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The dynatomic periodic curves for polynomial z → z d + c are smooth and irreducible

We prove here the smoothness and the irreducibility of the periodic dynatomic curves (c, z) ∈ C 2 such that z is n-periodic for z d + c, where d ≥ 2.

We use the method provided by Xavier Buff and Tan Lei in [BT] where they prove the conclusion for d = 2. The proof for smoothness is based on elementary calculations on the pushforwards of specific quadratic differentials, following Thurston and Epstein, while the proof for irreducibility is a simplified version of Lau-Schleicher's proof by using elementary arithmetic properties of kneading sequence instead of internal addresses.

Introduction

For c ∈ C, set f c (z) = z d + c, where d ≥ 2. For n ≥ 1, define

X n := (c, z) ∈ C 2 | f n c (z) = z, (f n c ) (z) = 1 and for all 0 < m < n, f m c (z) = z .
The objective of this note is to give an elementary proof of the following results:

Theorem 1.1. For every n ≥ 1, the closure of X n in C 2 is smooth.

Theorem 1.2. For every n ≥ 1 the closure of X n in C 2 is irreducible.

The first example is, as d = 2

X 1 = (c, z) ∈ C 2 | z 2 + c = z ( 1 4 , 1 2 ) = {(c, z) ∈ C 2 | c = z -z 2 } ( 1 4 , 1 
2 )

The objective of here is to give an elementary proof of the following result:

Theorem 2.1. For every n ≥ 1, the closure X n of X n in C 2 is smooth. More precisely, the boundary ∂X n is the finite set of (c, z) ∈ C 2 such that z is of period m ≤ n dividing n for f c whose multiplier is of the form e 2πiu/v with u, v ≥ 1 co-prime and v = n/m. In a neighborhood of a point (c 0 , z 0 ) ∈ X n , the set X n is locally the graph of a holomorphic

map c → z(c) with z(c 0 ) = z 0 if (c 0 , z 0 ) ∈ X n z → c(z) with c(z 0 ) = c 0 and c (z 0 ) = 0 if (c 0 , z 0 ) ∈ ∂X n .
The idea is to prove that some partial derivative of some defining function of X n is non vanishing. Following A. Epstein, we will express this derivative as the coefficient of a quadratic differential of the form (f c ) * Q -Q. Thurston's contraction principle gives (f c ) * Q -Q = 0, therefore the non-nullness of our partial derivative.

Quadratic differentials and contraction principle

A meromorphic quadratic differential (or in short, a quadratic differential) Q on C takes the form Q = q dz 2 with q a meromorphic function on C.

We use Q(C) to denote the set of meromorphic quadratic differentials on C whose poles (if any) are all simple. If Q ∈ Q(C) and U is a bounded open subset of C, the norm

Q U := U |q|
is well defined and finite. For f : C → C a non-constant polynomial and Q = q dz 2 a meromorphic quadratic differential on C, the pushforward f * Q is defined by the quadratic differential f * Q := T q dz 2 with T q(z) :=

f (w)=z q(w) f (w) 2 . If Q ∈ Q(C), then f * Q ∈ Q(C) also.
The following lemma is a weak version of Thurston's contraction principle.

Lemma 2.2 (contraction principle). For a non-constant polynomial f and a round disk V of radius large enough so that U := f -1 (V ) is relatively compact in V , we have

f * Q V ≤ Q U < Q V , ∀ Q ∈ Q(C).
Proof. The strict inequality on the right is a consequence of the fact that U is relatively compact in V . The inequality on the left comes from

f * Q V = z∈V f (w)=z q(w) f (w) 2 |dz| 2 ≤ z∈V f (w)=z q(w) f (w) 2 |dz| 2 = w∈U q(w) |dw| 2 = Q U . Corollary 2.3. If f : C → C is a polynomial and if Q ∈ Q(C), then f * Q = Q.
Remark 2.1. Thurston's contraction principal says that if Q is a meromorphic quadratic differential on P 1 and f : P 1 → P 1 is a rational function, if one requires f * Q = Q with Q = 0, then f is necessarily a Lattès example.

The formulas below appeared in [L] chapter 2, we write them together as a lemma.

Lemma 2.4 (Levin). For f = f c , we have

                 f * dz 2 z = 0 f * dz 2 z -a = 1 f (a) dz 2 z -f (a) - dz 2 z -c if a = 0 f * dz 2 (z -a) 2 = dz 2 (z -f (a)) 2 - d -1 af (a) dz 2 z -f (a) - dz 2 z -c if a = 0.
(2.1)

2.2 Proof of Theorem 2.1

Lemma 2.5 (compare with [Mil]). Given z ∈ C, for n ≥ 0 and d ≥ 2, define

z n : c → f •n c (z) and δ n = f c (z n ) = dz d-1 n .
Then

dz n dc = 1 + δ n-1 + δ n-1 δ n-2 + . . . + δ n-1 δ n-2 • • • δ 1 .
Proof. From z n = z d n-1 + c, d ≥ 2, we obtain

dz n dc = 1 + δ n-1 dz n-1 dc with dz 0 dc = 0.
The result follows by induction.

Proof of Theorem 2.1.

Let P n (c, z) := f •n c (z) -z and consider the algebraic curve

Y n := {(c, z) ∈ C 2 | P n (c, z) = 0}. If (c, z) ∈ Y n , the point z is periodic for f c of period m ≤ n. Then m divides n 1 . Therefore Y n is the set of (c, z) such that z is periodic for f c of period m ≤ n and m dividing n. As Y n is a closed subset of C 2 , we have X n ⊂ Y n .
We decompose Y n into

Y n = X n {(c, z) | z is of period n for f c with multiplier 1} {(c, z) | z is of period m for f c with m < n and m dividing n}
We will examine case by case points in Y n , determine points in X n and establish the smoothness of X n at each of these points.

Case 1. Consider a point (c 0 , z 0 ) ∈ X n ⊂ Y n . 1 use the formula 0 = f •n c (z) -z = f •km+ c (z) -z = f • c (f •km c (z)) -z = f • c (z) -z
and the minimality of m to conclude that m divides n.

If (c, z) ∈ Y n is close to (c 0 , z 0 ) ∈ X n , the points of the orbit of z are close to points of the orbit of z 0 and there are therefore at least n distinct points in the orbit of z. It follows that the period of z is equal to n. This shows that in a neighborhood of (c 0 , z 0 ), the curves X n and Y n coincide. It suffices to show that Y n is smooth in a neighborhood of (c 0 , z 0 ). As [f •n c 0 ] (z 0 ) = 1, we have

∂P n ∂z (c 0 , z 0 ) = 0.
The implicit function theorem implies that Y n , therefore X n , is smooth in a neighborhood of (c 0 , z 0 ).

Case 2. Now consider a point (c 0 , z 0 ) ∈ Y n such that z 0 is of period equal to n for f c 0 with multiplier 1.

Fix any ≥ n that is a multiple of n. And consider P and Y . We know that

(c 0 , z 0 ) ∈ Y and [f c 0 ] (z 0 ) = 1 . (2.2)
Claim. For any triple (c 0 , z 0 , ) satisfying (2.2) , we have ∂P ∂c (c 0 , z 0 ) = 0.

