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Modal and transient dynamics of jet flows
X. Garnaud,1, a) L. Lesshafft,1 P.J. Schmid,1 and P. Huerre1

LadHyX, Ecole Polytechnique – CNRS, 91128 Palaiseau, France.

The linear stability dynamics of incompressible and compressible isothermal jets are
investigated by means of their optimal initial perturbations and of their temporal
eigenmodes. The transient growth analysis of optimal perturbations is robust and
allows physical interpretation of the salient instability mechanisms. In contrast, the
modal representation appears to be inadequate, as neither the computed eigenvalue
spectrum nor the eigenmode shapes allow a characterization of the flow dynamics in
these settings. More surprisingly, numerical issues also prevent the reconstruction
of the dynamics from a basis of computed eigenmodes. An investigation of simple
model problems reveals inherent problems of this modal approach in the context of
a stable convection-dominated configuration. In particular, eigenmodes may exhibit
an exponential growth in the streamwise direction even in regions where the flow is
locally stable.

I. INTRODUCTION

Jets are known to sustain large-scale perturbation structures, both in the laminar and
turbulent flow regime. These structures are commonly interpreted as wavepackets devel-
oping within a laminar steady base state, or a turbulent mean flow, due to inflectional
instability mechanisms. The spatial shape of the wavepacket envelope then depends on
the downstream development of the base or mean flow. In order to fully account for the
effects of non-parallelism, the present study seeks to identify wavepacket structures in the
form of temporal eigenmodes of the linearized equations of motion in a two-dimensional
domain. Linear “global modes” of this kind have been investigated for a large variety of
flow configurations in recent years; examples include vortex shedding in the cylinder wake1

or in a three-dimensional jet in crossflow2, and the flapping of a separated boundary layer3.
Weakly nonlinear flow dynamics may in some cases be described by a combination of several
dominant global modes4,5; furthermore, passive6 as well as active7 control strategies for the
suppression of flow oscillations have been devised based on the knowledge of the global mode
spectrum. However, Barbagallo et al.8 showed that a model reduction based on eigenmodes
successfully captures the unstable structures but fails to represent the stable dynamics.

All of the above examples represent oscillator-type flows, where intrinsic flow oscillations
observed in the nonlinear regime are found to be linked to the presence of at least one
unstable linear global mode. In open shear flows, global instability is typically associated
with the presence of a locally absolutely unstable flow region9, although feedback mecha-
nisms may also be responsible for the flow destabilization. In contrast, amplifier-type flows
are characterized by a stable global eigenspectrum. Consistent with the notion of local
convective instability, non-normal interaction of stable global modes may give rise to tran-
sient perturbation growth10, but ultimately all perturbations decay in time. Jets, unless
sufficiently hot11,12, are prominent examples of amplifier-type flows. Crow & Champagne13

measured the flow response in low-Mach number turbulent jets as a function of the forcing
frequency, and found maximum amplification to occur at a Strouhal number of 0.3. This
approximate value for the preferred mode has been confirmed in numerous later studies to
be remarkably universal over a large range of operating conditions, even in the supersonic
regime14. Huerre & Monkewitz9 hypothesized that the preferred mode was the manifesta-
tion of a “slightly damped oscillator” character of the flow, i.e. that the strong flow response
may be interpreted as a resonance of the least stable global mode in the presence of external
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forcing. Such an eigenmode has been identified by Cooper & Crighton15 by extending the
dispersion relation of the local shear-layer mode into the complex X-plane. The authors
report a Strouhal number based on the diameter of 0.44 for this mode, in agreement with
experimental observations16. This analysis is based on the hypothesis of the contribution of
one single local mode to the global response and of a slow streamwise development of the
flow.
Motivated by these results, the first objective of the present study is to compute the global

spectrum of subsonic jets. A laminar steady state as well as a turbulent mean flow are
considered in the incompressible limit, and the turbulent mean flow is further investigated
in the compressible setting at a Mach number of 0.75.
Stable global spectra have been successfully computed for supersonic jets by Nichols &

Lele17,18. In weakly non-parallel laminar settings, these calculations required extremely
large numerical domains, extending over up to 800 jet radii in the downstream direction,
in order to capture the wavepacket maximum and reach convergence. In turbulent mean
flows obtained from Reynolds averaged calculations, the dominant modes were sufficiently
localized near the nozzle to be accurately resolved on much shorter domains. However,
difficulties with the computation of stable global modes have been reported for a variety
of flow configurations. Barkley et al.19 obtained easily converged modes that are localized
within the recirculation bubbles behind a backward-facing step, but no convergence was
achieved for a family of stable modes exhibiting spatial growth far downstream of the step;
these modes therefore were not further explored. Similar problems were encountered in
planar wakes with surface tension20,21. In a flat plate boundary layer22, all modes are
stable and spatially growing. Convergence with respect to the domain length was achieved
in this case through the use of carefully designed boundary conditions, based on the local
dispersion relation. Amplitudes at the in- and outflow differed by two orders of magnitude.
Much larger variations occurred in the analysis of a Batchelor vortex by Heaton et al.23;
amplitude differences on the order of 106 were found to prevent convergence. The second and
principal objective of the present paper is to expose the root cause for such computational
problems of stable global modes, and to delineate circumstances under which convergence
may be impossible to achieve.
It has been shown that individual eigenmodes may carry a limited physical meaning in

the context of amplifier flows and that non-modal stability analyses are more suitable24,25

to represent instability features in this case. An eigenmode representation of the dynamics
can however be used to carry out these analyses, and previous studies have shown that
this provides a robust means of analyzing non-normal effects22,26 as well as of performing
control7 for weakly unstable flows. Optimal perturbations are therefore computed in order
to characterize transient growth phenomena in jets. Results obtained using both an adjoint
method27 and a modal representation of the propagator28 are discussed.

The significance and challenges of a modal representation of the dynamics for advection
dominated flows is first investigated by means of model systems in § II. The flow configura-
tion of a round jet with a solid nozzle is then presented in § III, together with the numerical
procedure and the different base flows that are investigated. The results of optimal pertur-
bation (§ IV) and eigenmode (§ V) computations are then presented. Although most of the
discussion is established in the context of incompressible flows, compressibility effects are
also mentioned. Conclusions are offered in § VII.

