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This article is concerned with modulus of continuity of Brownian local times. Specifically, we focus on three closely related problems: (a) Limit theorem for a Brownian modulus of continuity involving Riesz potentials, where the limit law is an intricate Gaussian mixture. (b) Central limit theorems for the projections of L 2 modulus of continuity for a one-dimensional Brownian motion. (c) Extension of the second result to a two-dimensional Brownian motion. Our proofs rely on a combination of stochastic calculus and Malliavin calculus tools, plus a thorough analysis of singular integrals.

1. Introduction. Let {B t , 0 ≤ t ≤ 1} be a standard linear Brownian motion defined on some complete probability space (Ω, F, P). In the sequel, we denote by L t (x) the local time of B at a given point x ∈ R, defined for t ∈ [0, 1]. A nice combination of stochastic calculus, stochastic analysis and evaluation of singularities associated with heat kernels have recently led to a number of interesting limit theorems for quantities related to the family {L t (x); t ∈ [0, 1], x ∈ R}. Let us quote, for instance, the use of Malliavin and stochastic calculus tools in order to get suitably normalized limits for L 2 modulus of continuity (see [START_REF] Hu | Stochastic integral representation of the L 2 modulus of Brownian local time and a central limit theorem[END_REF][START_REF] Rosen | A stochastic calculus proof of the CLT for the L 2 modulus of continuity of local time[END_REF]) or third moment in space (cf. [START_REF] Hu | Central limit theorem for the third moment in space of the Brownian local time increments[END_REF]) of Brownian local time. Malliavin calculus tools have also been essential in order to generalize the notion of self-intersection local time [START_REF] Hu | Renormalized self-intersection local time for fractional Brownian motion[END_REF][START_REF] Hu | Integral representation of renormalized self-intersection local times[END_REF] and to obtain central limit theorems for additive functionals [START_REF] Hu | Central limit theorem for an additive functional of the fractional Brownian motion[END_REF] of fractional Brownian motion.

The current article proposes to take another step into the relationships between Brownian local time and stochastic analysis. Specifically, we shall handle the following problems:

(1) One of the motivation alluded to in [START_REF] Rosen | A stochastic calculus proof of the CLT for the L 2 modulus of continuity of local time[END_REF] for the renormalization of L 2 modulus of continuity of local times comes from the study of the Hamiltonian

H h t (B) = R [L t (x + h) -L t (x)] 2 dx (1) = R t 0 (δ x+h (B u ) -δ x (B u )) du 2 dx,
which is involved in the definition of some nonfolding polymers. However, one might wish to consider a slightly weaker repelling self-interaction of the polymer by introducing the following family of Hamiltonians indexed by γ ∈ (0, 1):

H h,γ t (B) = R t 0 (|B v + x + h| -γ -|B v + x| -γ ) dv 2 dx. (2) 
For this modified Hamiltonian, we shall prove the following limiting theorem: Theorem 1.1. Consider γ ∈ (3/4, 1) and the family of Hamiltonians {H h,γ t (B); t ∈ [0, 1]} defined by [START_REF] Chen | A CLT for the L 2 modulus of continuity of Brownian local time[END_REF]. Then one has, as h tends to zero,

H h,γ (B) -E[H h,γ (B)] c γ h 7/2-2γ (d) → W α (3)
in the space C([0, 1]; R) of real continuous functions on [0, 1]. In relation [START_REF] Flandoli | The Gibbs ensemble of a vortex filament[END_REF], c γ stands for a deterministic positive constant depending only on γ, W is a standard Brownian motion independent of B and α is the self-intersection local time of B, that is (formally),

α t := t 0 dv v 0 duδ 0 (B v -B u ), ( 4 
)
where δ 0 is the Dirac delta function concentrated at 0. Theorem 1.1 turns out to be interesting for several reasons:

• The Hamiltonian H h,γ (B) quantifies a weak self-interaction of the Brownian path, detecting if the path self intersects (products of the form

|B v 1 + x| -γ |B v 2 + x| -γ
) or has a fold with amplitude h (products of the form |B v 1 + x + h| -γ |B v 2 + x| -γ ). It can thus be related to the polymer model studied in [START_REF] Van Der Hofstad | The critical attractive random polymer in dimension one[END_REF], where a discrete time random walk S n on Z is weighted according to the following Hamiltonian:

H n = n i,j=1 1 {S i =S j } - n i,j=1
1 {|S i -S j |=1} .