Proof. For k ≥ 0, define inductively z k+1 = f c 0 (z k ) and define δ k := f c 0 (z k ). We have, by Lemma 2.5

∂P ∂c (c 0 , z 0 ) = d dc (f • c (z 0 ) -z 0 ) c 0 = 1 + δ -1 + δ -1 δ -2 + . . . + δ -1 δ -2 • • • δ 1 . Now consider the quadratic differential Q ∈ Q(C) defined by Q(z) := -1 k=0 ρ k z -z k dz 2 , with ρ k = δ -1 δ -2 • • • δ k .
Applying Lemma 2.4, and writing f for f c 0 , we obtain

f * Q(z) = -1 k=0 ρ k δ k dz 2 z -z k+1 - dz 2 z -c 0 = Q(z) - ∂P ∂c (c 0 , z 0 ) • dz 2 z -c 0 . By Corollary 2.3, we can not have f * Q = Q. It follows that ∂P ∂c (c 0 , z 0 ) = 0.
This ends the proof of the claim. Now let = n, by implicit function theorem,there exists unique locally holomorphic function c(z) with f n c(z) (z) = z, c(z 0 ) = z 0 and c (z 0 ) = 0(for ∂P ∂z (c 0 , z 0 ) = 0). Then there is neighborhood U of (c 0 , z 0 ) in C 2 such that

Y n ∩ U = {(c(z), z)||z -z 0 | < ε}.
As z 0 is a n periodic point of f c 0 and the map z → [f •n c(z) ] (z) is holomorphic and can not be 2 constantly 1, we can choose ε small enough such that z is n periodic point of f c(z) with multiplier = 1 for |z -

z 0 | < ε. Then U ∩ Y n \ {(c 0 , z 0 )} ⊂ U ∩ X n ⊂ U ∩ Y n .
It follows (c 0 , z 0 ) ∈ ∂X n and U ∩ Y n is a neighborhood of (c 0 , z 0 ) on X n . Then X n is smooth at (c 0 , z 0 ) and parametered locally by z.

Case 3. Finally consider (c 0 , z 0 ) ∈ Y n so that z 0 is of period m < n for f c 0 with m dividing n. Note that Y m ⊂ Y n . If [f n c 0 ] (z 0 ) = 1 then [f m c 0 ] (z 0 ) = 1.
By the existence and the unicity of the implicit function theorem the local solutions of

f n c (z) -z = 0 and f m c (z) = z coincide, that is, Y m and Y n coincide locally. So at point (c 0 , z 0 ), Y n is locally the graph of a holomorphic function z(c) with z(c 0 ) = z 0 and z(c) is m periodic point of f c . It follows that (c 0 , z 0 ) / ∈ X n . If [f n c 0 ] (z 0 ) = 1 and [f m c 0 ] (z 0 ) = 1
, then both triples (c 0 , z 0 , m) and (c 0 , z 0 , n) satisfy (2.2) . The claim in Case 2 and implicit function theorem imply that Y m and Y n again coincide in a neighborhood of (c 0 , z 0 ). For the same reason as above, (c 0 , z 0 ) / ∈ X n .

Set ρ := [f m c 0 ] (z 0 ). We consider now the only remaining case ρ = 1 and ρ n/m = [f n c 0 ] (z 0 ) = 1. Fix any integer s ≥ 2 such that ρ s = 1. Let c * be any point outside Mandelbrot set, then each zero point of f m c * (z) -z is simple. It follows that f m c * (z) -z divides f •ms c * (z) -z. Since c * is any point outside Mandelbrot set, the polynomial f m c (z) -z must divides f ms c (z) -z. Let P (c, z) be the polynomial defined by the equation:

f •ms c (z) -z = f •m c (z) -z • P (c, z). (2.3) Claim. Let Z s := {(c, z) | P (c, z) = 0}. Then (c 0 , z 0 ) ∈ Z s and there is a neighborhood V of (c 0 , z 0 ) in C 2 such that Z s ∩ V = {(c(z), z)||z -z 0 | < ε 0 , c(z) is holomorphic with c(z 0 ) = c 0 and c (z 0 ) = 0}.
Proof. We will prove at first that the map z → f ms c 0 (z) -z has a zero of order at least 3 at z 0 . Define F (z) = f m (z + z 0 ) -z 0 , then it is equivalent to show the function F s (z) := f ms c 0 (z + z 0 ) -z 0 has a local expansion z + O(z 3 ) at 0. We have F (z) = ρz + az 2 + O(z 3 ) in a neighborhood of 0. One checks by induction

∀ k ≥ 1, F •k (z) = ρ k z + aρ k-1 (1 + ρ + ρ 2 + • • • + ρ k-1 )z 2 + O(z 3 ) . 2 One can prove that D := {(c, z) | f •n c (z) = z, [f n c ] (z) = 1}
is finite as follows: Denote by X(c), resp. Y (z) the resultant of the two polynomials f •n c (z) -z and [f n c ] (z) -1 considered as polynomials of z, resp. of c. Then X(c) is a polynomial of c, resp. Y (z) is a polynomial of z. The projection of D to each coordinate equals the zeros of X, resp. of Y . As no point of the form (0, z), (c, 0) is in D, we have X(0) = 0 = Y (0) so X, Y each has finite many roots. As D ⊂ (X -1 (0

) × C) ∩ (C × Y -1 (0)) we know that D is finite. But ρ = 1 and ρ s = 1, it follows that 1 + ρ + ρ 2 + • • • + ρ s-1 = 0 and F •s (z) = z + O(z 3 ). Since z → f •m
c 0 (z) -z has a simple zero, we see from (2.3) that z → P (c 0 , z) has a zero of order at least 2 at z 0 . Therefore (c 0 , z 0 ) ∈ Z s and ∂P ∂z (c 0 , z 0 ) = 0.

(2.4)

We proceed now to prove ∂P ∂c (c 0 , z 0 ) = 0.

(2.5)

This will be down in two steps:

Step

1. Let Q(c, z) := f •m c (z) -z. We have Q(c 0 , z 0 ) = 0 and ∂Q ∂z (c 0 , z 0 ) = ρ -1 = 0.
According to the implicit function theorem, there is a germ of a holomorphic function Lemma 2.6. We have ∂P ∂c

ζ : (C, c 0 ) → (C, z 0 ) with Q c, ζ ( 
(c 0 , z 0 ) = s • ρ ρ(ρ -1)
.

Proof. Differentiating the equation (2.3) with respect to z, and then evaluating at c, ζ(c) , we get:

ρ s c -1 = (ρ c -1) • P c, ζ(c) + f m c ζ(c) -ζ(c) =0 • ∂P ∂z c, ζ(c) = (ρ c -1) • P c, ζ(c) . Setting R(c) := P c, ζ(c) = ρ s c -1 ρ c -1 , we have R (c 0 ) = ∂P ∂c (c 0 , z 0 ) + ∂P ∂z (c 0 , z 0 ) =0 • ζ (c 0 ) = ∂P ∂c (c 0 , z 0 ).
Using ρ s = 1 and ρ s-1 = 1/ρ, we deduce that

∂P ∂c (c 0 , z 0 ) = d dc ρ s c -1 ρ c -1 c 0 = sρ s-1 ρ -1 - ρ s -1 (ρ -1) 2 dρ c dc c 0 = s • ρ ρ(ρ -1)
.