II. MODEL PROBLEMS: EIGENMODES OF ADVECTIVE SYSTEMS

Reddy & Trefethen29 investigated the features of the spectrum and pseudo-spectrum
of a 1D convection-diffusion problem with homogeneous Dirichlet conditions at the inflow
and outflow, a well posed Sturm-Liouville type of problem. The eigenmodes exhibit an
exponential spatial growth, and a boundary layer forms at the outflow. In contrast in the
model under consideration in Cossu & Chomaz30 eigenmodes have a Gaussian envelope.
The two models presented below aim at reproducing some of the features of a flow where
instability mechanisms act in an upstream region, creating structures that are convected
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downstream by a neutrally stable flow. These models show features similar to the problem
considered by Reddy & Trefethen and provide an understanding of the relationship between
the decay rate of a mode, its spatial structure and local instability features.

A. Advection equation with upstream boundary forcing

The simplest possible model for the evolution of perturbations in an advection-dominated
flow is given by a pure advection equation with one spatial direction x and a constant ad-
vection velocity U0 > 0. The system is forced by an unsteady upstream boundary condition
with its own dynamics,

∂ψ

∂t
(x, t) + U0

∂ψ

∂x
(x, t) = 0 x > 0, (1a)

ψ(0, t) = ψ0(t), (1b)

ψ̇0(t) = −aψ0(t) a ∈ C. (1c)

The dynamics of this system are imposed by the linear ordinary differential equation (1c).

The system (1) only has one single mode of the form ψ(x, t) = ψ̃(x) exp(−iωt), with eigen-

vector ψ̃(x) and eigenvalue ω given by

ψ̃(x) = exp

(
a

U0
x

)
, ω = −ia. (2)

If the system is stable, ar ≥ 0 (subscripts r and i denote, respectively, the real and imaginary
parts of complex scalars and vectors), the amplitude of the mode grows exponentially in x
and diverges as x → ∞. A lower advection velocity U0 leads to stronger spatial growth of

ψ̃(x).
It is quite clear from this simple example how a temporally decaying source of perturba-

tions under pure advection gives rise to a spatially growing structure, since all perturbations
generated at a later time must be exponentially smaller than those generated earlier. Fur-
thermore, this model also serves to exemplify the occurrence of spurious numerical modes.
If (1) is discretized using a first-order upwind scheme on a uniform mesh, the mode (2)
is recovered independently of the size of the numerical domain, but a second eigenvalue is
found as −1/h, where h is the grid spacing. The corresponding spatial structure is localized
at the outflow discretization point. If a general non-uniform mesh with n points is used,
then n distinct modes exist, localized anywhere on the grid. In this particular example,
n − 1 of them have no physical meaning because they do not correspond to modes of the
continuous problem. In a more general case where no a priori knowledge about the modal
structure is available, care must be taken with numerically computed modes. Although the
discretization method is suitable for transient problems, it is possible that even the least
stable modes computed numerically may have no physical meaning.

B. Unforced advection–diffusion–reaction equation

It may be argued that the above model is indeed too simple for a comparison with jet
dynamics, since information can only propagate downstream. This property, however, is
not the cause for the exponential spatial growth. A similar reasoning can be applied to the
linear advection–diffusion–reaction equation (also referred to as linear Ginzburg–Landau
equation) , given as

∂ψ

∂t
+ U0

∂ψ

∂x
= −a(x)ψ +

∂2ψ

∂x2
x > 0, (3a)

ψ(0, t) = 0. (3b)
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In this generalized form, with the extra term a(x)ψ, (3a) is often referred to as the linear
Ginzburg–Landau equation in the literature. At each individual location x, the system is
known31 to be locally stable if a(x)>0, convectively unstable if −U2

0 /4 < a(x) < 0 and
absolutely unstable if a(x)<− U2

0 /4.

Cossu & Chomaz30 considered solutions of a problem of the form (3a) that are bounded
in R, and assumed the instability parameter a(x) to be of a parabolic shape a(x) = αx2+β,
with α > 0, such that the spatial and temporal growth rates tend to −∞ as x → ±∞.
Eigenmode shapes are recovered analytically, and they are found to decay as exp(−x2) for
large x.

On the contrary, if a reaches a finite value a∞ as x→ ∞, perturbations do not experience
arbitrarily strong spatial or temporal decay. For a demonstration of the spatial behavior, this
limiting value a∞ can be taken as 0 without loss of generality, as it only affects the temporal
eigenvalue but not the corresponding eigenfunction. In order to model a situation where
instability mechanisms are active around a given position, while passive convection and
diffusion of perturbations is dominant throughout the rest of the domain, let the instability
parameter a(x) be of the form

a(x) = a0(i− 1)e−(x−2)2 , a0 > 0. (4)

In order to numerically solve (3)–(4) on the interval [0, xmax], a boundary condition has to be
imposed at the outflow x = xmax. While a homogeneous Dirichlet boundary condition can
be imposed for a(x) = αx2+β with α > 0, this would result in the formation of a boundary
layer at the outflow in our present case32. In order to take into account convective effects at
the outflow, ψ′′(xmax) = 0 is imposed. This “convective outflow”-type boundary condition
neglects viscous effects at x = xmax. Results are qualitatively similar when imposing a
homogeneous Neumann boundary condition, but the truncation effect is stronger.

Figure 1 shows the effect of the different parameters on the spectrum as well as on the
leading eigenmode ψ(0). Figure 1(a) shows that, for a0 = 1, the system changes from
globally unstable to stable as U0 is increased. At low values of U0, the leading eigenmode
reaches a maximum around x = 2 and decays exponentially downstream (figure 1(b)). As
U0 increases, the temporal decay of the mode becomes stronger, and the spatial maximum
eventually disappears: exponential growth is observed essentially throughout the entire
domain. As observed previously22, the spatial growth rate of the global mode corresponds
to the local spatial growth rate at the global frequency.

