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TOPOLOGY-PRESERVING DIFFUSION OF DIVERGENCE-FREE

VECTOR FIELDS AND MAGNETIC RELAXATION

YANN BRENIER

Abstract

The usual heat equation is not suitable to preserve the topology of divergence-free
vector fields, because it destroys their integral line structure. On the contrary, in the fluid
mechanics literature, on can find examples of topology-preserving diffusion equations for
divergence-free vector fields. They are very degenerate since they admit all stationary
solutions to the Euler equations of incompressible fluids as equilibrium points. For them,
we provide a suitable concept of ”dissipative solutions”, which shares common features
with both P.-L. Lions’ dissipative solutions to the Euler equations and the concept of
”curves of maximal slopes”, à la De Giorgi, recently used to study the scalar heat equation
in very general metric spaces. We show that the initial value problem admits such global
solutions, at least in the two space variable case, and they are unique whenever they are
smooth.

1. Introduction

Related to the numerous literature devoted to “topological fluid mechanics” (see [4,
10, 17, 18, 19, 20] and many others), there are some highly non-linear (and degenerate)
diffusion equations for divergence-free vector fields. A typical example is

(1.1) ∂tB +∇ · (B ⊗ v − v ⊗ B) = 0, v = P∇ · (B ⊗ B), ∇ · B = 0,

where P denotes the L2 projection onto divergence-free vector fields. Following [17], we call
them “magnetic relaxation equations”(MRE). They have a (somewhat artificial) physical
interpretation as they (tentatively) describe a friction dominated model of incompress-
ible magnetohydrodynamics (MHD) (in some lose sense, “MHD in porous media”). But,
they have a specific mathematical interest because of their link with the Euler equations
of incompressible fluids and the theory of ”topological hydrodynamics”, as discussed now.

Let us consider the MRE (1.1) on the flat torus D = R
d/Zd, just for simplicity, and

sketch their three main properties. First, these equations admits an interesting dissipa-
tion property for the “magnetic energy”, namely

d

dt

∫ |B|2
2

dx+

∫

|P∇ · (B ⊗B)|2dx = 0

(this is, of course, formally obtained by elementary calculations, assuming B to be
smooth). Next, the “equilibrium states”, for which the energy no longer dissipates, are
precisely all stationary solutions to the Euler equations of homogeneous incompressible
fluids, namely

P∇ · (B ⊗ B) = 0, ∇ ·B = 0.
1
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Last, equations (1.1) are ”topology-preserving” in the sense that there is a velocity field
v = v(t, x) ∈ R

d that ”transports” B, i.e.

(1.2) ∂tB +∇ · (B ⊗ v − v ⊗B) = 0.

What we mean by ”topology-preserving” is that, for each fixed time t, the ”magnetic
lines” of B (i.e. the integral lines s → ξ(s) satisfying ξ′(s) = B(t, ξ(s)), where t is
“frozen”) are “transported” by the flow associated to v, as time evolves. Thus, these lines
keep their topology unchanged during the evolution, in particular their knot structure.
[More precisely, let us use ”material coordinates” (t, a) → X(t, a), so that

∂tX(t, a) = v(t, X(t, a)), X(0, a) = a.

Then, under suitable smoothness assumptions on v and B, the transport equation (1.2)
exactly means Bi(t, X(t, a)) =

∑

j ∂jXi(t, a)Bj(0, a), i = 1, · · ·, d (to check the formula,

just differentiate it in t and use the chain rule.) This implies that the magnetic lines of
B at time t are the images by X(t, ·) of those of B at times 0. (To check this statement,
differentiate X(t, ξ(s)) in s for each integral line ξ of B at time 0.)]
To summarize these three properties, we can say that the “magnetic relaxation equations”
(1.1) are a good candidate to drive, as time goes to infinity, each given initial magnetic
field of prescribed topology to a stationary solution of the Euler equations with the same
topology. This is clearly part of the more ambitious program of ”topological hydrody-
namics”, as developed in the papers of Moffatt [17] and the book of Arnold and Khesin [4].