Step 2. ρ = 0. The proof of this fact will be postponed to the following section 2.3 using quadratic differential with double poles (see also [DH] for a parabolic implosion approach).

This ends the proof of (2.5) , as well as the proof of the claim by combining (2.5) and the implicit function theorem plus the observation that (c 0 , z 0 ) ∈ Z s .

Write now ρ = e 2πiu/v with u, v co-prime and v > 0. Then any s satisfying ρ s = 1 takes the form s = kv for some integer k ≥ 1. With the same reason as that of existence of polynomial P (c, z) in (2.3), there are polynomials g, h such that

f •ms c (z) -z = f •mkv c (z) -z = (f •mv c (z) -z)g(c, z) = (f •m c (z) -z)h(c, z)g(c, z) .
By definition we have

Z s = {(c, z) | g(c, z)h(c, z) = 0} ⊃ {(c, z) | h(c, z) = 0} = Z v .
By the claim in Case 3, we conclude that Z s and Z v coincide in a neighborhood of (c 0 , z 0 ) as the graph of a single holomorphic function c(z) with vanishing derivative at z 0 .

Remark:(1) If necessary, we can decrease ε 0 in claim of case 3 such that

f m c(z) (z)-z = 0 for 0 < |z -z 0 | < ε 0 . Otherwise, there exist a sequence {z k } with z k → z 0 ( correspondingly, c k := c(z k ) → c 0 ) such that f m c k (z k ) -z k = 0 and h(c k , z k )g(c k , z k ) = 0. It follows that [f •ms c k ] (z k ) -1 = 0, that is, {c k } is a sequence of parabolic parameter with period of parabolic orbit less than m converging to c 0 . It is impossible. (2) Z s = (Y n \ Y m ) ∪ {(c 0 , z 0 )}, X n ⊂ Y n \ Y m Lemma 2.7. There exists 0 < ε 1 < ε 0 such that z is mv periodic point of f c(z) with multiplier = 1 for 0 < |z -z 0 | < ε 1 . c(z)
is defined in the claim of case 3.

Proof. Note that P (c(z), z) = 0 implies z is periodic point of f c(z) with period less than ms. As (f m c 0 ) (z 0 ) = ρ = e 2πiu/v , by lemma 3.9 below, when c is close enough to c 0 , the orbit of f c 0 containing z 0 splits into two periodic orbit of f c with period m and mv. Then we can choose ε 1 < ε 0 such that z belongs to one of the two splitted orbits of f c(z) for 0 < |z -z 0 | < ε 1 . By remark (1), the period of z under f c(z) must be mv. The parabolic parameter in M d with period of parabolic point less than a fixed number are finite, so we can decrease

ε 1 if necessary, such that c(z) is not parabolic parameter for 0 < |z -z 0 | < ε 1 . Now let V 1 be a neighborhood of (c 0 , z 0 ) in C 2 with property that V 1 ∩ Z s = V 1 ∩ Z v = {(c(z), z)||z -z 0 | < ε 1 }.
If n = mv, by lemma 2.7 and remark (2), we have

(V 1 ∩ Z v ) \ {(c 0 , z 0 )} ⊂ V 1 ∩ X n ⊂ V 1 ∩ (Y n \ Y m ) = (V 1 ∩ Z v ) \ {(c 0 , z 0 )}. It follows (c 0 , z 0 ) ∈ ∂X n and X n coincides with Z v at neighborhood of (c 0 , z 0 ). Then X n is smooth at point (c 0 , z 0 ) If n = mvk for some k > 1 (V 1 ∩ Z s ) \ {(c 0 , z 0 )} ⊂ V 1 ∩ (Y n \ Y m ) = (V 1 ∩ Z s ) \ {(c 0 , z 0 )}. Then V 1 ∩ Z s is the neighborhood of (c 0 , z 0 ) in (Y n \ Y m ) ∪ {(c 0 , z 0 )}. For X n ⊂ Y n \ Y m and X n ∩ (V 1 ∩ Z s ) = ∅, we have (c 0 , z 0 ) / ∈ X n 2.3 Quadratic differentials with double poles Set f := f c 0 , z k := f k (z 0 ), δ k := dz d-1 k = f (z k ), ζ k (c) := f •k c ζ(c) and ζk := ζ k (c 0 ). Then ζ k+1 (c) = f c ζ k (c) and ζ m = ζ 0 . Since δ 0 δ 1 • • • δ m-1 = ρ = 0,
there is a unique m-tuple (µ 0 , . . . , µ m-1 ) such that

µ k+1 = µ k dz d-1 k - d -1 dz d k ,
where the indices are considered to be modulo m.

Now consider the quadratic differential Q (with double poles) defined by

Q := m-1 k=0 1 (z -z k ) 2 + µ k z -z k dz 2 .
Lemma 2.8 (Compare with [L]). We have

f * Q = Q - ρ ρ • dz 2 z -c 0 .
Proof. By construction of Q and the calculation of f * Q in Lemma 2.4, the polar parts of

Q and f * Q along the cycle of z 0 are identical. But f * Q has an extra simple pole at the critical value c 0 with coefficient m-1 k=0 - µ k dz d-1 k + d -1 dz d k = - m-1 k=0 µ k+1 .
We need to show that this coefficient is equal to

-ρ ρ . Using ζ k+1 (c) = ζ k (c) d + c, we get ζk+1 = dz d-1 k ζk + 1. It follows that ζk+1 µ k+1 -µ k+1 = dz d-1 k ζk µ k+1 = ζk µ k - (d -1) ζk z k . Therefore m-1 k=0 µ k+1 = m-1 k=0 ζk+1 µ k+1 -ζk µ k + (d -1) ζk z k = (d -1) m-1 k=0 ζk z k = ρ ρ ,
where last equality is obtained by evaluating at c 0 of the logarithmic derivative of

ρ c := m-1 k=0 dζ d-1 k (c).
Lemma 2.9 (Epstein [E]). We have

f * Q = Q.
Proof. The proof rests again on the contraction principle, but we can not apply directly Lemma 2.2 since Q is not integrable near the cycle z 0 , . . . , z m-1 . Consider a sufficiently large round disk V so that

U := f -1 (V ) is relatively compact in V . Given ε > 0, we set V ε := m k=1 f k D(z 0 , ε) and U ε := f -1 (V ε ).
When ε tends to 0, we have

f * Q V -Vε ≤ Q U -Uε = Q V -Vε -Q V -U + Q Vε-Uε -Q Uε-Vε . If we had f * Q = Q, we would have 0 < Q V -U ≤ Q Vε-Uε .
However, Q Vε-Uε tends to 0 as ε tends to 0, which is a contradiction. Indeed, Q = q(z)dz 2 , the meromorphic function q is equivalent to 1 (z -z 0 ) as z tends to z 0 . In addition, since the multiplier of z 0 has modulus 1,

D(z 0 , ε) ⊂ U ε -V ε ⊂ D(z 0 , ε ) with ε ε ε→0 -→ 1.
Therefor,

Q Vε-Uε ≤ 2π 0 ε ε 1 + o(1) r 2 rdrdθ = 2π(1 + o(1)) log ε ε ε→0 -→ 0
The fact ρ = 0 follows from the above two lemmas.