For U0 = 4 and U0 = 5, the largest values of U0 considered in figure 1(a, b), the overall
shape of the spectrum completely changes. Figure 1(b) shows that in these cases, exponential
growth occurs throughout the domain, and the amplitude of the mode varies by a factor of
1016 between x = 0 and the outlet at x = 25: the modes, and in particular the region 1 <
x < 3 where instability mechanisms act, cannot be resolved numerically. This phenomenon
can also be seen as the length of the domain is increased for fixed U0 and a0. The same
behavior is observed for a(x) ∈ R, in which case the spectrum should lie on the imaginary
axis, indicating that none of these computed modes actually correspond to modes of the
continuous problem. Figure 1(c) shows that the eigenvalues returned by the eigensolver
for U0 = 5 approximately lie on the 10−14 contour of the pseudospectrum of the discrete
operator which, in this case, does not provide a good approximation to the spectrum. In
situations where the amplitude of the mode cannot be represented throughout the domain,
even the QZ algorithm fails to compute an accurate approximation to the discrete spectrum.

The relative effect of the instability parameter and of the advection velocity is summarized
in figure 1(d), where the spatial growth rate of the leading eigenmode is represented as a
function of the two parameters U0 and a0. From this growth rate, it is possible to evaluate
the maximum domain length for which the computation is possible using double precision
arithmetic. The dashed lines displayed in figure 1(d) correspond to values of (a0, U0) for
which the numerical truncation errors prevented the computation.
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FIG. 1. (color online) (a, b): effect of U0 on the leading eigenmodes for the advection–diffusion–
reaction model (for xmax = 25 and a0 = 1). The least stable part of the eigenvalue spectrum
is shown in (a), and the leading eigenmode for each value of U0 (represented in (a) by circles)
are displayed in (b). (c): spectrum (+ symbols) and iso-contours of the pseudo-spectrum for
xmax = 25, U0 = 5 and a0 = 1 (logarithmic scale). (d): Spatial growth rate of the leading global

mode (measured as ψ(0)′(10)/ψ(0)(10)) as a function of parameters a0 and U0. The solid contour
represents the limit between growing and decaying modes, the dashed lines gives the maximum
value of the advection parameter for which computation is possible in a domain of a given length
(indicated on the curve).

C. Conclusions from model problems

The above examples have shown that the spatial behavior to be seen in § VA for the
eigenmodes of the Navier–Stokes equations is not inconsistent, and that it does not corre-
spond to a spatial instability within a local framework. In the case where the flow dynamics
are dominated by convection and diffusion effects, the downstream evolution of the modes
results from two opposing mechanisms: the local stability of the flow tends to decrease the
amplitude of the mode in the streamwise direction, but the advection of the globally stable
structures has the opposite effect. In the case of a parabolic profile for a, the local stability
eventually dominates for large x and the global modes decay to 0. On the contrary for
a→ a0 as x→ ∞ the local stability is not necessarily strong enough to prevent exponential
spatial growth. The second model pointed out that, when convective effects dominate as
x → ∞, the size of the computational domain should be small enough that the amplitude
of the mode can be resolved throughout the domain, otherwise numerical accuracy becomes
problematic as the 10−15-pseudospectrum can extend far from the spectrum29. The follow-
ing section will present details on how this affects the computation and the convergence of
modes for the Navier–Stokes system.
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III. SETUP OF THE JET PROBLEM

A. Flow configuration

a. Incompressible setting

A cylindrical jet of a Newtonian fluid with viscosity ν∗, of radius R∗ and exit velocity
U∗
0 is considered. The two latter quantities are used to make lengths and velocities non-

dimensional. The outer fluid is at rest. The Reynolds number is taken as

Re =
U∗
0R

∗

ν∗
= 103.

Frequencies f∗ will be reported in terms of the non-dimensional circular frequency ω, related
to the Strouhal number St as

St =
2f∗R∗

U∗
0

=
ω

π
.

The axisymmetric flow domain, described in terms of cylindrical coordinates r, θ and x,
is represented in figure 2(a). The steady solution of the non-linear Navier–Stokes equations
(see § III B) is assumed to be axisymmetric. This assumption is no longer made for the
perturbations, but in a linear context all perturbation quantities can be decomposed into
independent Fourier-modes in θ, by introducing the azimuthal wavenumber m ∈ N. Con-
sequently, only the two-dimensional (r, x) plane needs to be discretized for both non-linear
and linear calculations.
The boundary of the computational domain Ω consists of Γi, Γw,Γt,Γo and Γa, corre-

sponding to the inlet, a solid wall, the outer radial boundary, the outflow and the jet axis.
The inflow velocity is imposed on Γi, a no-slip condition on Γw, and stress-free boundary
conditions are applied on Γt

33:

1

Re

∂u

∂n
− pn = 0,

where n is the outgoing normal at the boundary (cf. equation 10.67 in Ref. 33). Compat-
ibility conditions on Γa ensure a smooth solution on the axis34. Unless stated otherwise,
stress-free boundary conditions are imposed at the outflow Γo.

The length of the pipe included in the numerical domain is set to xp = 5, and it has
been verified that setting the domain height to rmax = 10 does not affect the results of all
incompressible calculations.

b. Compressible setting

In addition to the flow parameters introduced above, the compressible setting is charac-
terized by density and temperature scales ρ∗∞ and T ∗

∞, defined as the respective values in
the outer fluid at rest. Natural choices for the Mach and Prandtl numbers are

Ma =
U∗
0

c∗∞
, Pr =

µ∗C∗
P

κ∗
,

where c∗∞ =
√
γr∗T ∗

∞ denotes the ambient speed of sound and Cp the specific heat at
constant pressure.
In order to capture the acoustic radiation, the typical extent of the numerical domain has

to be of the same order in the axial and radial direction. High resolution Finite Differences
(FD) on a rectilinear grid are used to treat such a large problem. Consequently, the geometry
(schematically displayed in figure 2(b)) is slightly different than in the incompressible case.
In compressible studies, the jet pipe is modeled as an infinitely thin adiabatic wall located
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FIG. 2. Flow configuration for (a) incompressible and (b) compressible computations . The incom-
pressible Navier–Stokes equations are solved on the 2D domain Ω using a Finite Element formu-
lation, with an inflow boundary condition (BC) on Γi (thin solid line), a no slip BC on Γw (thick
solid line), a stress-free BC on Γo (dashed line) and compatibility conditions on the axis Γa (dash-
dot line). No sponge layers are used in this case. The compressible Navier–Stokes equations are
discretized using high order Finite Differences (FD) on the rectangular domain represented in (b).
The shaded regions correspond to sponge layers, and the presence of an infinitely thin adiabatic
wall for r = 1 and x ≤ 0 is taken into account by means of appropriate FD schemes.