This relation was also the motivation behind the central limit theorem given in [START_REF] Rosen | A stochastic calculus proof of the CLT for the L 2 modulus of continuity of local time[END_REF], and other physically relevant models for self-interacting continuous paths include Brownian filaments (see [START_REF] Flandoli | The Gibbs ensemble of a vortex filament[END_REF] for a detailed definition of these objects), motivated by turbulent fluids. We thus hope that the scaling limit for our quantity H h,γ (B) can shed some light on the aforementioned models. • Theorem 1.1 also exhibits an interesting phenomenon in terms of limiting behavior. Indeed, the reader can easily observe that the limiting process in the right-hand side of (3) does not depend on the parameter γ in (3/4, 1), the only difference lying in the normalizing quantity c γ h 7/2-2γ . Furthermore, it was shown in [START_REF] Hu | Stochastic integral representation of the L 2 modulus of Brownian local time and a central limit theorem[END_REF][START_REF] Rosen | A stochastic calculus proof of the CLT for the L 2 modulus of continuity of local time[END_REF] that relation [START_REF] Flandoli | The Gibbs ensemble of a vortex filament[END_REF] still holds true in the limiting case γ = 1. This means that the process W α , which can be seen as a Gaussian mixture, might also be considered as a rather canonical object.

• At a methodological level, our proof of Theorem 1.1 is another example of the interest of stochastic calculus techniques with respect to the method of moments in this context. We should compare our methodology, for example, to the computationally demanding paper [START_REF] Chen | A CLT for the L 2 modulus of continuity of Brownian local time[END_REF]. The advantage of stochastic calculus methods had already been highlighted in [START_REF] Hu | Stochastic integral representation of the L 2 modulus of Brownian local time and a central limit theorem[END_REF][START_REF] Rosen | A stochastic calculus proof of the CLT for the L 2 modulus of continuity of local time[END_REF], but our proof combines this approach with an extensive use of Fourier analysis techniques.

(2) Go back now to the Hamiltonian H h t (B) defined by [START_REF] Barlow | Semimartingale inequalities via the Garsia-Rodemich-Rumsey lemma, and applications to local times[END_REF] and related to L 2 modulus of continuity of the Brownian local time. As mentioned above, it has been shown in [START_REF] Hu | Stochastic integral representation of the L 2 modulus of Brownian local time and a central limit theorem[END_REF][START_REF] Rosen | A stochastic calculus proof of the CLT for the L 2 modulus of continuity of local time[END_REF] that h -3/2 (H h (B) -E[H h (B)]) converges in law to c 1 W α for a universal constant c 1 , that is, relation [START_REF] Flandoli | The Gibbs ensemble of a vortex filament[END_REF] is still formally satisfied for γ = 1. This noncentral limit theorem indicates that an interesting phenomenon might occur as far as limiting behavior of the renormalized quantity h -3/2 (H h (B) -E[H h (B)]) on chaoses is concerned. We shall specify this with the following result: Theorem 1.2. Let {H h t (B); t ∈ [0, 1]} be the process defined by [START_REF] Barlow | Semimartingale inequalities via the Garsia-Rodemich-Rumsey lemma, and applications to local times[END_REF]. For a given random variable F ∈ L 2 (Ω) and for all n ≥ 0, we set J n (F ) for the projection of F on the nth chaos of B, and subsequently define X n,h t ≡ J n (H h t (B)). Then: (i) For all m ≥ 0 and all t ∈ [0, 1], h > 0 we have X 2m+1,h t = 0. (ii) For all m ≥ 1, we have as h tends to zero,

X 2m,h h 2 [ln(1/h)] 1/2 (d) → σ m W with σ 2 m = c(2m -2)! 2 2m [(m -1)!] 2 ,
where W stands for a Brownian motion independent of B and where the convergence takes place in the space C([0, 1]; R) of real continuous functions on [0, 1].