The irreducibility of the periodic curves

Recall that f c denote the polynomial z → z d + c, where d ≥ 2, and we have defined

X n := (c, z) ∈ C 2 | f n c (z) = z, [f n c ] (z) = 1 and for all 0 < m < n, f m c (z) = z .
The objective here is to prove:

Theorem 3.1. For every n ≥ 1, the set X n is connected.

It follows immediately that the closure of X n in C 2 is irreducible.

Kneading sequences

Set T = R/Z and let τ : T → T be the angle map

τ : T θ → dθ ∈ T, d ≥ 2.
We shall often make the confusion between an angle θ ∈ T and its representative in [0, 1[. In particular, the angle θ/d ∈ T is the element of τ -1 (θ) with representative in [0, 1/d[ and the angle (θ

+ (d -1))/d is the element of τ -1 (θ) with representative in [(d -1)/d, 1[.
Every angle θ ∈ T has an associated kneading sequence ν(θ) = ν 1 ν 2 ν 3 . . . defined by

ν k =                                            1 if τ k-1 (θ) ∈ θ d , θ + 1 d , 2 if τ k-1 (θ) ∈ θ + 1 d , θ + 2 d , . . . d -1 if τ k-1 (θ) ∈ θ + (d -2) d , θ + (d -1) d , 0 if τ k-1 (θ) ∈ T θ d , θ + (d -1) d , if τ k-1 (θ) ∈ θ d , θ + 1 d , ..., θ + (d -2) d , θ + (d -1) d .
For example,

• as d = 3, ν( 1 7 ) = 12102 and ν( 27 28 ) = 22200 ;
We shall say that an angle θ ∈ T, periodic under τ , is maximal in its orbit if its representative in [0, 1) is maximal among the representatives of τ j (θ) in [0, 1) for all j ≥ 1. If the period is n and the d-expansion (d ≥ 2) of θ is .ε 1 . . . ε n , then θ is maximal The following lemma indicates cases where the d-expansion (d ≥ 2) and the kneading sequence coincide. Lemma 3.2 (Realization of kneading sequences). Let θ ∈ T be a periodic angle which is maximal in its orbit and let .ε 1 . . . ε n be its d-expansion (d ≥ 2). Then, ε n ∈ {0, 1, 2, . . . , d-2} and the kneading sequence ν(θ) is equal to ε 1 . . . ε n-1 .

For example,

• as d = 3 13 14 = .221001 and ν(θ) = 22100 .

• as d = 4 28 31 = .32130 and ν(θ) = 3213 .

Proof. Since θ is maximal in its orbit under τ , the orbit of θ is disjoint from

θ d , 1 d θ + 1 d , 2 d ... θ + (d -2) d , d -1 d θ, 1 .
It follows that the orbit τ j (θ), j = 0, 1, . . . , n -2 have the same itinerary relative to the two partitions 2). The first one gives the dexpansion (d ≥ 2) whereas the second gives the kneading sequence. Therefore, the knead- 

T -0, 1 d , 2 d , . . . , d -2 d , d -1 d and T - θ d , θ + 1 d , . . . , θ + (d -2) d , θ + (d -1) d (see Figure
ing sequence of θ is ε 1 . . . ε n-1 . Since τ n-1 (θ) ∈ τ -1 (θ) = { θ d , θ + 1 d , . . . , θ + (d -1) d } and
θ + (d -1) d ∈ ]θ, 1], we must have τ n-1 (θ) = θ d , θ + 1 d , . . . , θ + (d -2) d < d -1 d .
So ε n , as the first digit of τ n-1 (θ), must be in {0, 1, 2, . . . , d -2}.

Cyclic expression of kneading sequence

X = {0, 1, . . . , d -1}(d ≥ 2
) is an alphabet. X is the set of all sequence of symbols from X with finite length, that is,

X = {ν 1 . . . ν t |ν i ∈ X, t ∈ N }.
The element of X is called word, its length is denoted by | • |. For any w ∈ X , w can be written as u n := u . . . u n with u ∈ X and n ≥ 1.

For example: 121212 = 12 3 , 1234 = 1234.

Definition 3.3. A word is called primitive if it is not the form u n for any n > 1, u ∈ X .
The following lemma is a basic result about primitive words due to F.W.Levi. One can refer to [KM] for the proof.

Lemma 3.4 (F.W.Levi). For each w ∈ X , there exists an unique primitive word a(w) such that w = a(w) n for some n ≥ 1. a(w) is called the primitive root of w, this lemma means the primitive root of a word is unique. Let w be a word, we denote by L w the set of all words different from w only at the last digit.

Lemma 3.5. If w is a non-primitive word, then any word in L w is primitive.

Proof. As w is not primitive, then w = a m where a is the primitive root of w and m > 1. w is any element of L w , then w = a m-1 a for some a ∈ L a . Now assume w is not primitive, then w = z n where z is the primitive root of w and n > 1. Obviously |z| = |a|.

If |z| < |a|, then n > m ≥ 2 and a = zb for some b ∈ X . a m-1 a = z n =⇒ za m-1 a = a m-1 a z =⇒ za m-1 a = zba m-2 a z =⇒ ∃v ∈ X , s.t a = bv, |v| = |z| =⇒ a m-1 bv = ba m-2 a z(a = bv ) =⇒ v = z and a m-1 b = ba m-2 a =⇒ a m-2 bvb = ba m-2 a =⇒ a = vb.
It is a contradiction to a = zb.

If |z| > |a|, then there exists z ∈ L z such that z n-1 z = a m = w with m > n ≥ 2. It reduces to the case above. Now, let θ be a periodic angle with period n ≥ 2. ν(θ) is the kneading sequence of θ.

Definition 3.6. If there is a word w = ν 1 . . . ν t such that ν(θ) = w s-1 w := w . . . w s-1 w , where w = ν 1 . . . ν t-1 and t is a proper factor of n with ts = n, then ν(θ) is called cyclic, otherwise ν(θ) is called acyclic. Definition 3.7. ν(θ) = w s-1 w is cyclic. If w is a primitive word, we call w s-1 w a cyclic expression of ν(θ).

The following proposition is a corollary of Lemma 3.4 and 3.5. Proposition 3.8. If ν(θ) is cyclic, then its cyclic expression is unique.

Proof. Assume w s-1 w and u l-1 u are two cyclic expression of ν(θ) where w = ν 1 . . . ν t and u = 1 . . . m . If ν t = m , then w s = u l . By Lemma 3.4, we have w = u. If ν t = m , then w s = u l-1 u with some u ∈ L u , but this is a contradiction to Lemma 3.5.

Filled-in Julia sets and the Multibrot set

Let us recall some results about filled-in Julia set and Multibrot set that will be used following. These can be found in [DH], [Mil] and [DE].