FIG. 3. Axial velocity field of the two base flows. (a) : laminar base flow, computed as a steady
solution of the Navier–Stokes equations. (b) : turbulent mean flow, adapted from an analytical
model36.

at r = 1 and x ≤ 0. Its presence is taken care of by using appropriate FD schemes. The
treatment of the far field boundary conditions depends on the type of study performed.
As will be shown later, the eigenmodes of the linearized Navier–Stokes equations are not
spatially localized, so an accurate treatment of the outer boundaries is needed. To limit as
much as possible the reflection of vortical or acoustic waves, the non-reflecting boundary
conditions described by Bogey and Bailly35 are used together with sponge layers. This is
not required for the computation of the optimal perturbations which have a limited spatial
extent. In the latter case, the sponge layers alone suffice to ensure that the solution decays
to zero at the outer boundaries without affecting the flow in the physical region.

B. Base flows

Two types of base flows are investigated in this study: a laminar steady-state solution
of the Navier–Stokes equations, and a parametric model of a turbulent mean flow. The
incompressible analysis is performed on both these base flows, whereas only the turbulent
case is considered in the compressible study.



8

a. Laminar steady state

A steady flow state is computed as an exact solution of the Navier–Stokes equations (see
§III C). The inflow velocity is prescribed on Γi as

ux(−xp, r) = tanh (5(1− r)) ur(−xp, r) = 0 uθ(−xp, r) = 0.

This profile has a momentum thickness

δ =

∫ 1

0

rux(1− ux) dr ≈
1

20
.

Stress-free boundary conditions are employed at the outflow Γo. The resulting base flow is
weakly non-parallel, as seen in figure 3(a). A slight growth of the boundary layer in the
pipe leads to an increase in the centerline velocity between x = −xp and 0, so that the exit
centerline velocity is 1.06 at x = 0.

b. Turbulent mean flow

Based on experimental measurements, Monkewitz & Sohn36 proposed a model for the
turbulent mean flow of compressible jets. The flow field comprises two regions: a potential
core extending over a distance of eight jet radii downstream of the nozzle, and an adjoin-
ing self-similar region with Gaussian profile shapes. This model is extended in our study
by a parallel flow region inside the pipe, which smoothly connects to the free jet over the
interval 0 ≤ x ≤ 1. The full model is described in detail in Garnaud et al.37. The resulting
streamwise velocity field is displayed in figure 3(b) for the zero-Mach-number case. The
formulation does take into account compressibility effects, and finite-Mach-number configu-
rations are used for the compressible analysis. The inflow momentum thickness is prescribed
as δ−1 ≈ 23, similar to the laminar case.
Following Hussein & Reynolds38, the stability of turbulent flows can be analyzed using a

triple decomposition of the flow field into a mean flow, coherent perturbations and fine-scale
turbulence. Using this decomposition, turbulent scales affect the motion of instability waves
through Reynolds stresses, for which a closure model needs to be provided39,40. For turbulent
jet flows, successful stability analyses41,42 have been performed while neglecting the effect
of Reynolds stresses, and this approach is also followed here as a first approximation. Local
stability analyses show that perturbations with low azimuthal wavenumber m are amplified
in the potential core region, whereas the self-similar downstream region of the base flow is
unstable only to helical m = 1 perturbations.

C. Numerical methods

a. Incompressible setting

The incompressible Navier–Stokes equations are discretized using P2-P1 Finite Elements
(FE), and the zero-divergence condition for the flow velocity is enforced by a penalty
method43. The incompressible laminar steady flow is computed using Newton’s method
and the FreeFEM++ software43. A direct solver44 is used for linear systems. Given this
steady state or a model turbulent mean flow (see § III B b), the linearized Navier–Stokes
equations that govern the evolution of perturbations may be written as

B
∂q

∂t
= Lq (5)

where q is the state vector, containing the values of all degrees of freedom of the velocity
and pressure fields. Equation (5) is discretized using FreeFEM++ and the resulting sparse
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matrices are exported for the linear analysis. The solution of all the problems in § IV
and § VA relies on the software libraries PETSc45, SLEPc46 and MUMPS44. Eigenvalue
problems arising in § VA are non-Hermitian, so the Krylov-Schur method is used. In order to
compute the least stable eigenmodes the “shift-invert”47 spectral transformation is applied
using a direct linear solver.
In the study of optimal perturbations the amplitude of a perturbation needs to be mea-

sured. The square root of the perturbation kinetic energy integrated over the entire domain
Ω is used for incompressible flows. This results in a pseudo-norm, as pressure is not taken
into account. For the problem to be well posed, the amplitude of the initial condition needs
to be measured in terms of a norm. The initial disturbance is therefore assumed to consist
only of a velocity perturbation. Let qu be a vector containing only velocity-related degrees
of freedom, and P be a matrix that associates qu to a state vector where pressure-related
degrees of freedom are zero. Conversely, the operator P † removes these degrees of freedom
from a full state vector q. The pseudo-norm is then obtained as

