−1



k∑

j=1

(1− ε)k−j |ξj|q

 .

Thus, taking into account the definition (2.2) we get for any p ∈ Pς

ES,p




k∑

j=1

(1− ε)k−j |ξj|




q

≤
(
1

ε

)q

s∗
q
.

Hence Lemma 8.1.

Now we need the following Burkhölder inequality from [24].
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Lemma 8.2. Let (Mk)1≤k≤n be a martingale. Then for any q > 1

E |Mn|q ≤ b∗
q
E




n∑

j=1

(Mj −Mj−1)
2




q/2

, (8.2)

where the coefficient b∗
q
is defined in (4.1).

Now we study the deviation (4.4).

Lemma 8.3. Let f be a R → R function twice continuously differentiable in [−1, 1].

Assume also that the bandwidth h satisfies the condition (2.14) – (2.15). Then for any

R > 0 and q > 1

lim sup
n→∞

sup
k
∗
≤k<m≤k∗

sup
β≤β≤β

sup
R>0

sup
‖f‖1≤R

1

(Rh)q
sup

S∈Θε,L

sup
p∈Pς

ES,p

∣∣̺k,m(f)
∣∣q ≤ ̺∗

q
, (8.3)

where ‖f‖1 = ‖f‖+ ‖ḟ‖ and ̺∗
q
is defined in (4.1).

Proof. First of all, note that

m∑

j=k+1

f(uj)y
2
j−1

= Tk,m + ak,m , (8.4)

where Tk,m =
∑m

j=k+1
f(uj)y

2
j
and

ak,m =

m∑

j=k+1

(f(uj)− f(uj−1)) y
2
j−1

+ f(uk) y
2
k
− f(um) y

2
m
.

Moreover, from the model (1.1) we find

(1− S2(z0))Tk,m =Mk,m + ǎk,m +
m∑

j=k+1

f(uj)

where Mk,m =
∑m

j=k+1
(2S(xj) yj−1 ξj + ξ2

j
− 1) f(uj) and

ǎk,m =
m∑

j=k+1

f(uj)S
2(xj)y

2
j−1

− S2(z0)Tk,m . (8.5)

Then we can write ̺k,m(f) as follow

̺k,m(f) =
1

nh γ(S)

(
Mk,m + ǎk,m

)
+
ak,m
nh

.
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and

ES,p |̺k,m(f)|q ≤
3q−1

ε2q
ES,p

(( |Mk,m|
nh

)q

+

( |ǎk,m|
nh

)q

+

( |ak,m|
nh

)q)
. (8.6)

where κ̃ = (1 + κ∗)/κ∗. Now we note, that in view of the first condition in (2.15) for

sufficient large n

nκn ≥ κ̃ ,

where κ̃ = (1 + κ∗)/κ∗. Therefore, for sufficiently large n we get

1

nh
≤ (κ̃)2/(2β+1) h ≤ κ̃h , (8.7)

Furthermore, note that (Mk,j)k<j≤m is a martingale. So, by applying the Burkhölder

inequality (8.2) and, taking into account that k∗ − k∗ ≤ 2nh, we get

ES,p

(
1

nh
Mk,m

)q

≤
b∗
q
Rq

(nh)q
ES,p




k∗∑

j=k
∗
+1

(
2S(xj) yj−1 ξj + ξ2j − 1

)2



q/2

≤
b∗
q
Rq

(nh)q/2+1

k∗∑

j=k
∗
+1

ES,p

(
2S(xj) yj−1 ξj + ξ2

j
− 1
)q

≤
4qb∗

q
Rq

(nh)q/2

(
r∗
q
s∗
q
+ s∗

2q
+ 1
)
≤ 4qb∗

q
κ̃q Rq

(
r∗
q
s∗
q
+ s∗

2q
+ 1
)
hq ,

where the coefficients r∗
q
and s∗

q
are given in (8.1) and (2.2). Note that the term (8.5) can

be rewritten as

ǎk,m = S2(z0)




m∑

j=k+1

(f(uj)− f(uj−1)) y
2
j−1

+ f(uk)y
2
k
− f(um)y

2
m




+
m∑

j=k+1

f(uj)(S
2(xj)− S2(z0))y

2
j−1

.

We recall, that the function f and its derivative ḟ are bounded by R. Therefore, taking

into account that for all S ∈ Θε,L and k∗ ≤ j ≤ k∗ the deviation |S(xj) − S(z0)| ≤
L|xj − z0| ≤ Lh, we obtain

|ǎk,m| ≤ R



(

1

nh
+ Lh

) m∑

j=k+1

y2
j
+ y2

k
+ y2

m




≤ κ̃ R


(L+ 1) h

m∑

j=k+1

y2
j
+ y2

k
+ y2

m


 .
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Therefore,

sup
S∈Θε,L

sup
p∈Pς

ES,p

(
1

nh
|ǎk,m|

)q

≤ 2q−1 κ̃qRqr∗
2q

(
2q(1 + L)qhq +

2q

(nh)q

)

≤ (4R(1 + L))q r∗
2q
hq .

Similarly,

sup
S∈Θε,L

sup
p∈Pς

ES,p

(
1

nh
|ak,m|

)q

≤ 3 2q−1 κ̃q Rq r∗
2q
hq .

Then, taking this into account in (8.6) we obtain the upper bound (8.3). Hence Lemma 8.3.