For c ∈ C, we denote by K c the filled-in Julia set of f c , that is the set of points z ∈ C whose orbit under f c is bounded. We denote by M d the Multibrot set for f c (z) = z d + c, that is the set of parameters c ∈ C for which the critical point 0 belongs to

K c . If c ∈ M d , then K c is connected. There is a conformal isomorphism φ c : C K c → C D which satisfies φ c • f c = φ c d and φ c (∞) = 1. The dynamical ray of angle θ ∈ T is R c (θ) := z ∈ C K c | arg φ c (z) = 2πθ .
If θ is rational, then as r tends to 1 from above, φ -1 c (re 2πiθ ) converges to a point γ c (θ) ∈ K c . We say that R c (θ) lands at γ c (θ). We have f c • γ c = γ c • τ on Q/Z. In particular, if θ is periodic under τ , then γ c (θ) is periodic under f c . In addition, γ c (θ) is either repelling (its multiplier has modulus > 1) or parabolic (its multiplier is a root of unity).

If c / ∈ M d , then K c is a Cantor set. There is a conformal isomorphism φ c : U c → V c between neighborhoods of ∞ in C, which satisfies φ c • f c = φ c d on U c .
We may choose U c so that U c contains the critical value c and V c is the complement of a closed disk. For each θ ∈ T, there is an infimum r c (θ) ≥ 1 such that φ -1 c extends analytically along R 0 (θ)∩ z ∈ C | r c (θ) < |z| . We denote by ψ c this extension and by R c (θ) the dynamical ray

R c (θ) := ψ c R 0 (θ) ∩ z ∈ C | r c (θ) < |z| .
As r tends to r c (θ) from above, ψ c (re 2πiθ ) converges to a point x ∈ C. If r c (θ) > 1, then x ∈ C K c is an iterated preimage of 0 and we say that R c (θ) bifucates at x. If r c (θ) = 1, then γ c (θ) := x belongs to K c and we say that R c (θ) lands at γ c (θ). Again, f c • γ c = γ c • τ on the set of θ such that R c (θ) does not bifurcate. In particular, if θ is periodic under τ and R c (θ) does not bifurcate, then γ c (θ) is periodic under f c .

The Multibrot set is connected. The map

φ M d : C M d c → φ c (c) ∈ C D is a conformal isomorphism. For θ ∈ T, the parameter ray R M d (θ) is R M d (θ) := c ∈ C M d | arg φ M d (c) = 2πθ .
It is known that if θ is rational, then as r tends to 1 from above, φ -1

M d (re 2πiθ ) converges to a point γ M d (θ) ∈ M d . We say that R M d (θ) lands at γ M d (θ).
If θ is periodic for τ of exact period n and if c 0 := γ M d (θ), then the point γ c 0 (θ) is periodic for f c 0 with period p dividing n (ps = n, s ≥ 1) and multiplier a s-th root of unity. If the period of γ c 0 (θ) for f c 0 is exactly n then the multiplier is 1, c 0 is called primitive parabolic parameter, otherwise c 0 is called satellite parabolic parameter. Lemma 3.9 (near parabolic map). c 0 is defined as above. When we make a small perturbation to c 0 in parameter space, If c 0 is a primitive parabolic parameter, then the parabolic orbit of f c 0 is splitted into a pair of nearby periodic orbits of f c , both have length n; If c 0 is a satellite parabolic parameter, then the parabolic orbit of f c 0 is splitted into a pair of nearby periodic orbits of f c , one has length p and the other has length sp = n. This lemma was proved by Milnor in [Mil] lemma 4.2 for the case d = 2, but we can translate the proof word by word to the general case. Eberlein proved that among these points, there is exactly one c which is the landing point of two parameter rays of period n, this point is called root of H (see Figure 3); the other d -2 points are landing points of only one parameter ray of period n each, they are called co-root of H (see Figure 6). H is called primitive or satellite hyperbolic component according to whether its root is primitive or satellite parabolic parameter.

If c is the root of some hyperbolic component and c = γ M d (0), then two periodic parameter rays R M d (θ) and R M d (η) land on c, we say θ and η are companion angles, and θ, η have the same period under τ . c is primitive if and only if the orbit of R M d (θ) and R M d (η) under τ are distinct. In dynamical plane, the dynamic rays R c (θ) and R c (η) land at a common point x 1 := γ c (θ) = γ c (η). This point is on the parabolic orbit of f c with its immediate basin containing the critical value. R c (θ) and R c (η) are adjacent to the Fatou component containing c and the curve R c (θ) ∪ R c (η) ∪ {x 1 } is a Jordan curve that cuts the plane into two connected components: one component, denoted by V 1 , contains the critical value c; the other component, denoted by V 0 , contains R c (0) and all points of parabolic cycle except x 1 . Since V 1 contains the critical value, its preimage 4 (primitive case) and Figure 5 (satellite case). Note that

U = f -1 c (V 1 )
∈ Z d . Denote U k the component of C \ R c (θ + k -1)/d ∪ {γ c (η + k)/d } ∪ R c (η + k)/d disjoint with U . See Figure
f c : U k → V 0 is conformal.
If c is a co-root of some hyperbolic component, then exactly one period parameter ray R M d (β) land on it (see Figure 6). In dynamical plane, R c (β) is the unique dynamical ray landing on a parabolic periodic point γ c (β) := x 1 , whose immediate basin contains the critical value c. The parameter c is a primitive parabolic parameter. Denote V 1 the union of Fatou component containing c and external ray R c (β),

V 0 = C \ V 1 , U = f -1 c (V 1 ). U k is the component of f -1 c (V 0 ) adjacent with R c (β + k -1)/d and R c (β + k)/d , k ∈ Z d .
(see Figure 7).

Remark: in our paper, if c is a parabolic parameter, then f c has unique parabolic orbit, denoted by {x 0 , x 1 , . . . , x p-1 }. x 1 is the point whose immediate basin contains critical value c.

The following lemma provides a criterion for θ such that γ M d (θ) is a primitive parabolic parameter.

Definition 3.10. Let θ be a periodic angle of period n and the d-expansion of θ be . 1 . . . n . We call 1 . . . n the periodic part of the d-expansion of θ. (1) ν(θ) is cyclic.

(2) Denote by w s-1 w the cyclic expression of ν(θ) where w = ν 1 . . . ν t , t is a proper factor of n and ts = n. Then the last digit of the period part of the d-expansion of θ is ν t or ν t -1.

Moreover, if θ is maximal in its orbit, then ν(θ) also satisfies

(3) t is the length of parabolic orbit and the last digit of the period part of the d-expansion of θ must be ν

t -1 ∈ [0, d -2].
Proof. Let η be the companion angle of θ, then in dynamical plane of f c 0 , R c 0 (θ) and R c 0 (η) land on x 1 (see Figure 5). As V 1 contains no points and external rays of the parabolic orbit, then {x 0 , x 1 , . . . , x p-1 } together with their external rays belong to d-1 k=0 U k . For c 0 is satellite parabolic parameter, the length p of parabolic orbit is a proper factor of n and f c 0 acts on the rays of the orbit transitively. Then we have, in ν(θ) = ν 1 . . . ν n-1 , ν j = ν j(mod)p for 1 ≤ j ≤ n -1, that is, ν(θ) = u l-1 u where u = ν 1 . . . ν p . By definition of kneading sequence, we can see τ •(p-1) (θ) ∈ (θ + ν p -1)/d, (θ + ν p )/d . It follows x 0 together with its external rays belong to U νp . Then τ n-1 (θ) is either (θ + ν p -1)/d (θ > η) or (θ + ν p )/d (θ < η) (see Figure 8). So the last digit of d-expansion of θ is either ν p -1 (θ > η) or ν p (θ < η). Let w = ν 1 . . . ν t be the primitive root of u, then u = w p/t . We have w s-1 w is the cyclic expression of ν(θ) (proposition 3.8) and ν t = ν p , so θ satisfies property (1) and (2).