‖q‖2 = q
†
uQuqu = q

†PQuP
†
q = q

†Qq (6)

where Qu is a Hermitian definite matrix.
The computation of optimal perturbations described in § IV requires (i) a direct time

stepper, (ii) an adjoint time stepper and (iii) an eigenvalue solver. The linear equations of
motion are marched forward in time using the Crank-Nicolson method (steps (i) and (ii)). A
discrete adjoint is used for step (ii), based on the Hermitian transpose of the discretization
matrices. Finally, as the eigenvalue problem to be solved is Hermitian, the Lanczos method
is used.

b. Compressible setting

The linearized compressible Navier–Stokes equations are spatially discretized using a
finite-difference scheme designed for aero-acoustic studies48. The resulting discretization
matrix is sparse, but with an important number of nonzero elements, in particular due
to the stencil of the cross derivative terms which involves here 121 discretization points.
Another consequence of the large FD stencils is that the bandwidth of the sparse discretiza-
tion matrices becomes relevant, leading to excessive memory requirements for direct solvers.
Iterative solvers could be used instead49, but these methods are very sensitive to the de-
sign of an efficient preconditioner and robustness may be an issue. In order to circumvent
these problems, all of the analysis is performed using an algorithm based on time stepping
of linear equations (an explicit third order Runge-Kutta method is used here). In such a
framework, the structure of the discretization matrices is not needed, therefore a matrix-free
approach is used. Compressible eigenmodes are computed by use of a relaxation method50,
which is based on the application of a bandpass frequency filter to the equations of motion.
This method allows to solve very large eigenvalue problems with low memory requirements.
However, our experience shows that the relaxation method in general does not reach the
machine-precision accuracy that is possible with the shift-invert method.
The adjoint Navier–Stokes operator is needed for the computation of optimal pertur-

bations (§ IV). A discrete adjoint formulation is chosen, following the memory-efficient
approach of Fosas et al.51. The norm used is that of Hanifi et al.52. Care is taken with the
selective spatial filter so that the discrete propagator of the adjoint equations is the adjoint
of the discrete direct propagator up to machine precision.

IV. TRANSIENT GROWTH OF PERTURBATIONS

The initial condition q(0) that is most amplified over a finite time interval T is referred to
as the optimal perturbation for T . Reddy & Henningson32 established the notion of optimal
perturbations in order to characterize the transient (short-term) linear dynamics of flow
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FIG. 4. Spatio-temporal evolution of the optimal initial condition for m = 0 and T = 10 for the
turbulent jet mean profile in the incompressible case. The value of the axial velocity along the line
r = 0.9 is represented at various time steps, as indicated next to the curve.

systems. Let the amplification factor be defined as

Gm(T ) = max
q(0)

‖q(T )‖

‖q(0)‖
. (7)

Furthermore, let PT be the propagator, i.e. the linear operator that advances an initial
condition over the time interval T according to equation (5). The optimal gain Gm(T )

is found as the leading eigenvalue of the operator Q−1
u PP†

TQPTP
†, and the associated

eigenvector represents the optimal perturbation. The eigenvalue problem is solved using

the Lanczos method, as implemented in the SLEPc library. The operators PT and P†
T are

applied using the time steppers described in § III C, and Q−1
u is determined using a Cholesky

decomposition (in the case of a finite-difference discretization, this decomposition is easily
performed by hand).

A. Incompressible flow

In the incompressible setting, the length of the computational domain is chosen as xmax =
40, and stress-free boundary conditions are employed at the outflow. The convergence of the
results with respect to the spatial and temporal discretizations has been verified by using
(i) a halved time-step and (ii) a finer mesh where the cell size in the near-nozzle region
is divided by more than 3. For both the laminar and the turbulent base flows, and for all
azimuthal wave numbers and time horizons, the optimal perturbation is found in the form of
structures localized in the boundary layer upstream of the nozzle, and the perturbations are
amplified as they travel downstream. A typical example is shown in figure 4, which displays
the evolution of the optimal perturbation of the turbulent jet for m = 0 and T = 10, along
the line r = 0.9.
The optimal gain as a function of time horizon T is displayed in figure 5 for both base

flows. In the case of the laminar base flow, this amplification factor grows monotonically
with T as long as the perturbation is contained inside the numerical domain. Very large
amplitudes are reached, comparable to similar computations in the supersonic regime by
Nichols & Lele17. In the case of the turbulent base flow (figure 5(b)), the gain reaches a
maximum for a finite time horizon Topt,m. This maximum is particularly pronounced for
axisymmetric perturbations (m = 0), with Topt,0 ≈ 10. This interval roughly corresponds
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FIG. 5. Gains associated with the optimal perturbations for (a) the laminar and (b) the model base
flows.Thick solid line : m = 0, dashed line : m = 1, dash-dotted line : m = 2, dotted line : m = 3
and thin solid line m = 4.

to the advection time of the initial perturbation across the potential core. Downstream of
the potential core, axisymmetric perturbations decay as they travel on. Non-axisymmetric
perturbations may still experience further growth beyond the potential core, and the decay
of Gm(T ) with T is slower as a consequence. This observation is consistent with the fact
that bell-shaped profiles in the self-similar regime may be unstable for m 6= 0 but not
for axisymmetric perturbations53. Both the laminar and the turbulent settings display
the largest gains for helical perturbations m = 1. It may be conjectured that a lift-up

mechanism54 is responsible for the strong growth of helical perturbations, since such a
mechanism can only exist at azimuthal wavenumbers m 6= 0. However, no firm evidence of
lift-up effects can be reported at present.

B. Effects of compressibility

Corresponding results of optimal perturbations of the turbulent mean flow at Ma = 0.75
are displayed in figure 6. The qualitative behavior of Gmax(T ) (shown in figure 6(a)) is
similar to that obtained for incompressible flows (figure 5(b)), and the amplification levels
are comparable, although perturbations are not measured in the same norm. The spatial
shape of optimal perturbations for short time horizons also resembles those found in the
incompressible setting. Figures 6(b, c) show the optimal perturbation for T = 12: vortical
structures in the pipe boundary layer are amplified as they travel through the jet shear layer.
However, compressibility allows a different scenario at longer time horizons T & 25, as shown
in figures 6(d, e): the optimal initial condition takes the form of a spherical acoustic pulse
that contracts and hits the nozzle at a finite time. A vortical wavepacket is thus created at
the nozzle, which is amplified while it propagates through the potential core. This result
illustrates that acoustic waves can be very efficiently converted into vortical perturbations
at the nozzle tip55–57.
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FIG. 6. (a) Optimal perturbations for the model subsonic jet at Ma = 0.75 for m = 0 (solid line)
and m = 1 (dashed line). (b, c) : Azimuthal vorticity field for the optimal initial condition for
m = 0 and T = 12, and the corresponding perturbation at t = 12. (d, e) : Dilatation field for the
optimal initial condition for m = 0 and T = 30, and the corresponding perturbation at t = 30.