Let us emphasize that the standard linear diffusion equation (on the flat-torus) for
divergence-free vector fields reads ∂tB = ∆B and is certainly not “topology-preserving”
since it cannot be written as a transport equation (1.2) for any vector field v = v(t, x).
This is in sharp contrast with the standard linear heat equation for positive density fields
∂tρ = ∆ρ, which can be easily put in “transport” form

(1.3) ∂tρ+∇ · (ρv) = 0, v = −∇(log ρ).

Recently, the heat equation has been studied by Gigli, Gigli-Kuwada-Ohta, Ambrosio-
Gigli-Savaré [11, 12, 2], in a very general class of metric spaces. Their method is based on
the following very simple and remarkable idea (that combines the concept of ”curves of
maximal slopes” introduced by the De Giorgi school for ”gradient flows” and the interpre-
tation by Kinderlehrer, Jordan and Otto [13, 1] of the heat equation as the gradient flow
of Boltzmann’s entropy for a suitable Monge-Kantorovich metric on the set of probability
measures). We first say that a pair of measures (ρ(t, x) ≥ 0, q(t, x) ∈ R

d) is admissible if
it solves the “continuity equation”

(1.4) ∂tρ+∇ · q = 0.

Next, we formally get, for each admissible pair

d

dt

∫

2ρ log ρ = 2

∫ ∇ρ · q
ρ

=

∫ |q +∇ρ|2
ρ

−
∫ |q|2

ρ
−
∫ |∇ρ|2

ρ
.
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This suggests to characterize the solutions of the heat equation precisely as those admis-
sible pairs (ρ, q) that achieve inequality

(1.5) 2
d

dt

∫

ρ log ρ+

∫ |q|2
ρ

+

∫ |∇ρ|2
ρ

≤ 0 .

This very simple formulation is quite powerful. First, the set of solutions (ρ, q) for a
given initial condition is convex and weakly compact. (Notice that the three function-
als involved in (1.5) are all convex in (ρ, q), with possible value +∞, the first one being
strictly convex.) Next, uniqueness of solutions directly follows from the strict convexity of
ρ → ρ log ρ. (Indeed, the average of two distinct solutions would lead to a strict inequality
in (1.5), which turns out to be not possible). Finally, formulation (1.5) makes sense in a
very large class of metric spaces [11, 12, 2]. Notice that this strategy can also be carried
out for a rather large class of non-linear diffusion equations, as explained in Appendix 1.

We have spent several lines in explaining this recent approach to the scalar heat equa-
tion precisely because we are going to follow a similar (but much less successful) way to
address the (more) challenging magnetic relaxation equations (1.1). First, we call admis-
sible solution any pair of time-dependent divergence-free vector fields (B, v) solving the
transport equation (1.2), namely

(1.6) ∂tB +∇ · (B ⊗ v − v ⊗ B) = 0

(which, unfortunately, is non-linear but, at least, has a nice “div-curl” structure in the
two-dimensional case d = 2). Next, we observe that, for any (smooth) admissible pair
(B, v):

d

dt

∫

|B|2dx = 2

∫

v · ∇ · (B ⊗ B)dx.

(just because of (1.2))

= 2

∫

v · P∇ · (B ⊗B)dx

(because v is divergence-free)

=

∫

|v − P∇ · (B ⊗B)|2dx−
∫

|v|2dx−
∫

|P∇ · (B ⊗ B)|2dx.

Therefore, we can characterize the solutions (B, v) of (1.1), just by asking them to be
admissible and satisfy the following inequality

d

dt

∫

|B|2dx+

∫

|v|2dx+

∫

|P∇ · (B ⊗ B)|2dx ≤ 0.