x 0 x 0 θ+νt-1 d η+νt d θ+νt d η+νt+1 d U νt U νt+1 η+νt-2 d θ+νt-1 d η+νt-1 d θ+νt d U νt-1 U νt θ > η θ < η 0 0 Figure 8:
Furthermore, if θ is maximal in its orbit, then θ > η, so the last digit of the period part of the d-expansion of θ must be ν t -1. By lemma 3.2, θ = .w s-1 ν 1 . . . ν t-1 (ν t -1) and 0 ≤ ν t -1 ≤ d -2. Note that the angles of external rays belonging to x 1 are θ, τ p (θ), . . . , τ (s-1)p (θ) with the order θ > τ p (θ) > • • • > τ (s-1)p (θ). The maximum of θ implies η is the second largest angle in orbit of θ, then η = τ p (θ) = .u l-2 ν 1 . . . ν p-1 (ν p -1)u. If u is not primitive, then p/t > 1. It follows τ t (θ) > τ p (θ) = η, a contradiction to that η is the second largest angle in orbit of θ. So u is a primitive word and hence t = p is length of parabolic orbit.

Then once θ doesn't satisfy the property in this lemma, we have γ M d (θ) is a primitive parabolic parameter. The lemma below can be seen as a application of lemma 3.11. Lemma 3.12. Assume θ = .w s-1 ν 1 . . . ν t-1 (ν t -1) is maximal in its orbit, where w = ν 1 . . . ν t is primitive with ν t ∈ [1, d -1] and t is a proper factor of n with ts = n. Let

β vt-i = .w s-1 ν 1 . . . ν t-1 (ν t -i) for 2 ≤ i ≤ ν t β -1 = .w s-1 ν 1 . . . (ν t-1 -1)(d -1) as t ≥ 2 .k . . . k(k -1)(d -1) as t = 1 Then γ M d (β νt-i ) is a primitive parabolic parameter for any 2 ≤ i ≤ ν t . γ M d (β -1 ) is a satellite parabolic parameter for θ = .(d -1) • • • (d -1)(d -2
) and a primitive parabolic parameter for any other case.

Proof. Let β = .w s-1 ν 1 . . . ν t-1 j be any angle among {β νt-i } 2≤i≤νt , then 0 ≤ j ≤ ν t -2. The maximum of θ implies the maximum of β in its orbit. Since w is primitive, by lemma 3.2, we have w s-1 w is the cyclic expression of ν(β). As j ≤ ν t -2 < ν t -1, with the maximum of β, the property (3) in lemma 3.11 is not satisfied. So γ M d (β) is a primitive parabolic parameter.

For β -1 , the maximum of θ implies β -1 is greater than τ (β -1 ), τ 2 (β -1 ), . . . , τ n-2 (β -1 ) but less than τ n-1 (β -1 ). It follows ν(β) = w s-1 ν 1 . . . ν t-1 as t ≥ 2 k . . . kk as t = 1 = w s-1 w . It is the cyclic expression of ν(β), then if β satisfies the property in lemma 3.11, ν t is either 0 or d -1. Since 1 ≤ ν t ≤ d -1, we have ν t must be d 1, then the maximum of θ

implies θ = .(d -1) • • • (d -1)(d -2). So γ M d (β -1
) is a primitive parabolic parameter as long as θ = .(d -1)

• • • (d -1)(d -2). In the case of θ = .(d -1) • • • (d -1)(d -2
), we will see in lemma 3.14 that γ M d (θ) is the root of a hyperbolic component attached to the main cardioid and β -1 is the companion angle of θ. In this case, γ M d (β -1 ) is a satellite parabolic parameter.

Remark. In this lemma, we distinguish β -1 according to whether t ≥ 2 or t = 1. It is because that we don't find a uniform expression of β -1 for the two cases rather than the case of t = 1 is special. The orbit of a point x ∈ K c has an itinerary with respect to this partition. In other words, to each x ∈ K c , we can associate a sequence Proposition 3.13. Let ε 1 . . . ε n-1 be the kneading sequence of a periodic angle θ with period n ≥ 2. If c 0 := γ M d (θ) is a primitive parabolic parameter and if one follows continuously the periodic points of period n of f c as c makes a small turn around c 0 , then Proof. Since c 0 is a primitive parabolic parameter, then the periodic point x 1 := γ c 0 (θ) has period n and multiplier 1. According to Case 2 in the proof of smoothness and lemma 3.9, the projection from a small neighborhood of (c 0 , x 1 ) in X n to the first coordinate is a degree 2 covering. So the neighborhood of (c 0 , x 1 ) in X n can be written as

Itineraries outside the Multibrot set

ι c (x) ∈ {0, 1, . . . d -1} N whose j-th term is equal to k if f •j-1 c (x) ∈ U k . A point x ∈ K c is periodic for f c if
(c 0 + δ 2 , x(δ)), (c 0 + δ 2 , x(-δ)) |δ| < ε
where x : (C, 0) → (C, x 1 ) is a germ with x (0) = 0. In particular, the pair of periodic points for f c which are splitted from x 1 get exchanged when c makes a small turn around c 0 . So, using analytic continuation on

C \ (M d ∪ R M d (0)), it is enough to show that there exists a c ∈ C M d close to c 0 such that x(± √ c -c 0 ) have itineraries ε 1 . . . ε n-1 k and ε 1 . . . ε n-1 (k + 1)
where k ∈ Z d is the last digit of the period part of the d-expansion of θ.

Let us denote by V 0 (c 0 ), V 1 (c 0 ), U 0 (c 0 ), . . . , U d-1 (c 0 ) and U (c 0 ) the sets defined in the previous section. For j ≥ 0, set x j := f j c 0 (x 0 ) and observe that for j ∈ [1, n -1], we have 

x j ∈ U ε j (c 0 ).
K c 0 is contained in the immediate basin of x 1 , whence in V 1 . It follows R ⊂ V 1 (c 0 ) and S ⊂ U (c 0 ), that means any compact subset of C U (c 0 ) is contained in C S(c m ) for m sufficiently large .
For j ∈ [1, n -1] and let D j be a sufficiently small disk around x j so that

D j ⊂ U ε j (c 0 ) ⊂ C U (c 0 ).
According to the previous discussion, if m is sufficiently large, we have

f j-1 cm x(± √ c m -c 0 ) ⊂ D j ⊂ U ε j (c m ).
So the first n -1 symbols of the itineraries of x(± √ c m -c 0 ) are all 1 , . . . , n-1 . As Proof. Let c 0 := γ M d (θ), then x 1 := γ c 0 (θ) is the parabolic periodic point of f c 0 as previous.