(iii) In particular, the series m≥1 σ 2 m is divergent.

Putting together the results of [START_REF] Hu | Stochastic integral representation of the L 2 modulus of Brownian local time and a central limit theorem[END_REF] and our Theorem 1.2, we thus get the following picture: on the one hand, one can renormalize the process H h (B) by h 3/2 in order to get a limit that is a mixture of Gaussian processes (a noncentral type limit theorem). On the other hand, each projection J n (H h (B)) can be properly renormalized (by h 2 [ln(1/h)] 1/2 ) so as to obtain a limiting object that is a weighted Brownian motion (corresponding to a central limit theorem). Nevertheless, the sum of the weights σ 2 n obtained by projection is divergent. To the best of our knowledge, this interesting limiting behavior is exhibited here for the first time. Note that it contrasts, for instance, with the situation described in [START_REF] Hu | Renormalized self-intersection local time for fractional Brownian motion[END_REF], Theorem 3 (and more specifically in the applications of this result), where under appropriate variance assumptions, the normal convergence in each chaos guarantees the normal convergence of the sum.

(3) Finally, we consider a suitable generalization of Theorem 1.2 to a two-dimensional Brownian motion B. Namely, we shall obtain the following convergence result. (ii-2d) For all m ≥ 1, we have as h tends to zero,

X 2m,h |h| (d) → σ m W,
where W stands for a linear Brownian motion independent of B, where the exact expression of σ m will be specified at Section 4.3 and where the convergence takes place in the space

C([0, 1]; R) of R-valued continuous functions on [0, 1].
It is worthwhile noting that the equivalent of the main result of [START_REF] Hu | Central limit theorem for the third moment in space of the Brownian local time increments[END_REF], namely the convergence in law of a suitably renormalized version of H h t (B), is not available in the two-dimensional case. Indeed, one can formally show that |h|

-2 (H h t (B) -E[H h t (B)]
) converges to a random variable of the form c 2 W α , with α defined by (4) and a universal constant c 2 . Nevertheless, α is a divergent quantity in the two-dimensional case and the convergence of

h -3/2 (H h t (B) -E[H h t (B)]
) is in fact an empty statement. In spite of this lack of convergence, the analysis of projections on chaoses is still a valuable information for two main reasons: (a) It indicates that a sort of convergence is at least possible for H h t (B). (b) We are able to show that the series m≥1 σ 2 m is divergent just as in the one-dimensional case, which seems to indicate that a noncentral limit theorem is to be expected for the quantity (

H h t (B) -E[H h t (B)]
). The methodology we have followed in order to get the results mentioned above is based on three main ingredients: (a) Stochastic calculus is obviously important in this Brownian context, and Itô formulae of backward type are invoked in order to control terms of the form r 0 e ıξ(Br-Bu) du (throughout the paper, we will write ı for the complex number (-1) 1/2 ). Theorem 1.1 will also be a consequence of limit theorems for martingales according to the behavior of their bracket process. (b) An important contribution comes from stochastic analysis techniques: our chaos decompositions are obtained through repeated applications of Stroock's formula and we use representations of Brownian local times by means of Watanabe distributions. We also derive central limit theorems on chaoses by analyzing contractions of kernels for multiple Wiener integrals, as assessed in [START_REF] Nualart | Central limit theorems for sequences of multiple stochastic integrals[END_REF][START_REF] Peccati | Gaussian limits for vector-valued multiple stochastic integrals[END_REF]. (c) After application of the high level tools mentioned above, our results are reduced to rather elementary (though intricate) computations, for which we resort to Fourier analysis and thorough analysis of singularities for integrals defined on simplexes. All those ingredients are detailed in the corresponding sections.

In the remainder of the paper, each section is devoted to the proof of one of the theorems given above. Specifically, Section 2 handles the noncentral limit Theorem 1.1 for Riesz type potentials. Section 3 is concerned with the central limit Theorems 1.2 for L 2 modulus of one-dimensional local time on chaoses, while Section 4 deals with generalizations (Theorem 1.3) to the two-dimensional case.