Unfortunately, with respect to the simpler case of the scalar heat equation, we loose
on two sides. First, the transport “constraint” (1.6) is not linear (in contrast with the
continuity equation (1.4)). Second, the energy inequality involves a non-convex functional
of B, namely

∫

|P∇ · (B ⊗ B)|2dx. However, in the present paper, we will be able to
overcome some of these difficulties. The output is a “reasonable” concept of “dissipative
solutions”, sharing the same strength and weakness as Lions’ dissipative solutions to the
Euler equations [14]: weak compactness (at least in the two-dimensional case d = 2,
in our case) and uniqueness whenever they are smooth. To finish this introduction, let
us mention the analysis by Nishiyama of related magnetic relaxation equations [18, 19],
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based on the concept of measure-valued solutions, as well as two recent papers [8, 9] on the
concept of dissipative measure-valued solutions for elastodynamics and fluid mechanics.

2. Dissipative solutions to the magnetic relaxation equations

Preliminaries. LetD be the d-dimensional flat torus (R/Z)d, and ||·|| be the L2-norm on
D. Let us denote L2

div,0(D;Rd) the space of all L2 vector fields on D that are divergence-
free
Next we define

(2.7) L(B) = ||P∇ · (B ⊗ B)||2 ∈ [0,+∞],

for all B ∈ L2
div,0(D;Rd), where P denotes the (Helmholtz-Leray) orthogonal projector

L2→L2
div,0(D;Rd). A more precise definition is obtained by duality

L(B) = sup

∫

D

(B ⊗ B) : (∇z +∇zT )dx− ||z||2 ,

z ∈ C1(D ; Rd), ∇ · z = 0,

(2.8)

where (B ⊗ B) : (∇z +∇zT ) should be understood as

d
∑

i,j=1

BiBj(∂izj + ∂jzi).

L is not a convex function of B and we have to find a substitute for L. This is why, for
each real nonnegative number r ∈ R+, we define, for B ∈ L2

div(D;Rd)

Kr(B) = sup{
∫

D

(B ⊗ B) : (∇z +∇zT + rI)dx− ||z||2 ,

z ∈ C1(D ; Rd), ∇ · z = 0, ∇z +∇zT + rI ≥ 0}
(2.9)

(in the sense of symmetric matrices, where I denotes the identity matrix). Notice that
Kr(B) is always bounded from below by r||B||2 (take z = 0 in its definition) and is a
convex function of B (as a supremum of positively curved quadratic functions of B, thanks
to the constraint ∇z +∇zT + rI ≥ 0). In addition, we can recover L out of the Kr since

sup
r≥0

Kr(B)− r||B||2 = sup{
∫

D

(B ⊗ B) : (∇z +∇zT + rI)dx− ||z||2 − r||B||2,

r ≥ 0, z ∈ C1(D ; Rd), ∇ · z = 0, ∇z +∇zT + rI ≥ 0}

= sup{
∫

D

(B ⊗B) : (∇z +∇zT )dx− ||z||2

r ≥ 0, z ∈ C1(D ; Rd), ∇ · z = 0, ∇z +∇zT + rI ≥ 0}
= L(B).

(2.10)
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Definition of dissipative solutions to the magnetic relaxation equations.

Definition 2.1. Given a final time T > 0 and B0 ∈ L2
div,0(D;Rd), we say that a pair

(t, x) ∈ [0, T ]×D→(B, v)(t, x) ∈ R
d × R

d

is a dissipative solution of the MRE (1.1) with initial condition B0, if
i) B is weakly continuous from [0, T ] to L2

div,0(D;Rd) with B(0) = B0;

ii) v is square-integrable from [0, T ] to L2
div,0(D;Rd);

iii) B, v solves the transport equation (1.2), namely

∂tB +∇ · (B ⊗ v − v ⊗B) = 0,

in the sense of distributions;
iv)

||B(t, ·)||2 +
∫ t

0

[||v(s, ·)||2 +Kr(s)(B(s, ·))] exp(R(t)− R(s))ds

≤ ||B(0, ·)||2 exp(R(t)) ∀t ∈ [0, T ],

(2.11)

for all nonnegative function t → r(t) ≥ 0, with R(t) =
∫ t

0
r(s)ds, where Kr is defined by

(2.9).