V. MODAL ANALYSIS

A. Incompressible global modes

a. Spectrum of the laminar base state

Eigenmodes of the linear equations (5) are sought in the form q(t) = q̃ exp(−iωt), such
that q̃ and ω satisfy the generalized eigenvalue problem

− iωBq̃ = Lq̃. (8)

Stress-free boundary conditions are used at the outflow Γo, and eigenmodes are computed
for xmax = 60 with various shift parameters. The resulting spectra for the laminar base
flow are shown in figure 7(a).

All eigenvalues have a negative growth rate ωi ≤ 0 and therefore are stable. This finding
is consistent with local instability results from the literature, which have shown isothermal
jets to be convectively unstable36, except in rare circumstances58.

Several families of modes can be identified from figure 7(a). A first branch of modes,
starting at the origin, is represented as circles (blue online). The least stable of these
modes correspond to vortical structures in the free-stream, as displayed in figure 7(b). The
wavelength of these nearly stationary modes scales with the size of the numerical domain. As
the growth rate decreases along this branch, the branch is distorted and the mode structure
tends to be localized more towards the jet shear-layer. This is an effect of the finite extent
of the numerical domain that has been observed in other studies26,59. A second branch is
represented by × symbols (black online). These eigenmodes are localized inside the shear
layer. At the lowest frequencies, an exponential spatial growth in the streamwise direction
is observed throughout the computational domain, as shown in figure 7(c). This behavior is
similar to what was observed in the model problems of § II, and by this analogy we attribute
the exponential spatial growth to the temporal decay of these modes. At higher frequencies
(figure 7(d)), spatial growth is still found downstream of the nozzle, but the mode reaches
a maximum amplitude within the computational domain. The maximum growth rate along
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FIG. 7. Global modes computed for m = 0 on the laminar base flow. (a): eigenfrequency spectrum.
(b, c, d, e): axial velocity magnitude of four selected modes, in logarithmic scale, as indicated in (a).

FIG. 8. Axial velocity for global modes (c) and (d) of figure 7, in linear scale.

this branch occurs around the frequency (ωr ≈ 1) for which the location of maximum
amplitude of the mode enters the computational domain, suggesting that the maximum
in ωi is an artifact of the finite domain size. Domain truncation effects are investigated
in the following section. The phase velocity of all modes along this branch corresponds
approximately to half the jet velocity on the centerline; modes at higher frequency therefore
display shorter wavelengths, as can be seen in figure 8.
A third family of modes is found, represented by plus signs (red online) in figure 7(a).
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None of these eigenvalues are recovered identically with different shift parameters, indicating
a lack of convergence. However, these modes have been computed by the eigenvalue solver
with the specified convergence criterion, namely ‖Lq+ iωq‖ < 10−10‖q‖. We attribute this
class of modes to spurious effects arising from finite machine precision. The spatial structure
of one such spurious mode is represented in figure 7(e).
All modes represented in figure 7 display very large amplitude variations throughout the

free-jet region. If these variations are of the order of machine precision, the low-amplitude
dynamics near the nozzle cannot be accurately resolved. The perturbation amplitudes shown
in figures 7(b − d) do not span more than ten orders of magnitude in the free-jet region,
and appear to be well-converged. The spurious mode in figure 7(e), in contrast, varies over
14 orders of magnitude, and seems to be affected by the double-precision round-off error as
a consequence. In fact, it may be surmised that its very existence is due to the round-off
error; this conjecture will be further investigated in the next section. A similar observation
has been made by Heaton et al.23 in their modal stability analysis of the Batchelor vortex.
Those authors report that modes with amplitude variations above a factor of 106, between
the inlet and outlet of the computational domain, cannot be accurately resolved with their
numerical method. With the present algorithm, this limiting factor is approximately 1014.

b. Influence of domain truncation

All eigenmodes displayed in figure 7 reach their maximum amplitude at or near the
downstream boundary of the numerical domain. It may therefore be expected that the
position of this boundary, as well as the numerical treatment of the outflow condition, should
affect the results. In order to evaluate this influence, different domain lengths between 40
and 100 radii have been tested. The results are compared in figure 9(a), which shows that the
branches of eigenmodes computed are not domain-independent. A similar behavior has been
obtained in the analysis of the Blasius boundary layer22, and is attributed to the fact that
the wavepackets travel throughout the domain. Most importantly, the maximum growth
rate of the shear-layer branch shifts to lower frequencies as xmax is increased. An inspection
of the associated spatial amplitude distributions reveals that this maximum growth rate
occurs roughly at the frequency at which the mode maximum amplitude is first captured
inside the numerical domain. At low real frequencies, the true amplitude maximum lies on
the outflow boundary of the numerical domain, and the eigenvalues are strongly affected
by truncation. With increasing real frequency, this amplitude maximum moves further
upstream, and the influence of the domain truncation lessens. The mode shapes shown
in figure 7 are consistent with this observation. If the trend with increasing domain size
is extrapolated, one may expect that the growth rate of the shear-layer branch decreases
monotonically with increasing frequency in an infinitely long domain.
While the spectra in figure 9(a) have been computed with stress-free outflow condi-

tions, figure 9(b) displays corresponding results obtained with a “convective outflow”
formulation60. Both boundary conditions are found to give very similar results. It is
inferred from this comparison that the outflow boundary conditions do not have a signifi-
cant impact on the eigenmode computations in this study.
It appears that the spurious branches become less and less stable as the domain length

increases. This branch is interpreted as a consequence of finite precision arithmetic. Under
the assumption of a quasi-parallel flow, let Cg be the group velocity of a spurious spatial
instability wave forced by numerical noise in the vicinity of the jet pipe,