2. L 2 modulus of continuity of Brownian Riesz potentials. This section is devoted to the proof of Theorem 1.1. We shall first reduce our problem thanks to an application of Clark-Ocone's formula, and then identify the limiting process with a combination of Fourier analysis and stochastic calculus tools.

Reduction of the problem.

In order to proceed with our computations, let us first settle some useful notation: Notation 2.1. The Gaussian heat kernel on R is denoted by p t (x), namely

p t (z) = (2π) -1/2 exp - z 2 2 , z ∈ R. (5) 
For β ∈ (0, 1), we call f β : R * → R * the function defined by f β (x) = |x| -β . For β ∈ (0, 1) and 0 ≤ r ≤ t ≤ 1, we also consider the quantity

Q h,β t,r = t r ds r 0 du[K β s-r (B r -B u + h) (6) + K β s-r (B r -B u -h) -2K β s-r (B r -B u )],
where K β u stands for the (convolved) Riesz kernel

K β u := f β * p ′ u for all u ≥ 0.
With these notation in mind, the Hamiltonian H h,γ t (B) can be expressed as follows.

Lemma 2.2. For t ∈ [0, 1], consider the quantity H h,γ t (B) defined by [START_REF] Chen | A CLT for the L 2 modulus of continuity of Brownian local time[END_REF]. Then

H h,γ t (B) = c γ [0,t] 2 [2f β (B v -B u ) (7) -f β (B v -B u + h) -f β (B v -B u -h)] du dv with β = 2γ -1.
Proof. Start from expression [START_REF] Chen | A CLT for the L 2 modulus of continuity of Brownian local time[END_REF] and write H h,γ t (B) as

R [0,t] 2 [f γ (B v + x + h) -f γ (B v + x)] × [f γ (B u + x + h) -f γ (B u + x)] du dv dx.
Next expand the product inside the integral, apply Fubini in order to integrate with respect to the variable x first and apply the identity

f γ * f γ = c γ f 2γ-1 .
Our claim is easily deduced from these elementary manipulations.

We shall now see that Theorem 1.1 can be reduced to the following.

Theorem 2.3. For every β ∈ (1/2, 1], consider the process Q h,β defined by [START_REF] Hu | Stochastic integral representation of the L 2 modulus of Brownian local time and a central limit theorem[END_REF]. Then the following limit as h tends to zero holds true in the space C([0, 1]; R) of real continuous functions on [0, 1]:

Q h h 5/2-β (d) → c β W α where Q h t := t 0 Q h,β t,r dB r . (8)
Here, c β is a deterministic constant depending only on β, and the process W α has been introduced at equation (3).

Proof of the equivalence between Theorems 1.1 and 2.3. Following expression [START_REF] Hu | Central limit theorem for the third moment in space of the Brownian local time increments[END_REF], set

H β t (B) = - [0,t] 2 [2f β (B v -B u ) -f β (B v -B u + h) -f β (B v -B u -h)] du dv.
Then Lemma 2.2 asserts that Theorem 1.1 is proved once we can show that the process h

-(7/2-2γ) (H β (B) -E[H β (B)]
) converges in law to c β W α for a strictly positive constant c β . It is obviously easier to express everything in terms of β = 2γ -1, so that we are reduced to show that h

-(5/2-β) (H β (B) - E[H β (B)]
) converges in law to c β W α . It should also be observed that if γ ∈ (3/4, 1) then β lies into (1/2, 1). Now along the same lines as in [START_REF] Hu | Stochastic integral representation of the L 2 modulus of Brownian local time and a central limit theorem[END_REF], a direct application of Clark-Ocone formula enables to express H β t (B) in the following way:

H β t (B) -E[H β t (B)] = t 0 Q h,β t,r dB r ,
where the process Q h,β is defined at Notation 2.1. This finishes the proof of our equivalence.