3. Stability of smooth solutions among dissipative solutions

We ignore whether or not the MRE (1.1) are locally well-posed in any space of smooth
functions. (As a matter of fact, this is a very interesting issue, since these equations can
be considered as parabolic only in a weak sense.) However, we can prove:

Theorem 3.1. Assume D = (R/Z)d. Let (B, v) and (β, ω) be respectively a dissipative
and a smooth solution to the MRE (1.1) up to time T . Then, there is a constant C
depending only on the spatial Lipschitz constant of (β, ω), so that, for all t ∈ [0, T ],

||(B − β)(t, ·)||2 +
∫ t

0

exp(C(t− s))
1

2
||v(s, ·)− ω(s, ·)||2ds ≤ ||(B − β)(0, ·)||2 exp(Ct)

(3.12)

This implies the uniqueness of smooth solutions among all dissipative solutions, for any
given prescribed smooth initial condition.

Proof. For simplicity, we use notations Bt, vt for B(t, ·), v(t, ·), etc... Let us introduce
for each t ∈ [0, T ]

Nt = ||B0||2 exp(rt)−
∫ t

0

(||vs||2 +Kr(Bs)) exp(r(t− s))ds

where r is a nonnegative constant to be chosen later. By definition, we have

(
d

dt
− r)Nt + ||vt||2 +Kr(Bt) = 0

(in the distributional sense and also for a.e. t ∈ [0, T ]). Since (B, v) is a dissipative
solution we get from (1.2)

Nt ≥ ||Bt||2, ∀t ∈ [0, T ].
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We now set

e(t) = ||Bt − βt||2 + (Nt − ||Bt||2) = Nt − 2((Bt, βt)) + ||βt||2, ∀t ∈ [0, T ].

where ((·, ·)) denotes the L2 inner product, and compute the time derivative e′(t) of e(t).
We already know that

d

dt
Nt = rNt − ||vt||2 −Kr(Bt)

Next, since (B, v) is a dissipative solution we get from (1.2)

d

dt
((Bt, βt)) =

∫

Bti(βti,t + vtj(βti,j − βtj,i))

where we use notations βti,j = ∂j(βt)i, etc...and skip summations on repeated indices i,
j... Thus, we find

e′(t) = rNt − ||vt||2 −Kr(Bt) +

∫

2(β − B)tiβti,t − 2Btivtj(βti,j − βtj,i).

By definition (2.9), we can find a constant r, depending only on the spatial Lipschitz
constant of ω, large enough so that (by setting z = −ω in (2.9))

−Kr(Bt) ≤
∫

BtiBtj(ωti,j + ωtj,i)dx− r||Bt||2 + ||ωt||2.

Thus
e′(t) ≤ r(Nt − ||Bt||2)− ||vt||2 + ||ωt||2 + Jt

where

Jt =

∫

BtiBtj(ωti,j + ωtj,i) + 2(β − B)tiβti,t − 2Btivtj(βti,j − βtj,i).

We may write
Jt = JQ

t + JL1
t + JL2

t + JC
t

where JQ
t , J

L1
t , JL2

t , JC
t are respectively quadratic, linear, linear, and constant with respect

to B − β and v − ω, with coefficient depending only on ω, β:

JQ
t =

∫

(B − β)ti(B − β)tj(ωti,j − ωtj,i)− 2(B − β)ti(v − ω)tj(βti,j − βtj,i)

JL1
t =

∫

2(B − β)ti[βtj(ωti,j + ωtj,i)− βti,t − ωtj(βti,j − βtj,i)]

JL2
t =

∫

2(v − ω)tjβtiβtj,i

JC
t =

∫

[βtiβtj(ωti,j + ωtj,i)− 2βtiωtj(βti,j − βtj,i)].

Let us reorganize these four terms. By integration by part of its second term, we see that
JC
t = 0, using that β and ω are divergence-free. Next, since Bt − βt is divergence-free, we

have

JL1
t =

∫

2(B − β)ti[−βti,t − ωtjβti,j + βtjωti,j ]

and we may reorganize

JL2
t = 2((vt − ωt, ωt)) +

∫

2(v − ω)tj[βtiβtj,i − ωtj]
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Thus

e′(t) ≤ r(Nt − ||Bt||2)− ||vt − ωt||2 + JQ
t + JL

t

where

JL
t = −2((Bt − βt, ∂tβt + (ωt · ∇)βt − (βt · ∇)ωt)) + 2((vt − ωt,∇(βt ⊗ βt)− ωt)).