By lemma 3.2, ν(θ) = (d -1) • • • (d -1) , so (d -1) • • • (d -1) is the cyclic expression of ν(θ). If x 0 = x 1
, then the length of parabolic orbit is greater than 1. It implies the property (3) in lemma 3.11 is not satisfied, so c 0 is a primitive parabolic parameter. According to proposition3.13, when c

∈ C \ M d is close to c 0 , x 1 splits into two n periodic point y, z of f c with itineraries (d -1) • • • (d -1)(d -2) and (d -1) • • • (d -1)(d -1).
It leads to a contradiction to the period n of y and z. So x 0 = x 1 and then c 0 is the root of some periodic n satellite hyperbolic component attached to the main cardioid.

By the maximum of θ, we have Remark. The dynamical rays R c 0 (θ) and R c 0 (η) are consecutive among the rays landing at x 0 . Lemma 3.14 implies R c 0 (θ) is mapped to R c 0 (η). It follows that each dynamical ray landing at x 0 is mapped to the one which is once further clockwise. According to Case 3 in the proof of smoothness and lemma 3.9, we have the projection from a small neighborhood of (c 0 , x 0 ) in X n to the parameter plane is a degree n covering. Then the neighborhood of (c 0 , x 0 ) in X n can be written as (c 0 + δ n , x(δ)), (c 0 + δ n , x(ωδ)), . . . , (c 0 + δ n , x(ω n-1 δ)) |δ| < ε Proof. In J(f c 0 ), x 0 is the unique periodic point with more than one external rays landing on it (refer to [START_REF] Poirier | On Post Critically Finite Polynomials Part Two: Hubbard Trees[END_REF]proposition 3.3]). So there is exactly one external ray landing on z n-1 with period n. Its angle is denoted by a d n -1 , a is a integer. If z n-1 ∈ W d-2 , the angle of external ray belonging to z n-1 satisfy

U d-1 is bounded by R c 0 (θ + d -2)/d and R c 0 (η + d -1)/d . ν(θ) = (d -1) • • • (d -1) implies R c 0 (θ) ⊂ U d-1 , then θ ≤ (η + d -1)/d
η + d -2 d < a d n -1 < θ + d -2 d ( θ = 1 - 1 d n -1 , η = dθ -d + 1 ).
by simple computation, we have

k(d n -1) d -1 -d n-1 -1 + 1 d < a < k(d n -1) d -1 -d n-1 ,
a contradiction to a is an integer. This ends the proof of claim 1.

Claim 2. z n-1 / ∈ U d-2 (c 0 ).

Proof. If z n-1 ∈ U d-2 (c 0 ), we label the sectors at x 0 by S i (0 ≤ i ≤ n -1) clockwise with S 0 = V 1 (c 0 ). The dynamics between these sectors satisfy

V 1 (c 0 ) = S 0 fc 0 --→ S 1 fc 0 --→ • • • fc 0 --→ S n-2 fc 0 --→ S n-1 = C \ U d-1 (c 0 )
As {z 0 , . . . z n-2 } ⊂ U d-1 (c 0 ) W d-1 (c 0 ), we have z 0 = f c 0 (z n-1 ) belongs to the union of W d-1 (c 0 ) and n-2 i=1 S i . If z 0 ∈ S i 0 (1 ≤ i 0 ≤ n -2), then f

(n-2-i 0 ) c 0 (z 0 ) = z n-2-i 0 ∈
In our case, applying the procedure above to w and w , we have w and w are connected to two points of the periodic orbit containing ι -1 a ((d -1) • • • (d -1)(d -2)). Proposition 3.15 tells us, by analytic continuation, any two point in this orbit can be connected as long as a makes the appropriate number of turns around γ M d (1 -1 d n -1 ). Thus w and w are connected.

  c) = 0. In other words, ζ(c) is a periodic point of period m for f c . Let ρ c denote the multiplier of ζ(c) for f c and set ρ := dρ c dc c 0 .

Figure 1 :

 1 Figure 1: As d = 3, the kneading sequence of θ = 1/7 is ν(1/7) = 12102

Figure 2 :

 2 Figure 2: As d = 4, the kneading sequence of θ = 28/31 is ν(28/31) = 3213

Figure 3 :

 3 Figure 3: The parameter rays R M 3 (7/26) and R M 3 (9/26) land on a common root of a primitive hyperbolic component while R M 3 (19/80) and R M 3 (11/80) land on a common root of a satellite hyperbolic component. Only angles of rays are labelled in the graph.

Figure 4 :

 4 Figure 4: The dynamical plane of f c 0 . c 0 := γ M 3 (7/26) = γ M 3 (9/26) is the root of some primitive hyperbolic component as illustrated in Figure 3. The dynamical rays R c 0 (7/26) and R c 0 (9/26) land on a common parabolic point of f c 0 with period 3.

  is connected and contains the critical point 0. It is bounded by the dynamical rays R c (θ/d), . . . , R c (θ + d -1)/d ; R c (η/d), . . . , R c (η + d -1)/d . Suppose θ > η, and since each component of C \ U is conformally mapped to V 0 which is bounded by R c (θ) and R c (η), it is easy to see that R c (θ + k -1)/d and R c (η + k)/d land on a common point which is one of the preimage of x 1 for k

Figure 5 :

 5 Figure 5: The dynamical plane of f c 1 . c 1 := γ M 3 (11/80) = γ M 3 (19/80) is the root of some satellite hyperbolic component as illustrated in Figure 3. The dynamical rays R c 1 (11/80) and R c 1 (19/80) land on a common parabolic point of f c 1 with period 2.

Figure 6 :

 6 Figure 6: Multibrot set M 4 . The parameter rays R M 4 (1/15) and R M 4 (4/15) land on the root of some hyperbolic component. R M 4 (2/15) and R M 4 (1/5) land on two co-root of this hyperbolic component respectively.

Figure 7 :

 7 Figure 7: The dynamical plane of f c 0 . c 0 := γ M 4 (1/5) is a co-root of the hyperbolic component illustrated in Figure 6. R c 0 (1/5) is the unique dynamical ray landing on γ c 0 (1/5) which is the parabolic point of f c 0 with period 2.

  If c ∈ C M d , the Julia set of f c is a Cantor set. If c ∈ R M d (θ) with θ = 0 not necessarily periodic, then the dynamical rays R c (θ/d) . . . R c (θ + d -1)/d bifurcate on the critical point. The set R c (θ/d) ∪ . . . ∪ R c (θ + d -1)/d ∪ {0}separates the complex plane in d connected components. We denote by U 0 the component containing the dynamical ray R c (0) and by U 1 , . . . , U d-1 the other component in counterclockwise (see Figure9).

  and only if the itinerary ι c (x) is periodic for the shift with the same period.The map ιc : K c → {0, 1, . . . d -1} N is a bijection. In particular, for each itinerary ι ∈ {0, . . . , d -1} N and each c ∈ C M d ∪ R M d (0) , there is a unique point x(ι, c) ∈ K c whose itinerary is ι. For a given ι ∈ {0, . . . , d -1} N , the map C M d ∪ R M d (0) -→ C c → x(ι, c) ∈ C iscontinuous, and even holomorphic (as can be seen by applying the Implicit Function Theorem).