8.2 Uniform limit theorem

In this section we study the following sequence

ζ̃n(h) = ζn(h) 1(Aν,n≥H) , (8.8)

where ζn(h) defined by (6.4), the bandwidth h is defined (2.14) and the threshold H is

given in (2.13). We will make use of the following result.

Lemma 8.4. (cf. [11], p. 90-91) Let 0 < δ < 1 and r > 0. Assume that (mk)k≥1
is a

martingale difference with respect to the filtration (Fk)k≥1 such that

|mk| ≤ δr1/2 and
∞∑

k=1

E
(
m2

k
|Fk−1

)
≥ r .

Let

τ = inf



k ≥ 1 :

k∑

j=1

E(m2
j
|Fj−1) ≥ r



 .

There exists a function ρ : (0,+∞) → [0, 2] not depending on distribution of the martin-

gale difference, such that limx→0 ρ(x) = 0 and

sup
x∈R

∣∣∣∣∣P
(

1

r1/2

τ∑

k=1

mk ≤ x

)
− Φ(x)

∣∣∣∣∣ ≤ ρ(δ) ,

where Φ is the standard normal distribution function.

Lemma 8.5. The sequence (6.4) satisfies the following limiting property:

ζ̃n =⇒ ζ ∼ N (0, 1) uniformly in p ∈ Pς and S ∈ Θε,L .
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Proof. First for some 0 < δ < 1 we set

mj = Q(uj) y̌j−1 ξ̌j1{ν<j≤n} + δξ̌j1{j>n} ,

where y̌j = yj 1{|yj |≤δ2 Ȟ1/2}, Ȟ = Ep ξ̌
2
1
H and ξ̌j = ξj 1{|ξj |≤δ−1} − Ep ξ1 1{|ξ1|≤δ−1}. It is

clear that the sequence (mν+j)j≥0 is a martingale difference with respect to (Gj)j≥0, where

Gj is σ - field generated by the observations {y1 , . . . , yν+j}. Now we set

ζ̌Ȟ =
1√
Ȟ

τ̌H∑

j=1

mν+j ,

where τ̌H = inf
{
k ≥ 1 :

∑k

j=1
E (m2

ν+j
|Gj−1) ≥ Ȟ

}
. Note, that τ̌H = τH on the set

{Aν,n ≥ H} for any H > 0. Lemma 8.4 implies that ζ̌Ȟ goes in distribution to N (0, 1)

uniformly in p ∈ Pς and S ∈ Θε,L as δ → 0. Now we set

Ω̌n = ∩k∗

j=ν
{yj = ỹj} .

Using Lemma 8.1 through the Chebyshev inequality we obtain that

sup
S∈Θε,L

sup
p∈Pς

PS,p

(
Ω̌c

n

)
≤ (k∗ − ν) r∗

4

δ8Epξ̌
2
1
(nh)2

→ 0 as n→ ∞ .

Moreover, note that on the set Ω̌n ∩ {Aν,n ≥ H}
(
Ȟ

H

)1/2

ζ̃n − ζ̌Ȟ = ∆̌1 + ∆̌2 , (8.9)

where

∆̌1 =
1√
Ȟ

τH∑

j=ν+1

(κj − 1)Q(uj) y̌j−1 ξj , ∆̌2 =
1√
Ȟ

τH∑

j=ν+1

Q(uj) y̌j−1 ξ̃j

and ξ̃j = ξj − ξ̌j = ξj 1{|ξj |>δ−1} −E ξ1 1{|ξ1|>δ−1}. Note, that

ES,p

(
∆̌2

1
|G0

)
≤ δ4ES,p




k∗∑

j=ν+1

(1− κj)
2|G0


 ≤ δ4 .

Moreover, taking into account that y̌2
j
≤ y2

j
, we get

ES,p

(
∆̌2

2
|G0

)
≤ Ep ξ̃

2
1

Ȟ
ES,p




τH∑

j=ν+1

Q(uj) y̌
2
j−1

|G0




≤ Ep ξ̃
2
1

Ȟ

(
H + δ4Ȟ

)
= Ep ξ̃

2
1

(
1

Ep ξ̌
2
1

+ δ4

)
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Taking into account here, that

lim
δ→0

sup
p∈Pς

Ep ξ̃
2
1
= 0 and lim

δ→0
sup
p∈Pς

∣∣Ep ξ̌
2
1
− 1
∣∣ = 0 ,

we obtain

lim
δ→0

sup
S∈Θε,L

sup
p∈Pς

max
(
ES,p ∆̌

2
1
, ES,p ∆̌

2
2

)
= 0 .

Therefore, Proposition 5.1 and the representation (8.9) yield for any µ > 0

lim
δ→0

lim sup
n→∞

sup
S∈Θε,L

sup
p∈Pς

PS,p

(∣∣∣ζ̃n − ζ̌Ȟ

∣∣∣ > µ
)
= 0 .

Hence Lemma 8.5.

8.3 Properties of ζ̃
n
(h)

Lemma 8.6. For all z ≥ 2

sup
n≥1

sup
h>0

sup
S∈C[0,1]

PS

(
ζ̃n(h) ≥ z

)
≤ 2e−z2/8 . (8.10)

The proof of this Lemma is the same as Lemma A.5 from [2].

Using this lemma we can obtain that for any q > 2

sup
n≥1

sup
h>0

sup
S∈C[0,1]

ES |ζ̃n(h)|q ≤ µ∗
q
, (8.11)

where µq
q
= 2q + 2q

∫∞
0
tq−1 e−t2/2dt.
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