Clearly

JQ
t ≤ 1

2
||vt − ωt||2 + C ′||Bt − β)t||2

for some constant C ′ depending only on the spatial Lipschitz constant of (β, ω). Finally,
we have obtained

e′(t) +
1

2
||vt − ωt||2 ≤ r(Nt − ||Bt||2) + C ′||Bt − βt||2 + JL

t ,

and, therefore, by definition of e(t)

e(t) = ||Bt − βt||2 + (Nt − ||Bt||2),

we get

e′(t) +
1

2
||vt − ωt||2 ≤ Ce(t) + JL

t ,

where C is another constant depending only on the spatial Lipschitz constants of (β, ω)
(through R). By integration we deduce

e(t) +

∫ t

0

e(t−s)C 1

2
||vs − ωs||2ds ≤ e(0)etC +

∫ t

0

e(t−s)CJL
s ds.

Finally, let us remember that e(t) ≥ ||Bt−βt||2 with equality for t = 0 (since Nt ≥ ||Bt||2
with equality at t = 0). Thus, we have shown

Lemma 3.2. Assume D = (R/Z)d. Let us fix T > 0. Let (B, v) be a dissipative solution
of the MRE (1.1) up to time T , and (β, ω) be any pair of smooth functions (β, ω) chosen in
L2
div,0(D;Rd). Then there is a constant C depending only on the spatial Lipschitz constant

of (β, ω), up to time T , so that, for all t ∈ [0, T ],

||Bt − βt||2 +
∫ t

0

e(t−s)C 1

2
||vs − ωs||2ds ≤ ||B0 − β0||2etC +

∫ t

0

e(t−s)CJL
s ds,

JL
t = −2((Bt − βt, ∂tβt + (ωt · ∇)βt − (βt · ∇)ωt)) + 2((vt − ωt,∇(βt ⊗ βt)− ωt)).

(3.13)

We now see that JL
t exactly vanishes as (β, ω) is a smooth solution to the MRE (1.1).

∂tβ + (ω · ∇)β − (β · ∇)ω = 0, ω = P∇(β ⊗ β), ∇ · β = ∇ · ω = 0,

and the proof of Theorem 3.1 immediately follows.
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4. Existence of dissipative solutions in two space dimensions

Theorem 4.1. Assume d = 2 and D = (R/Z)2. Let T > 0 and fix an initial condition
B0 ∈ L2

div,0(D;Rd). Then there is at least one dissipative solution (B, v) of the MRE (1.1)

up to time T . This solution can be obtained as the limit in C0([0, T ];L2
div,0(D;Rd)w) ×

L2([0, T ];L2
div,0(D;Rd))w, as parameters (ǫ, µ, ν) go to zero, of the unique solution of the

MHD system (with friction and viscosity)

ǫ(∂tv +∇ · v ⊗ v) + v +∇p− µ∆v = ∇ ·B ⊗B,

∂tB +∇ · (B ⊗ v − v ⊗B)− ν∆B = 0, ∇ · v = ∇ · B = 0,
(4.14)

with smooth initial conditions chosen so that B(0, ·), √ǫ v(0, ·) approach respectively B0

and 0 in L2.

Proof. Since d = 2, the MHD system has global smooth solutions for any smooth intial
condition [21]. From these MHD equations, respectively multiplied by v and B and
integrated over D, we get two straightforward estimates

ǫ
d

dt

∫ |v|2
2

+

∫

|v|2 + µ

∫

|∇v|2 = −
∫

(B ⊗ B) : ∇v

d

dt

∫ |B|2
2

+ ν

∫

|∇B|2 =
∫

(B ⊗ B) : ∇v

(4.15)

We first add up these estimates in order to get the total energy balance

(4.16)
d

dt

∫ |B|2 + ǫ|v|2
2

+

∫

|v|2 + µ

∫

|∇v|2 + ν

∫

|∇B|2 = 0.