With this equivalence in hand, the remainder of the section is now devoted to the proof of Theorem 2.3. As mentioned in the Introduction, our strategy to show this result makes use of some convenient simplifications offered by a Fourier-transform version of the problem. As a last preliminary step, let us thus write an alternative expression for the quantity Q h,β t,r :

Lemma 2.4. Let β ∈ (1/2, 1) and 0 ≤ r ≤ t ≤ 1. Then Q h,β t,r = 4ı π R (1 -e -(1/2)ξ 2 (t-r) )ψ(hξ) ξ |ξ| 3-β r 0 e ıξ(Br-Bu) du dξ, (9) 
where ψ : R → R stands for the function defined by ψ(ξ) := sin 2 (ξ/2).

Proof. It is well known that for all x ∈ R * we have

K β t (x) = - ı 2π R e ıξx ξ |ξ| 1-β e -(tξ 2 )/2 dξ.
Plugging this identity into (6) and applying Fubini's theorem, we get

- ı 2π R t r
e -((s-r)ξ 2 )/2 ds r 0 ξ |ξ| 1-β e ıξ(Br -Bu) (e ıξh + e -ıξh -2) du dξ from which identity (9) is easily deduced.

We now start by identifying the main contribution in the quantity t 0 Q h,β t,r dB r appearing in [START_REF] Hu | Integral representation of renormalized self-intersection local times[END_REF] by means of our Fourier representation (9). 2.2. Elimination of some negligible terms. The first term which might yield a negligible contribution in Q h is given by the small exponential term e -((t-r)ξ 2 )/2 in expression [START_REF] Hu | Central limit theorem for an additive functional of the fractional Brownian motion[END_REF]. We thus set Q h,β t,r = Q h,β,1 r -A h t,r , with

Q h,β,1 r = 4ı π R ψ(hξ) ξ |ξ| 3-β r 0 e ıξ(Br-Bu) du dξ, (10) 
A h t,r = 4ı π R e -(1/2)ξ 2 (t-r) ψ(hξ) ξ |ξ| 3-β r 0 e ıξ(Br -Bu) du dξ. ( 11 
)
Then the following proposition identifies a first vanishing term. Proposition 2.5. Let A h be the process defined by [START_REF] Nualart | Central limit theorems for sequences of multiple stochastic integrals[END_REF], and for t ∈ [0, 1] set

A h t := 1 h 5/2-β t 0 A h t,r dB r .
Then we have:

(i) For every fixed t ∈ [0, 1], A h t → 0 in L 2 (Ω)
as h tends to zero. (ii) There exist p ≥ 1 and α > 0 such that for all 0 ≤ s < t ≤ 1 and every h ∈ (0, 1),

E[| A h t -A h s | 2p ] ≤ c p h 2p(β-(1/2)) |t -s| 1+α
for some constant c p depending only on p.

(iii) As a consequence, we have A h (d) → 0 in C([0, 1]; R) as h tends to zero.

Proof. Let us prove the three items separately:

(i) Consider a given t ∈ [0, 1]. One has

E t 0 A h t,r dB r 2 = 2 t 0 dr R dξ R dη r 0 dv v 0 du ξe -(1/2)ξ 2 (t-r) ψ(hξ) |ξ| 3-β × ηe -(1/2)η 2 (t-r) ψ(hη) |η| 3-β × E[e ı(ξ+η)(Br -Bv)+ıη(Bv -Bu) ].
Furthermore, for u < v < r < t we have

0 ≤ E[e ı(ξ+η)(Br -Bv )+ıη(Bv -Bu) ] = e -((ξ+η) 2 /2)(r-v) e -(η 2 /2)(v-u) ≤ e -(η 2 /2)(v-u) .
Now integrate this inequality in u and invoke the fact that ψ(z) ≤ cz 2 in order to get

E t 0 A h t,r dB r 2 ≤ ch 4 t 0 dr r 0 dv R dξ R dη ℓ t r,v (ξ, η), (12) 
where

ℓ t r,v (ξ, η) ≡ e -(1/2)ξ 2 (t-r) e -(1/2)η 2 (t-r) |ξ| β |η| 2-β {1 -e -(η 2 /2)v }.
To see that the integral in the right-hand side of ( 12) is indeed finite, observe first that R e -(a/2)ξ 2 |ξ| β dξ = c β a -(1+β)/2 for any a > 0 and β ∈ (0, 1). Thus,

