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This paper deals with the reconstruction of both the internal geometry and
the values of an inhomogenous acoustic refraction index through a piece-wise
constant iterative approximation. We propose to enhance a classical Gauss-
Newton scheme through the use of geometrical informations gained from
a previously developed defects localization method. Both enhancements are
aimed to reducing the number of computed parameters. The first one consists
in a preliminary selection of relevant parameters, while the second one is an
adaptive refinement to enhance precision with a low number of parameters.
Each of them is numerically illustrated.

1 Introduction

We consider the inverse medium problem consisting in the reconstruction of an inhomo-
geneous acoustic refraction index from far-field measurements generated through plane
waves. The inverse medium problem is non-linear and ill-posed, which makes it difficult
to solve [11]. Applications are, for example and among others, non-destructive structures
testing or biomedical imaging [15, 17, 12].
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Classically, the inverse medium problem is written as a least-squares problem and we
will look for the index of refraction as a piece-wise constant function. We are thus in
the context of non-linear and ill-posed parameter identification, which calls for specific
methods. Among them, for its ease of implementation and efficiency for medium-sized
problems, we consider the popular Gauss-Newton method applied to a Tykhonov reg-
ularized data misfit cost functional [8]. However, in its usual form, the Gauss-Newton
method treats all parameters alike. Yet, during the reconstruction, or even right from
the beginning, some parameters can reach an acceptable precision while the others still
need to be updated to reach a global precision. In the absence of some local informa-
tion, these acceptable parameters are then uselessly updated at each iteration. In this
setting, we thus explore two uses of geometrical information, gained through defects
localization, to focus the reconstruction and consequently lighten this inverse medium
problem’s numerical resolution.

Defects are generally understood as perturbations with respect to some known refer-
ence. Conversely, this (known) reference can also be seen as an inexact estimation of the
(unknown) perturbed state. It has recently been proved in [10] that the location of the
defects in a given refraction index could be established from far-field measurements of
the unknown state and computed through a fast numerical method. We propose here to
use this fast local information to reduce the computation effort in the complete refraction
index reconstruction process. Coupling between shape reconstruction and parameters
identification has also been proposed by using the Linear Sampling method [5] in [4].
However, the Factorization method approach used [10] provides a more straightforward
formulation as an equivalency that is defined at each point.

In a first time, we consider the case where a known index has been locally modified.
This could happen, for instance, from a local deterioration or a partially incorrect es-
timation of the actual index. In this case, a preliminary defects localization provides a
geometrical information that is which parameters have to be reconstructed. The recon-
struction can then be performed straightforwardly on a reduced computational domain.
In a second time, we investigate adaptive refinement. Here, defects localization is used
to exhibit inaccurate regions in the current reconstruction. This local information allows
us to add base functions in selected locations and resume the reconstruction to get a
better precision while restraining the number of unknown parameters.

This paper is structured as follows: At first, section 2 specifies the mathematical set-
ting. The direct problem is introduced in section 2.1 and followed in section 2.2 by the
description of the inverse medium problem we are interested in. The numerical method
on which we will build our enhancements is then described in section 2.3. Afterwards,
the defects localization and its applications are presented in section 3. We show how
to reduce the reconstruction domain in section 3.1 and the adaptive refinement pro-
cess is detailed in section 3.2. Finally, we numerically illustrate the coupling of both
applications, and also on a non-trivial example, in section 4 and conclude.
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2 Presentation of the problem

We here introduce the inverse medium problem, followed by its numerical treatment and
preceded by the direct problem.

2.1 The direct problem

If we consider time-harmonic acoustic waves with a fixed wave number k, the spatial
part of the wave equation is modeled by the Helmholtz equation [6]. Inhomogeneous
media are then represented by an acoustic refraction index, denoted by n ∈ L∞(Rd),
and so, the total field, denoted by un ∈ L2

loc(Rd), is assumed to satisfy

∆un + k2n(x)un = 0, x ∈ Rd, (1)

where d is the problem’s dimension (d = 2 or 3). We consider compactly supported
inhomogeneities and denote by D the support of n(x)− 1. Also, we denote an incoming
wave satisfying (1) with n = 1 by ui ∈ L2

loc(Rd). The total field is then the sum of
this incoming wave and the wave scattered by the inhomogeneous medium, denoted by
us ∈ L2

loc(Rd):
un := us + ui, (2)

where the scattered wave is assumed to satisfy the Sommerfeld radiation condition

∂ru
s = ikus + O

(
|x|−

d−1
2

)
. (3)

Then, the linear system (1)-(3) defines un uniquely from ui, and it is known to be
invertible in L2(D) [6, Chap. 8].