This implies that B and v are respectively uniformly bounded (with respect to (ǫ, µ, ν))
in L∞([0, T ], L2(D)) and L2([0, T ], L2(D)). Using the second equation of (4.14), we also
see that B is uniformly bounded in C1/2([0, T ], (Lip(D;Rd)′) (where Lip(D;Rd)′ denotes
the dual of the space of vector-valued Lipschitz functions). Indeed:

∀t, s ∈ [0, T ], |
∫

(B(t, x)−B(s, x)) · z(x)dx|2 =

|
∫ t

s

dt′
∫

[(B(t′, x)⊗ v(t′, x)) : (∇zT −∇z)(x)− ν∇B(t′, x) : ∇z(x)]dx|2

≤ |t− s| Lip(z)2 [4 sup
t”∈[0,T ]

∫

|B(t”, x)|2dx
∫

|v(t′, x)|2dxdt′ + ν2

∫

|∇B(t′, x)|2dxdt′].

(4.17)

We deduce that, as ǫ, µ, ν go to zero, B and v are compact respectively in the spaces
C0([0, T ], L2

div,0(D;Rd)w) and L2([0, T ], L2
div,0(D;Rd))w, where subscript w refers to the

weak topology of L2.
Next, we use the weak formulation (in x) of the first equation of (4.14), namely:

ǫ(∂tv +∇ · v ⊗ v) + v +∇p− µ∆v = ∇ · B ⊗ B,

to get, for any fixed smooth test function z(t, ·) valued in L2
div,0(D;Rd)

ǫ
d

dt

∫

vizi −
∫

ǫ(vizi,t + vivjzi,j) +

∫

(zivi + µzi,jvi,j +BiBjzi,j) = 0
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Adding up the energy balance (4.16), namely:

d

dt

∫

(
|B|2 + ǫ|v|2

2
) +

∫

|v|2 + µ

∫

|∇v|2 + ν

∫

|∇B|2 = 0,

we obtain

d

dt

∫

(
|B|2 + ǫ|v|2

2
+ ǫvizi)−

∫

(ǫ(vizi,t + vivjzi,j) + µzi,jvi,j)

+

∫

(
|v|2
2

+BiBjzi,j −
|z|2
2

) +

∫

(
|v + z|2

2
+ µ|∇v|2 + ν|∇B|2) = 0.

(4.18)

Let us now introduce any nonnegative function t → r(t) and R(t) =
∫ t

0
r(s)ds, and assume

that (zi,j + zj,i+ r(t)δij) is a positive matrix. After multiplication by 2, we may rearrange
(4.18) as

(
d

dt
− r)

∫

(|B|2 + ǫ|v + z|2) +
∫

(|v|2 +BiBj(zi,j + zj,i + rδij)− |z|2)

+r

∫

ǫ|v + z|2 − d

dt

∫

ǫ|z|2 − 2

∫

(ǫ(vizi,t + vivjzi,j) + +µzi,jvi,j)

+

∫

(|v + z|2 + 2µ|∇v|2 + 2ν|∇B|2) = 0.

(4.19)

Thus,

(
d

dt
− r)

∫

(|B|2 + ǫ|v + z|2) +
∫

(|v|2 +BiBj(zi,j + zj,i + rδij)− |z|2) ≤ η(t)(4.20)

where η(t) depends on the fixed test function z and goes to zero in L1([0, T ]) with (ǫ, µ, ν),
since v is uniformly bounded in L2. Next, we integrate in time this differential inequality,
and, then, we let (ǫ, µ, ν) go to zero, assuming that the initial condition B(0, ·) and√
ǫv(0, ·) converge in L2 respectively to the given initial condition B0 and to 0. After

these operations, we obtain for any accumulation point of the (B, v), still denoted by
(B, v),