Figure 9 :

 9 Figure 9: The regions U 0 , U 1 , U 2 , U 3 for a parameter c belonging to R M 4 (1/15).

  For c ∈ R M d (θ), consider the following compact subsets of the Riemann sphere :R(c) := R c (θ) ∪ {c, ∞} and S(c) := R c (θ/d) ∪ . . . ∪ R c (θ + d -1)/d ∪ {0, ∞}.Denote by U 0 (c) the component of C S(c) containing R c (0) and by U 1 (c), . . . , U d-1 (c) the other component in counterclockwise. From any sequence {c m } ⊂ R M d (θ) converging to c 0 , by extracting a subsequence if necessary, we can assume R(c m ) and S(c m ) converge respectively, for the Hausdorff topology on compact subsets of C ∪ {∞}, to connected compact R and S. Since S(c) = f -1 c R(c) , we have S = f -1 c 0 (R). According to [PR, Section 2 and 3], R ∩ (C K c 0 ) = R c 0 (θ), the intersection of R with the boundary of K c 0 is reduced to {x 1 } and the intersection of R with the interior of

  x( √ c m -c 0 ) and x(-√ c m -c 0 ) are different n periodic points of f cm , their itineraries must be different. It follows f n-1 cm x(± √ c m -c 0 ) , which are splitted from x 0 , lie in different component of C\S(c m ). Combining with the fact that R c 0 (θ +k)/d lands on x 0 (k is the last digit of the period part of the d-expansion of θ), we have f n-1 cm x(± √ c m -c 0 ) belong to U k (c m ) and U k+1 (c m ) respectively, then x(± √ c m -c 0 ) have itineraries ε 1 . . . ε n-1 k and ε 1 . . . ε n-1 (k + 1) respectively. Lemma 3.14. For θ = 1 -1/(d n -1) = .(d -1) • • • (d -1)(d -2) (n ≥ 2), we have γ M d (θ) is the root of some periodic n hyperbolic component attached to the main cardioid. If η is denoted the companion angle of θ, then η = dθd + 1.

  and x 0 is on the boundary of U d-1 . On the other hand, (η + d -1)/d is in the orbit of θ, so θ ≥ (η + d -1)/d. Then we have η = dθd + 1.

  Proposition 3.15. Let θ = 1 -1/(d n -1) = .(d -1) • • • (d -1)(d -be periodic with period n ≥ 2. If one follows continuously the periodic points of period n of f c as c makes a small turn around γ M d (θ), then the periodic points in the cycle of ι -1 c ((d -1) • • • (d -1)(d -2)) get permuted cyclically.

Figure 10 :

 10 Figure 10: The dynamical plane of f c 0 . c 0 := γ M 3 (θ) with θ = .2221

  where x : (C, 0) → (C, x 0 ) is a holomorphic germ satisfying x (0) = 0. So, for c close to c 0 , the set x{ n √ cc 0 )} is a cycle of period n of f c , and when c makes a small turn around c 0 , the periodic points in the cycle x{ n √ cc 0 )} get permuted cyclically. So, combining with analytic continuation onC \ (M d ∪ R M d (0)), it is enough to show there exists a c ∈ C M d close enough to c 0 such that the point ι -1 c ((d -1) • • • (d -1)(d -2)) belongs to x{ n √ cc 0 }.Equivalently, we must show that there is a sequence {c j } ⊂ C M d converging to c 0 , such that the periodic pointy j := ι -1 c j ((d -1) • • • (d -1)(d -2)) converges to x 0 . Let {c j } ⊂ R M d (θ) converge to c 0 as j → ∞.Without loss of generality, we may assume that the sequence y j converges to a point z, R(c j ) converges to R and S(c j ) converges to S in Hausdoff topology. The definition of R(c), S(c), U 0 (c), . . . , U d-1 (c) are in the proof of proposition 3.13. As (c 0 , z) is on X n , then z is either the parabolic fixed point or repelling n periodic point of f c 0 . Suppose z is a repelling n periodic point, setz i := f i c 0 (z). Now we will define a new sequence of open domain W k (c 0 ) . W k (c 0 ) is the connected component of U (c 0 )\ the closure of Fatou component containing 0, adjacent with U k (c 0 ), U k+1 (c 0 ) (see Figure10). According to [PR, Section 2 and 3], R ∩ (C K c 0 ) = R c 0 (θ), the intersection of R with the boundary of K c 0 is reduced to {x 0 } and the intersection of R with the interior of K c 0 is contained in the immediate basin of x 0 . It follows {z 0 , . . . , z n-1 } S = ∅. Then for j sufficiently large, {z 0 , . . . , z n-1 } ⊂ C \ S c j . As y j has itineraries (d -1)• • • (d -1)(d -2), we have {z 0 , . . . z n-2 } ⊂ U d-1 (c 0 ) W d-1 (c 0 ), z n-1 ∈ U d-2 (c 0 ) W d-2 (c 0 ). Claim 1. z n-1 / ∈ W d-2 (c 0 ).

The two claim imply the assumption that z is repelling n periodic point is false and then z must be a parabolic fixed point of f c 0 , that is z = x 0 .

Proof of Theorem 3.1

Fix n > 1 (the case n = 1 has been treated directly at the beginning). We proceed to show that X n is connected.

and F n := C\ all the landing points of periodic n parameter rays. Take any pair of points (a, w), (a , w ) in X n . By analytic continuation, we may assume a, a ∈ X. Again by analytic continuation on simply connected open set X, we may assume a = a . Thus it is enough to show that there exists a loop in F n based on a such that the analytic continuation along the loop connects w and w . We will give a algorithm to find such a loop.

Let z be any n periodic point of f a .

step 1 In the orbit of z, there is a point with maximal itineraries among the shift of ι a (z) in the lexicograph order, denoted by 1 . . . n . Set θ = . 1 . . . n (θ is maximal in its orbit). If θ satisfies the properties in lemma 3.11, do step 2 below. Otherwise, γ M d (θ) is a primitive parabolic parameter. According to lemma 3.2 and proposition 3.13, when a makes a turn around γ M d (θ), the periodic point of f a with itineraries 1 . . . n and 1 . . . ( n + 1) get changed. Then z is connected to a new orbit containing ι -1 a ( 1 . . . ( n + 1)). For this new orbit, repeat doing step 1. step 2 θ = . 1 . . . n is maximal in its orbit and satisfies the properties in lemma 3.11.

As in lemma 3.12, we obtain a sequence of angles {β νt-2 , . . . , β 0 , β -1 } and know that γ

Then by proposition 3.13 again, as a makes a turn around γ M d (β νt-i ) (2 ≤ i ≤ ν t + 1), the periodic points of f a with itineraries 1 . . . n-1 (ν t -i) and 1 . . . n-1 (ν t -i + 1) get changed. Then let a makes turns around from γ M d (β νt-2 ) to γ M d (β -1 ) one by one, we have ι -1 a ( 1 . . . n-1 n ) are connected with ι -1 a ( 1 . . . n-1 (d -1)) by analytic continuation through the points ι -1 a ( 1 . . . n-1 ( n -1)), . . . , ι -1 a ( 1 . . . n-1 0). For the new periodic point ι -1 a ( 1 . . . n-1 (d -1)), do step 1.

Every time a n periodic point of f a passes though step 1 or step 2, the sum of all digits in the itineraries of the output periodic point is greater than that of the input one. For fixed n, this sum is bounded the bound is (d -1)n -1 , then each n periodic point z can be connected to the orbit containing ι -1 a ((d -1) • • • (d -1)(d -2)).