Besides, the outgoing part of a wave has an asymptotic behavior called the far field
pattern, denoted by u∞n ∈ C∞(Γm) and given by the Atkinson expansion [19]

un(x) := ui(x) + γ
eik|x|

|x|
d−1
2

u∞n (x̂) + O
(
|x|−

d−1
2

)
, x̂ :=

x

|x|
∈ Γm, (4)

where Γm denotes the set of measurement directions as a subset of the unit sphere Sd−1

(see figure 1) and where γ depends only on the dimension and is defined by

γ :=

{
eiπ/4√

8πk
if d = 2,

1
4π if d = 3.

Furthermore, for practical reasons, we will mainly consider scattered waves having a
plane-wave source. These plane-waves are defined by

ui(θ̂, x) := exp(ikθ̂ · x),

where θ̂ is a unitary vector in the set of incidence directions, denoted by Γe as depicted
on figure 1. We then denote the total field with a plane-wave source of incoming direction
θ̂ by

un(θ̂, x), θ̂ ∈ Γe, x ∈ Rd.
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Figure 1: General setting and notations.

Lastly, the corresponding far-field pattern in the measurement direction x̂ ∈ Γm will be
denoted by

u∞n (θ̂, x̂), θ̂ ∈ Γe, x̂ ∈ Γm.

2.2 The inverse medium problem

We are interested in the reconstruction, from far-field data, of an (unknown) inhomoge-
neous refraction index that will be denoted throughout this paper by n? ∈ L∞(D). All
considered indices are implicitly extended by 1 outside D. We thus define the index-to-
far-field mapping F : L∞(D)→ C∞(Γe × Γm) by

F(n) := u∞n .

Besides, data are generally perturbed by noise or measurement errors and we only have
access to uε satisfying

‖uε − u∞n?‖C∞(Γe×Γm) 6 ε. (5)

The usual approach to this problem is then to minimize the non-linear data misfit.
However, most methods to solve this problem are set in Hilbert spaces, so we will have
to consider F as an application from L2(D) into L2(Γe × Γm) and thus define the data
misfit by

J(n) := c1 ‖F(n)− uε‖2L2(Γe×Γm) ,

where c1 denotes a normalization constant (e.g. c1 := ‖uε‖−2
L2(Γe×Γm)).

Even so, this problem is not continuous, as is shown by the following proposition. As
such, even a small perturbation ε can lead to a minimizer very far from n?.

Proposition 1. The non-linear problem consisting in “finding nε minimizing J” is
ill-posed in the sense of Hadamard.

Proof. The application F is compact and thus cannot have a continuous inverse. Indeed,
it has been shown that the total field un is bounded with respect to the L∞(D)-norm
of n [16, Proposition 2.1.14]. As a consequence, the same holds for the mapping n 7→
(n − 1)un. Moreover, the asymptotic behavior of the Lippmann-Schwinger equation
yields the following relation [6, Chap. 8.4]:

F(n)(θ̂, x̂) =

∫
z∈D

e−ikx̂·zk2(n(z)− 1)un(θ̂, z), θ ∈ Γe, x̂ ∈ Γm. (6)
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Hence, the non-linear operator F is the combination of a linear compact operator with
a continuous mapping and is thus compact itself.

2.3 Iterative approximation by a piece-wise constant index

As stated in the introduction, we try to recover the unknown index n? with help of
piece-wise constant functions. Hence, the indices will numerically be represented by
N complex parameters (ηi)i=1...N associated to the same number of zones (Zi)i=1...N , so
n(x) =

∑
i=1...N ηi1Zi(x). Each zone is thus a set of connected elements in the underlying

mesh used to solve the Helmholtz equation. Moreover, to avoid any possibility of inverse
crime, the reconstruction will be led on a different mesh than the one used to generate
the data uε. On this behalf, the respective supports of the basis functions associated
to the unknown parameters will intersect the discontinuities of n?. It is thus strictly
impossible to reconstruct n? exactly. This is illustrated on Figure 2, showing two 2D
meshes that will be used our numerical examples.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