ψsp = ψ̂(r) exp(i(kr + iki)x) exp(−iωt) (9)

where ω is the complex forcing frequency. This forced wave will be considered an eigenmode
by the solver if the forcing amplitude is of the order of the numerical precision ǫm, i.e. if
the amplitudes of this forced wave at the inlet and at the outlet are such that

ψ(x = 0) ∼ ǫmψ(x = xmax).
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FIG. 9. Spectra computed for various domain lengths using stress-free (a) and convective outflow
(b) boundary conditions at the outlet. Crosses : xmax = 40 (black online). Triangles : xmax = 60
(blue online). Plusses : xmax = 80 (green online). Circles : xmax = 100 (red online). The dashed
lines corresponds to the estimated decay rate (11).

In this case, (9) gives ki = − log(ǫm)/xmax. Let ωt
i(kr) be the local temporal growth rate

associated with the axial wavenumber kr. In the limit of long wavelengths, jet flow profiles
are approximately marginally stable. Following an approach similar to that of the Gaster
transformation61, the global temporal decay rate ωi can be related to the global spatial
growth rate ki by

ωi ≈ Cgki + ωt
i(kr) ≈ Cg

log(ǫm)

xmax

. (10)

As the group velocity Cg is of the order of the base flow velocity U0, the decay rate associated
with such pseudomodes can be estimated as

σ ≡ U0
log(ǫm)

xmax

. (11)

Figure 9 shows that the above expression provides a reasonable estimate for the decay rate of
the spurious modes. Since σ varies as 1/xmax, this spurious branch will eventually become
less stable than the other two branches as xmax increases, preventing their computation. It
is thus impossible to obtain converged results for the spectra, at least using standard double
precision arithmetic (ǫm = 10−15).
It appears that machine precision imposes severe constraints on global mode computations

for convective flows such as jets. The streamwise extent of the numerical domain must
be sufficiently large to capture the amplitude maximum of the mode, but the amplitude
variations must also be within the range of machine precision. At the same time, spurious
modes contaminate an increasingly large portion of the spectrum as the numerical domain
length is increased.

c. Spectrum of the turbulent mean flow

One may intuitively expect that the much faster spreading of the turbulent mean flow,
compared to the laminar base flow considered in the last section, will lead to global mode
structures that decay spatially within a shorter distance from the nozzle. In view of the
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FIG. 10. Global spectra computed for m = 0 for the model base flow. Crosses : xmax = 40 (black
online). Triangles : xmax = 60 (blue online). Plusses : xmax = 80 (green online). The dashed lines
corresponds to the estimated decay rate of the spurious branch given by (11).

discussion in the preceeding section, such a behavior would be favorable for the numerical
analysis. However, the mean flow spreading also implies a decreased advection velocity,
which in turn strengthens the spatial growth due to the advection of stable structures.The
estimate for the decay rate of spurious structures given by (11) can be modified to account
for the significant variation of the base velocity on the jet axis, giving

σ′ ≡ log(ǫm)

(∫ xmax

0

1

u0x(0, x)
dx

)−1

. (12)

The spectra displayed in figure 10 show that this estimate is also reasonably accurate. This
implies an even more stringent constraint on the size of the computational domain than in
the case of a nearly parallel flow.
Figure 11 displays selected global modes computed for xmax = 60 : as for all the modes

presented in figure 10, the exponential growth continues throughout the computational
domain. Indeed, in light of the discussion of the model problems, there is no guarantee
that a maximum will ever be reached: the maximum amplitude may well continue towards
infinity. Against all expectations, it is found that the faster spreading of the present mean
flow does not lead to more upstream-localized mode structures. Therefore the computation
of the spectrum is not any more accessible than in the laminar base flow case.

B. Compressible eigenmodes

Eigenmodes have been computed for the model mean flow at Ma = 0.75. The computed
spectrum is displayed in figure 12(a). Similar to the incompressible case, it is worth pointing
out that the spectrum does not show any preferred frequency. The decay rates of the modes
are however significantly less stable than in the incompressible case, by more than a factor
of five. Although the solver used for this computation is less accurate than the one used for
incompressible computations, the results displayed in figure 12 are converged with respect
to the iterative eigenvalue solver. As a consequence of the very low decay rate, the spatial
growth of eigenmodes is weaker than in the incompressible case, and at high frequencies the
global modes decay right after the end of the jet pipe (see figure 12(b, c, d))

Several reasons may explain such a slow temporal decay. As it was seen in § IV, acoustic
disturbances efficiently excite vortical structures, and, as the Mach number increases, the
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FIG. 11. Axial velocity fields of selected global modes computed for m = 0 for the model base
flow with xmax = 60 and stress-free outflow boundary conditions (logarithmic scale). (a) : ω =
0.22− 0.11i, (b) : ω = 1.0− 0.17i, (c) : ω = 0.98− 0.23i .

acoustic wavelength gets closer to the wavelength of vortical wavetrains, so that excitation
can be efficient and lead to a feedback loop. The feedback could also be spurious: indeed,
although the optimal perturbation results of § IV are quite insensitive to the treatment of
the outer boundaries, this significantly affects the eigenmodes. In spite of the use of non-
reflecting boundary conditions and very weak sponge regions, it is expected that an effect
is still present here. Similarly, as the vorticity field grows in space due to the temporal
stability, the acoustic field also grows exponentially with the distance to the acoustic sources.
As a consequence, even for weakly damped modes, reflection can be significant in large
numerical domains. Finally, the low decay rate may be related to the fact that the numerical
dissipation is lower with the present FD formulation than with the FE discretization used
for incompressible flows. Indeed, in situations where structures are convected outside of the
numerical domain, dissipative effects can be important at large times.

VI. PROJECTION OF THE TRANSIENT DYNAMICS ONTO THE SPACE SPANNED BY

EIGENMODES.