||B(t, ·)||2 +
∫ t

0

||v(s, ·)||2 exp(R(t)−R(s))ds

+

∫ t

0

∫

D

dx(BiBj(2zi,j + rδij)− |z|2)(s, x) exp(R(t)−R(s))ds

≤ ||B(0, ·)||2 exp(R(t)) ∀t ∈ [0, T ],

(4.21)

using the positivity of (zi,j + zj,i+ rδij). Next, taking the supremum with respect to z, for
fixed r, leads to the dissipation inequality (2.11) involved in the dissipative formulation of
the magnetic relaxation equations. However, we are still left with the problem of passing
to the limit in the transport equation (1.2). We do not see any clue for that, except in the
bidimensional case d = 2, where we have a nice ”div-curl” structure. Indeed, as d = 2, at
least locally, we can write

B = (∂2A,−∂1A),

for some scalar potential A(t, x1, x2) ∈ R. Then, the transport equation (1.2) can be
integrated out as

∂tA+∇ · (Av) = 0,
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and we can pass to the limit, since |∇A| = |B| and v are well controled in L2 (using
estimate (4.17) to handle the time dependence). This concludes the proof.

5. Appendix

5.1. A general framework for dissipative equations. A rather general framework
that one can encounter in several situations of Mechanics and Physics is as follows. (We
do not claim any novelty in it, see, for instance, [16] for somewhat related issues.) Working
on the d-dimensional flat torus D = R

d/Zd, for simplicity, we call admissible a pair (B,E)
made of two time-dependent differential forms, one of degree k, say B, that we assume to
be closed dB = 0, and one of degree k − 1, say E, linked by

(5.22) ∂tB + dE = 0.

(A simple example being k = d, as in the scalar heat equation where B = ρ, E = q.) Next,
we are given a scalar function L(E,B), called ”Lagrangian”, that we suppose convex in E
(with possible value +∞). Then, we define its Legendre-Fenchel transform with respect
to E, called ”Hamiltonian’

(5.23) H(D,B) = sup
E

E ·D − L(E,B),

and introduce the ”defect” function

def(B,E,D) = L(E,B) +H(D,B)− E ·D ≥ 0

with equality if and only if E = ∂1H(D,B).

if and only if D = ∂1L(E,B).

(5.24)

Now, we are given a convex function θ and compute for any (smooth) admissible pair
(E,B)

d

dt

∫

θ(B)dx = −
∫

θ′(B) · dE = −
∫

E ·D

where D = δ(θ′(B)) (here δ = (−1)k−1 ∗−1 d∗ is the Hodge co-differential). Thus

d

dt

∫

θ(B)dx =

∫

(def(B,E,D)− L(E,B)−H(D,B)) ≥ −
∫

(L(E,B) +H(D,B))

with equality if and only if E = ∂1H(D,B) (pointwise). This suggests a ”dissipative
formulation” for the (highly) non-linear equation

∂tB + dE = 0,

E = ∂1H(δ(θ′(B)), B)
(5.25)

We call dissipative solutions of this equation any admissible pair (E,B) such that

d

dt

∫

θ(B)dx+

∫

(L(E,B) +H(D,B)) ≤ 0,

where D = δ(θ′(B)).
(5.26)

Of course, if
∫

(L(E,B) +H(δ(θ′(B)), B))

turns out to be a convex function of the pair (E,B) the analysis gets rather simple, but
there is little chance to get interesting examples of this type unless k = d. As a matter
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of fact, in the case k = d, denoting (E,B) = (q, ρ), we get the rather general non-linear
scalar diffusion equation

∂tρ = ∇ · ∂1H(∇(θ′(ρ)), ρ).

In the special case L(q, ρ) = ρc( q
ρ
), we get H(v, ρ) = ρc∗(v), where c is a convex function

and c∗ its Legendre-Fenchel transform. The resulting equation reads

∂tρ = ∇ · (ρ∇c∗(∇(θ′(ρ))).