(a) Data mesh

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

(b) Reconstruction mesh

Figure 2: Test case geometry

In this setting, we use the well-known Gauss-Newton method applied to the cost
function J with a standard Tikhonov regularization term [13]:

J̃(n) := c1 ‖F(n)− uε‖2L2(Γe×Γm) + c2 ‖n− n0‖2L2(D) ,

where c2 > 0 is a regularization parameter and n0 ∈ L2(D) is an initial guess. Assump-
tions on n0 and c2 for this method to converge are discussed in [1, 3]. The sought-for
index n? is hence approximated by a sequence (np)p∈N of indices, defined iteratively
through Algorithm 1.

Moreover, we consider small enough amounts of data and unknown parameters to be
able to compute the cost function’s gradient in a reasonably fast time on a standard
desktop computer. This gradient has the following simple formulation.
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Input: n0 ∈ L2(D)
1 p← 0;
2 repeat
3 Compute np+1 by solving the linear system(

DF(np)
?DF(np) +

c2

2c1
id
)
(np+1 − n0) =

−DF(np)
?
(
F(np)− uε −DF(np)(np − n0)

)
,

where id stands for the identity matrix;
4 p← p+ 1;

5 until ‖np − np−1‖2 /(1 + ‖np−1‖2) < ε;
Output: npEnd

Algorithm 1: The Gauss-Newton method for J̃

Lemma 2.1. The application F is twice differentiable. Moreover, the differential DF
evaluated at n ∈ L∞(D) and applied to the direction dn ∈ L∞(D) has the following
integral representation

DF(n) dn : (θ̂, x̂) 7→
∫
z∈D

k2un(−x̂, z)un(θ̂, z) dn(z) dz, θ̂ ∈ Γe, x̂ ∈ Γm. (7)

Proof. Expansion (4) shows that u∞n (θ̂, ·) is linear with respect to the scattered field (un−
ui)(θ̂, ·). Furthermore, It has been shown in [16, Proposition 4.3.1] that the scattered
field is twice differentiable with respect to n and that the differential of the index-to-
scattered-field mapping evaluated at n ∈ L∞(D), applied to dn ∈ L∞(D), is the function
vs(θ̂, ·) ∈ L2

loc(Rd) satisfying(
∆x + k2n(x)

)
vs(θ̂, x) = −k2 un(θ̂, x) dn(x), x ∈ Rd, (8)

and the Sommerfeld radiation condition. Note that, contrary to n, the direction dn is
extended by 0 outside D. Thus, F is twice differentiable and its differential is defined
on C∞(Γe × Γm) by DF(n) dn = v∞.

Now, note Φn(z, x) the Green function to the Helmholtz equation (1). Multiplying (8)
by Φn(z, x), integrating over D and using Green’s formula then yields

vs(θ̂, x) =

∫
z∈D

k2Φn(z, x)un(θ̂, z) dn(z) dz, x ∈ Rd.

The asymptotic behavior is then given by

v∞(θ̂, x̂) =

∫
z∈D

k2Φ∞n (z, x̂)un(θ̂, z) dn(z) dz, x̂ ∈ Sd−1.

Finally, representation (7) is obtained by applying the mixed reciprocity principle:
Φ∞n (z, x̂) = un(−x̂, z) (see [14, equation (3.66)]).
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Numerical example

To illustrate our reconstruction schemes in R2, we consider a disc D of radius 1 centered
on the origin. The embedded perturbation Ω is then another disc, this time centered
on (0.3, 0.3) and of radius 0.3, as depicted on Figure 2a. The (perturbed) index we are
looking for is set to n? := 1.3 in D \ Ω and n? := 1.6 in Ω whereas the initial guess,
corresponding to the last known state, is n0 := 1.3 in D.

The Gaus-Newton method is performed with the regularization parameter set to c2 :=
10−2. Also, required Helmholtz equation’s solutions are computed via P 1 finite elements
and cartesian Perfectly Matched Layers (PML) [7]. Lastly, the corresponding far-fields
are evaluated through representation 6. For all these examples, the wave number is set
to k = 5 and the incoming/measurement direction’s angles are equally spaced in [0, 2π].