Optimal perturbations have been computed in § IV using a direct-adjoint technique. An
alternative method is to approximate the propagator using a reduced-order basis consisting
of the computed eigenmodes. This technique has, for example, been successfully used by
Akervik et al7 for the global analysis of an amplifier flow. Regardless of the relevance of the
eigenmodes to describe the dynamics, such an analysis is expected to yield accurate results
provided the eigenmodes are computed accurately. Figure 13 displays the optimal gains
computed for the laminar incompressible jet withm = 0: the N least stable eigenmodes have
been used for the computation, with N varying from 5 to 18362. It appears that even when
all the computed eigenmodes are taken into account, the optimal gains are under-estimated
by up to two orders of magnitude. Eigenmodes are therefore not relevant individually,
which is already well known for amplifier flows, but also as a superposition to represent
transient dynamics. A similar study on a stable lid-driven cavity flow (not shown here)
yielded substantially better convergence towards transient energy gains when the number
of included eigenmodes is increased. This further emphasized the role of advection in the
representation of transient phenomena by global modes. The above finding is contrary to
that of Akervik et al7 and is related to the much stronger streamwise growth of eigenmodes in
the present configuration. Indeed the optimal initial conditions consist of structures in the jet
pipe. In this region, all eigenmodes have very small amplitudes and numerical inaccuracies
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FIG. 12. Global modes computed for m = 0 on the model subsonic jet at Ma = 0.75 . (a):
eigenvalue spectrum. (b, c, d): azimuthal vorticity of three selected modes, as indicated in (a).

(due to both the eigenmode computation and the projection) become significant.

VII. CONCLUSIONS

The linear dynamics of perturbations in jet flows is the result of two mechanisms, advec-
tion by the base flow and shear layer instability. In order to investigate the effect of these
two features on the modal and non-modal stability properties of the flow, two types of base
flows have been considered. The first one is a laminar steady solution of the Navier–Stokes
equation, for which both advection and instability remain approximately constant in the
streamwise direction. A turbulent mean flow has also been used: in this case, instability
is limited to a region of about eight radii downstream of the jet pipe, referred to as the
potential core, where advection remains approximately constant. Further downstream the
base flow velocity decreases significantly and the jet profiles become stable to axisymmetric
perturbations.
An optimal perturbation analysis has been performed on these two base flows, revealing

that vortical structures are amplified throughout the laminar jet, but only in the potential
core for turbulent mean flows. In both cases the flow is globally stable.
In order to investigate the preferred frequency observed in jet experiments, a modal

analysis has then been performed, but several difficulties were encountered. The eigenmodes,
computed on a finite domain, exhibit an exponential growth in the streamwise direction.
Intuitively, one might expect that eigenmodes should spatially decay in locally stable flow
regions, and that therefore such a decay will eventually occur if the numerical domain is long
enough in the streamwise direction. This is actually not the case, and longer computational
domains in fact tend to aggravate the numerical difficulties.
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FIG. 13. Optimal transient amplification of axisymmetric perturbations for the laminar incom-
pressible jet. Thick line: computation using the adjoint equations, as computed in § IV. Thin lines:
optimal gains computed by projecting the dynamics onto the space spanned by the N least stable
eigenmodes.

The cause of these problems has been discussed for model equations that mimic the advec-
tion and instability properties of jet flows. Indeed, when eigenmodes represent the advection
of stable, temporally decaying structures, they grow exponentially in the streamwise direc-
tion. When computing such modes, difficulties therefore arise due to the domain truncation,
the modeling of outflow boundary conditions and the finite precision of computer arithmetic.

Eigenmodes have been computed for jets in laminar and turbulent, compressible and
incompressible settings, and results display the same properties as those obtained from the
model problems. It has been shown that convergence of the spectrum of incompressible jets
is inhibited by the presence of spurious pseudomodes which impose strict constraints on the
size of the numerical domain.

As was shown with simple models, the exponential spatial growth of the stable modes is
not an indication of a local spatial instability, it is merely a reflection of the fact that the
eigenfrequency ω has a negative imaginary part. This has been further exemplified through
the computation of eigenmodes for turbulent mean flows that grow even faster than those
computed for a laminar base flow while the flow is stable downstream of the potential core
for m = 0. The temporally stable structures observed in the modes, generated by a shear
layer instability downstream of the nozzle, are convected downstream in a quasi-neutral flow
resulting in an apparent spatial growth. For both mean flows the global decay rates of shear
layer modes are of the same order of magnitude since the inflow shear layer thickness is
similar. As the advection velocity is much smaller for the turbulent mean flow, the spatial
growth is therefore larger.

For compressible flows, the computed eigenmodes are less stable than in the incompress-
ible case. As a consequence, the local stability of shear layer structures dominates over the
growth due to stable advection such that the exponential growth is not observed. How-
ever, this growth not only affects vortical structures but also acoustic waves. For acoustic
perturbations the exponential growth due to the advection of stable structures eventually
dominates over the algebraic decay: the acoustic waves radiated from a mode reach their
maximum amplitude at the boundaries of the computational domain, which represents con-
siderable challenges to avoid spurious reflections.

The present results found for jet flows are consistent with the literature on the stability of
the Blasius boundary layer. The qualitative features of the eigenmodes are similar for jets
and boundary layers, but the physical settings are quite different, and eigenmodes are much
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less temporally stable for the boundary layer problem. Consequently, the spatial growth
of boundary layer modes is weaker and numerical issues are less important than in the jet
configuration.
All the numerical challenges faced in the modal analysis of jet flows cannot be attributed

to a poor discretization and other numerical influence, since the numerical tools used in
this study provided robust results for the transient flow analysis. As the numerical schemes
employed for this study are linear, the transient simulations can be viewed as a superposition
of all eigenmodes of the discrete problem. The issues are not related to the convective
nature of the flow, since the transient analysis successfully and robustly reproduced the
flow behavior; they rather lie with the description of stable convective dynamics by global
modes, and their interpretation as coherent invariant structures.
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