(Notice that this equation can be also handled by optimal transport methods [22], using
”cost function” (x, y) → c(x− y) and ”entropy function” θ.) The further choice

θ(ρ) = ρ log ρ, c(w) = |w|2/2
leads to the linear heat equation. Another example is the ”relativistic heat equation”
[3, 15], for which

θ(ρ) = ρ log ρ, c(w) = −
√

1− |w|2.

5.2. A “topology-preserving” diffusion equation for divergence-free vector fields,

based on Born-Infeld Electromagnetism. In order to provide a non-scalar applica-
tion of the general framework, let us consider the special case d = 3 and k = 2. So B
is a closed 2− form in three space dimensions, which corresponds to a divergence-free
vector field, while E is a 1− form, i.e. a vector field. We use classical notations × for the
wedge product as well as ∇× for d, which here is the curl operator. So, we call admissible
solutions any pair of fields (E,B)(t, x) ∈ R

3 satisfying

(5.27) ∂tB +∇× E = 0.

Let us introduce the Born-Infeld ”Lagrangian” [5], parameterized by constant λ > 0:

(5.28) Lλ(E,B) = −
√

λ2 + |B|2 − |E|2 − λ−2(E ·B)2.

Function Lλ, for each fixed value of B is convex in E (with infinite value as the term
under the square root gets negative). The Legendre-Fenchel transform with respect to E
can be easily computed and is given by the ”Hamiltonian”

Hλ(D,B) =
√

λ2 + |B|2 + λ2|D|2 + |D × B|2

=
√

(λ2 + |B|2)(1 + |D|2)− (D ·B)2.
(5.29)

Let us now consider a convex function θ : R3 → R. From the general framework, we get
a ”dissipative formulation” for the (highly) non-linear equation

∂tB +∇× E = 0, E = ∂1Hλ(∇× (θ′(B)), B)(5.30)

by calling dissipative solution any admissible pair (E,B) such that

d

dt

∫

θ(B)dx+

∫

(Lλ(E,B) +Hλ(D,B)) ≤ 0.

where D = ∇× (θ′(B))

Hλ(D,B) =
√

(λ2 + |B|2)(1 + |D|2)− (D · B)2.

(5.31)
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The Born-Infeld Lagrangian has two remarkable properties [5, 7]: as λ → ∞, we recover
the classical Maxwell Lagrangian for electromagnetism (as the limit of (λ + Lλ)λ); as
λ → 0, we get
(5.32)

H0(D,B) =
√

|B|2(1 + |D|2)− (D · B)2, L0(E,B) = −
√

|B|2 − |E|2, E · B = 0,

which, interestingly enough, includes the pointwise constraint E · B = 0. This exactly
means there is a vector v ∈ R

3 such that E = B × v and v can be defined, for instance,
by setting

v =
E × B

|B|2 .

So, the constraint ∂tB +∇×E = 0 becomes

∂tB +∇× (B × v) = 0,

or, equivalently,
∂tB +∇ · (B ⊗ v − v ⊗B) = 0,

which is exactly the ”topology-preserving” equation (1.2) (with, here, a vector field v that
is a priori not divergence-free). Let us now express v in terms of B. We have

E = ∂1H0(D,B) =
D|B|2 − (D · B)B

H0(D,B)

where D = ∇× (θ′(B)). Thus

v =
E × B

|B|2 =
D ×B

H0(D,B)
=

D ×B
√

|B|2 + |D ×B|2
.

So, in the case λ = 0, equation (5.30) can be rephrased as

∂tB +∇ · (B ⊗ v − v ⊗B) = 0,

v =
D × B

√

|B|2 + |D ×B|2
D = ∇× (θ′(B)).

(5.33)

The resulting system looks very much like the magnetic relaxation equation (1.1) (without
divergence-free constraint for v). For instance, in the case θ(B) = |B|, we get

v = ∇ · B ⊗ B

H0
,

where H0 =
√

|B|2 + |D ×B|2 and D = ∇× (B/|B|).
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CNRS, Centre de mathématiques Laurent Schwartz, Ecole Polytechnique, FR-91128

Palaiseau, France.

E-mail address : brenier@math.polytechnique.fr