An example can be seen on Figure 3 with the reconstruction mesh’s 2672 triangles (see
Figure 2b) divided into N = 10, N = 27, N = 75 and N = 2672 zones. For comparison
purpose, we also list in Table 1 the exact final relative error

epEnd
:= ‖npEnd

− n?‖L2(D) / ‖n
?‖L2(D)

obtained in several configurations. Besides, we see in this table that the relative error is in
the order of 10−3, so we set the stopping criterion to ε = 10−4 for all our reconstructions.

15× 15 data 30× 30 data 60× 60 data
N ε pEnd epEnd

pEnd epEnd
pEnd epEnd

10
5% 4 6.0% 4 5.9% 4 5.9%
2% 4 5.9% 4 5.9% 4 5.8%
1% 4 5.9% 4 5.9% 4 5.8%

27
5% 4 4.9% 4 4.9% 4 4.9%
2% 4 4.9% 4 4.8% 4 4.8%
1% 4 4.9% 4 4.8% 4 4.8%

75
5% 4 5.2% 4 4.4% 4 4.4%
2% 4 3.8% 4 3.7% 4 3.7%
1% 4 3.7% 4 3.6% 4 3.6%

2672
5% 4 4.6% 4 4.0% 4 4.4%
2% 4 3.3% 4 3.2% 4 3.0%
1% 4 3.0% 4 3.0% 4 3.0%

Table 1: Gauss Newton reconstruction
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(b) N = 27 parameters
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(c) N = 75 parameters
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(d) N = 2672 parameters
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(e) p 7→ J(np) := c1 ‖F(np)− uε‖2
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(f) p 7→ 100ep := 100 ‖np − n?‖ / ‖n?‖

Figure 3: Gauss-Newton reconstruction with 30× 30 data and 2% noise
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3 Enhancements of the Gauss-Newton method via defects
localization

In the presented piece-wise constant iterative approximation, the possible precision is
directly linked to the number of parameters N which, in turn, is linked to the compu-
tational effort. In the lack of some geometrical information, all constants are equally
treated and updated at each iteration. In some cases however, this can generate more
effort than is really needed and we address two of them.

1. For the first case, we place ourselves in the context of a localized perturbation of
an otherwise known initial state n0. So, one can state that most of the index has
not changed and should not be reconstructed.

2. For the second case, we are concerned in focusing on the most inexact constants
during the reconstruction. Indeed, to obtain a precise identification, the recon-
struction mesh has to be refined in the zones intersected by the discontinuities
of n?. However, if n? is constant in large areas, refining the reconstruction mesh
everywhere only raises the computational effort for a relatively small precision
increment.

To address these aspects of the reconstruction, the useful information in both cases
would thus be the localization of the exact (enough) constants. Of course, to enhance
the complete reconstruction, access to this specific information should be fast. To this
end, it has been shown that there exist a defects localization function recalled in the
following theorem.

Theorem 3.1. [10, Theorem 6.1] Assume Γm = Γe = Sd−1. Then, define W :=(
Id+ 2ik |γ|2 Fn

)
(Fn? − Fn) , where Fn : L2(Sd−1) → L2(Sd−1) denotes the classical

far-field operator, defined by Fng(x̂) := 〈g, u∞n (·, x̂)〉L2(Sd−1). Next, we define the positive
self-adjoint operator W# by W# := |W +W ?|+ |W −W ?|, where the notation |·| applied

to an operator L stands for |L| := (L?L)
1
2 . Lastly, assume that n and n? are real valued

and that either (n−n?) or (n?−n) is locally bounded from below on Ω := support(n−n?).
Then, for each z ∈ Rd, we have

n(z) 6= n?(z) ⇐⇒ S{n,n?}(z) :=

∑
j

∣∣∣〈un(·, z), ψj〉L2(Sd−1)

∣∣∣2
σj


−1

> 0,

where (σj , ψj) is an eigensystem of W#.

Remark 1. As it is, this theorem requires full bi-static data and real-valued indices.
However, we also recall the conjecture, stated in [10, Remark 6.2], that the same result
could be obtained by defining the localization function S with (σj , ψj) a right-singular
system of (Fn? − Fn). The main benefit is the possibility to consider Γm 6= Γe 6= Sd−1

and complex valued indices.
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Furthermore, numerical examples in [10] seem to indicate that this localization is
effective for defects bigger than (approximately) one sixth of the wavelength. Besides, in
order to get satisfactory results in the successive resolutions of the Helmholtz equation,
we have set the average reconstruction mesh element’s size to be about one twentieth of
the wavelength. Thus, we will only consider defects that cover at least four connected
mesh elements.

Finally, the examples shown in [10] exhibit that defects can be located even when the
surrounding background is not precisely known. Practically, low amplitude inaccuracies
with respect to the exact index do not seem to interfere with the localization of the con-
trasting defects. Thus, geometrical information gained through the defects localization
presented here is expected to focus on the most ”defective” zones.

3.1 Selective reconstruction

We here consider the case where the initial guess n0 is exact, except for some perturba-
tion whose support will be denoted by Ω. Thus, we propose to perform a preliminary
selection of the parameters that do need to be reconstructed. The whole index n? is
then reconstructed by updating those parameters only. This should generally lead to a
reconstruction using significantly less parameters, summarized in Algorithm 2.

Input: n0 ∈ L2(D)
1 Si ← maxZi S{n0,n?}(x);

2 ΩT ← the set of zones for which Si > T max(Si);
3 npEnd

← Algorithm 1(n0 ΩT ) (all indices are extended by n0 outside ΩT );
Output: npEnd

Algorithm 2: Selective reconstruction

Numerical example

In the framework of section 2.3, we here use one parameter for each reconstruction
mesh element. Figure 4 shows which parameters are selected with three threshold values
T = 10%, T = 20% and T = 30%. We can see that a threshold of T = 10% selects
slightly too much mesh elements and thus provides a satisfactory reconstruction with
only 316 parameters. This is significantly less than the initial 2672 and thus, reaches the
set goal. More precisely, we can see in Table 2 that the precision is superior to what was
obtained through a full Gauss-Newton reconstruction. This was to be expected since, in
the present case, all parameters outside the perturbation stay fixed to the exact value,
where they can be misevaluated in the full reconstruction.

However, a threshold of T = 20% seems too high, as the 178 selected parameters do not
completely cover the perturbation’s support, resulting in a slightly flawed reconstruction.
This brings up the problem, arising with every adjustable parameter, of how to select
a correct threshold, depending at least on the measurements noise and the amount of
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data. Unfortunately, for the moment, we do not have a reliable indicator to tell if the
selected threshold was acceptable.
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(d) N = 316
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(e) N = 178
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(f) N = 127

Figure 4: Selective reconstruction with 30× 30 data and 2% noise

3.2 Adaptive refinement

As stated in section 2.3, since we use a reconstruction mesh that is different from the
one used to generate the data, these zones will most likely intersect discontinuities of
n?. Even more so with a low number of zones N . Thus, we propose to iteratively refine
the reconstruction mesh with help of the previously introduced defects localization, in
order to provide a satisfying approximation of the unknown index with a small number
of parameters. The refinement’s outline is presented in Algorithm 3.

The number of 16 mesh elements is taken so that, after the splitting, each zone still has
more than four elements, which is the lower limit for defects to be relevant, as specified
in Remark 1.

Numerical example

In the same conditions as before, we illustrate our adaptive refinement on Figure 5.
Figures 5a–5h depict alternately steps 3 and 9 of Algorithm 3 and show how the re-
construction focuses on the contrasting perturbation’s support. Figure 5i represents the
values of n42, which is obtained with N = 46 parameters placed during 15 successive
adaptive refinements. Also, the relative error ep, obtained in step 10 of the algorithm,
is plotted on Figure 5j as a function of p.
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15× 15 data 30× 30 data 60× 60 data
T ε N pEnd epEnd

N pEnd epEnd
N pEnd epEnd

10%
5% 661 4 3.3% 730 4 3.0% 689 4 3.0%
2% 328 4 2.3% 316 4 2.4% 333 4 2.3%
1% 303 4 2.3% 323 4 2.3% 288 4 2.5%

20%
5% 288 4 2.7% 276 4 2.5% 282 4 2.7%
2% 184 4 3.8% 178 4 3.8% 186 4 3.7%
1% 175 4 3.9% 182 4 3.6% 168 4 4.1%

30%
5% 183 4 3.8% 185 4 3.6% 187 4 3.7%
2% 128 4 5.5% 127 4 5.5% 128 4 5.5%
1% 122 4 5.7% 129 4 5.5% 113 4 5.9%

Table 2: Selective reconstruction

Input: n0 ∈ L2(D)
1 p← 0;
2 repeat
3 Si ← maxZi S{np,n?}(x);

4 I ← {i such that Zi contains more than 16 mesh elements};
5 iSplit ← i such that SiSplit = maxi∈I Si;
6 Update the set of zones by splitting ZiSplit into four sub-zones;

7 Update the set of parameters accordingly by duplicating ηiSplit three times;

8 N ← N + 3;
9 np+pEnd

← Algorithm 1(np);
10 p← p+ pEnd;

11 until N > Nmax or each Zi contains less than 16 mesh elements;
Output: npEnd

Algorithm 3: Adaptive refinement

12



Comparing with the relative errors listed in Table 1, or on Figure 3f, we can see
that the guided adaptive refinement achieves better results than randomly placed basis
functions. This example shows results even comparable to the full reconstruction with
20 times more parameters. It thus pictures a satisfactory reconstruction with a limited
number of well-placed parameters.

These results present sensitivities to noise or data amount that go in the same lines
as the previous examples, as can be seen in Table 3.

15× 15 data 30× 30 data 60× 60 data
ε N pEnd epEnd

N pEnd epEnd
N pEnd epEnd

5% 76 76 5.2% 76 66 4.4% 76 64 3.6%
2% 76 60 4.0% 76 59 3.9% 76 61 3.1%
1% 76 59 3.7% 76 60 3.5% 76 59 3.5%

Table 3: Adaptive refinement

4 Combining both strategies

The selective reconstruction is presented in section 3.1 as a preliminary step to the recon-
struction. It can thus be followed by the adaptive refinement described in section 3.2.
So, we further illustrate selective reconstruction and adaptive refinement by chaining
them, as described in Algorithm 4.

Input: n0 ∈ L2(D)
1 Si ← maxZi S{n0,n?}(x);

2 ΩT ← the set of zones for which Si > T max(Si);
3 npEnd

← Algorithm 3(n0 ΩT ) (all indices are extended by n0 outside ΩT );
Output: npEnd

Algorithm 4: Selective reconstruction followed by adaptive refinement

Numerical example 1

In line with section 3, we illustrate Algorithm 4 with the selection thresholds T =
10%, T = 20% and T = 30%. The respective selected mesh elements can be seen
on Figures 4a–4c. Figures 6a–6c show the reconstructions after 2, 3 and 17 adaptive
refinement loops with a threshold T = 10%. As expected, since we already saw that the
whole perturbation is captured, the result is a good reconstruction. In fact, the exact
values listed in Table 4 show that this reconstruction achieves a precision in par with the
results obtained through the initial selective reconstruction with about 10 times more
basis functions.
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Figure 5: Adaptive refinement with 30× 30 data and 2% noise

14



Moreover, again similarly to the examples presented in section 3.1, T > 20% results in
a too small selection, leading to a flawed reconstruction. It can be seen on Figures 6d–6i
that the reconstruction tends to a crown shape. The corresponding relative error values
are presented on Figure 6j and detailed in Table 4.

15× 15 data 30× 30 data 60× 60 data
T ε N pEnd epEnd

N pEnd epEnd
N pEnd epEnd

10%
5% 74 69 4.8% 70 59 3.2% 69 63 3.3%
2% 52 43 2.6% 52 45 2.5% 52 43 2.4%
1% 52 44 2.5% 52 42 2.6% 52 41 2.6%

20%
5% 52 42 3.1% 52 41 2.7% 52 41 2.7%
2% 16 19 4.1% 16 19 3.8% 19 21 3.5%
1% 22 23 3.3% 16 19 4.2% 16 19 4.2%

30%
5% 16 19 4.6% 16 19 3.7% 19 21 3.6%
2% 16 19 5.6% 16 19 5.6% 16 19 5.4%
1% 15 19 5.2% 16 19 5.7% 16 19 5.7%

Table 4: Selective reconstruction chained with iterative refinement

Numerical example 2

As a last example, we now consider a less trivial and complex valued unknown index
n?, shown on Figure 7. Besides, we also make this reconstruction more challenging by
reducing the measurements aperture. The incoming directions are still taken in [0, 2π],
but there will be five less, and the measurement directions are now taken in [0, 3

2π]. In
this situation, the localization function presented in Theorem 3.1 can not be defined.
So, we consider the technical modification recalled in Remark 1 that is conjectured to
cover this case.

Furthermore, we assume that n? was known previously to the central perturbation,
which translates in the initial guess n0 depicted on Figure 8. The reference reconstruc-
tions obtained with Algorithm 1 are presented in Table 5.

To remain in the previously defined context, we present the results of Algorithm 4
applied to this new geometry with the same thresholds T = 10%, 20% and 30%. Figure 9
then depicts for each threshold the corresponding selected parameters and the resulting
reconstruction. In this case, T = 20% now seems to be the best threshold value and
T = 30% is still too high. This is confirmed on Figure 9j, where we can see that,
even though T = 10% allows to reach a satisfying precision, it requires much more
refinements to do so than with T = 20%. Also, more specific results for different
simulated configurations are listed in Table 6.

The results obtained in section 3 are thus backed up by this example, exhibiting
reconstructions comparable in precision to the full Gauss-Newton reconstruction, but
with a much lower number of parameters.
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Figure 6: Selective reconstruction chained with adaptive refinement, 30 × 30 data and
2% noise
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Figure 7: Exact index n?
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Figure 8: Initial guess n0

10× 15 data 25× 30 data 55× 60 data
N ε pEnd epEnd

pEnd epEnd
pEnd epEnd

10
5% 5 11.6% 5 11.6% 5 11.5%
2% 5 11.6% 5 11.5% 5 11.5%
1% 5 11.6% 5 11.5% 5 11.5%

23
5% 4 11.1% 4 10.7% 5 10.6%
2% 4 10.5% 4 10.6% 5 10.4%
1% 4 10.4% 5 10.4% 4 10.4%

64
5% 5 9.0% 5 8.4% 5 7.9%
2% 5 7.7% 4 7.6% 5 7.6%
1% 5 7.6% 5 7.5% 5 7.5%

1832
5% 5 7.8% 5 6.7% 5 6.2%
2% 5 6.1% 5 6.0% 5 5.8%
1% 5 5.9% 5 5.8% 5 5.8%

Table 5: Gauss Newton reconstruction for the more elaborate example
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Figure 9: Selective reconstruction chained with adaptive refinement for the more elabo-
rate example with 30× 30 data and 2% noise
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10× 15 data 25× 30 data 55× 60 data
T ε N pEnd epEnd

N pEnd epEnd
N pEnd epEnd

0%
5% 76 95 12.6% 76 91 14.9% 76 86 10.2%
2% 76 90 13.4% 76 84 9.6% 76 84 9.1%
1% 76 93 11.9% 76 85 8.1% 76 84 8.1%

10%
5% 73 82 10.0% 75 76 6.3% 52 58 5.7%
2% 57 62 5.9% 48 50 5.6% 48 50 5.5%
1% 51 52 5.6% 48 47 5.5% 45 43 5.2%

20%
5% 51 53 5.7% 42 42 5.5% 45 42 5.7%
2% 45 42 5.4% 34 31 5.7% 27 27 6.3%
1% 40 35 5.3% 24 24 6.2% 13 17 7.8%

30%
5% 37 35 5.7% 28 26 6.4% 13 18 8.5%
2% 25 25 6.5% 13 18 8.6% 13 18 9.2%
1% 16 19 7.8% 13 18 8.9% 13 19 10.3%

Table 6: Selective reconstruction chained with adaptive refinement for the more elabo-
rate example

5 Conclusion

We have used a previously developed defects localization method to propose two ways
of reducing the number of parameters in the reconstruction on an unknown refraction
index. The first method is set in the context of defects identification and uses their
localization to reconstruct only the useful parameters of the whole index. The second
method is an adaptive refinement, based on defects localization to iteratively reconstruct
a better approximation with a contained number of parameters.

Both methods have shown good numerical results with the presented Gauss-Newton
method. The reconstruction could however be further enhanced by two automations:
some automatic thresholding for the defects localization function and some automatic
selection of the regularization parameter. The second issue has been reviewed for ex-
ample in [9, 2] and is claimed to be less critical when using a so-called Multiplicative
Regularization described in [18]. However, to this point, we have not been able to further
enhance our results with these techniques.
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