R dξ 1 -1 dηℓ t r,v (ξ, η) ≤ c R e -(1/2)ξ 2 (t-r) |ξ| β dξ 1 -1 |η| β dη ≤ c R dξe -(1/2)ξ 2 (t-r) |ξ| β ≤ c |t -r| (1+β)/2 .
In the same way, since β ∈ (0, 1) we also have

R dξ |η|≥1 dηℓ t r,v (ξ, η) ≤ c |η|≥1 |η| -(2-β) dη R e -(1/2)ξ 2 (t-r) |ξ| β dξ ≤ c |t -r| (1+β)/2 .
Plugging these estimates into [START_REF] Peccati | Gaussian limits for vector-valued multiple stochastic integrals[END_REF] and taking into account the fact that β ∈ (0, 1), we end up with

E t 0 A h t,r dB r 2 ≤ c t,β h 4 t 0 dr |t -r| (1+β)/2 ≤ c t,β h 4 ,
which yields our first claim (i).

(ii) In order to bound the increment e ıξ(Br-Bu) du.

A h t -A h s , set k h,t (ξ) := e -(1/2)ξ 2 t ψ(hξ) ξ |ξ| 3-β .

Then it is readily checked that

A h t -A h s = 1 h 5/2-β t s dB r R dξk h,t-r (ξ) r 0 e ıξ(Br-Bu) du + 1 h 5/2-β s 0 dB r R dξ[k h,t-r (ξ) -k h,s-r (ξ)]
:= A h,1 s,t + A h,
By using successively Burkholder-Davies-Gundy and Cauchy-Schwarz inequalities, we get

E[| A h,1 s,t | 2p ] ≤ c p h (5-2β)p t s E[|H t,r | 2p ] 1/p dr p , (14) 
with

E[|H t,r | 2p ] = c p R 2p dξ 1 • • • dξ 2p 0<u 1 <•••<u 2p <r du 1 • • • du 2p × 2p j=1 k h,t-r (ξ j )E[e ıξ j (Br -Bu j ) ],
which can also be expressed as

E[|H t,r | 2p ] = c p R 2p dξ 1 • • • dξ 2p 0<u 1 <•••<u 2p <r du 1 • • • du 2p × 2p j=1 k h,t-r (ξ j )e -(1/2)ξ 2 1 (u 2 -u 1 ) × e -(1/2)(ξ 1 +ξ 2 ) 2 (u 3 -u 2 ) • • • e -(1/2)(ξ 1 +•••+ξ 2p ) 2 (r-u 2p ) .
We can then rely on the uniform estimate

|k h,t-r (ξ i )| ≤ ch 2 e -(1/2)ξ 2 i (t-r) |ξ i | β ≤ c h 2 |t -r| β/2
and the fact that

R dξ 1 e -(1/2)ξ 2 1 (u 2 -u 1 ) R dξ 2 e -(1/2)(ξ 1 +ξ 2 ) 2 (u 3 -u 2 ) • • • × R dξ 2p e -(1/2)(ξ 1 +•••+ξ 2p ) 2 (r-u 2p ) = R dξ 1 e -(1/2)ξ 2 1 (u 2 -u 1 ) R dξ 2 e -(1/2)ξ 2 2 (u 3 -u 2 ) • • • R dξ 2p e -(1/2)ξ 2 2p (r-u 2p ) = c p (u 2 -u 1 ) -1/2 (u 3 -u 2 ) -1/2 • • • (r -u 2p ) -1/2
in order to get

E[|H t,r | 2p ] ≤ c p h 4p r p |t -r| βp .
Plugging this estimate into [START_REF] Stroock | Homogeneous chaos revisited[END_REF], we end up with

E[| A h,1 s,t | 2p ] ≤ c p h 2p(β-1/2) |t -s| (1-β)p . ( 15 
)
The bound for A h,2 s,t can be derived from a similar procedure. Observe, for instance, that

|k h,t-r (ξ) -k h,s-r (ξ)| ≤ h 2 |e -(1/2)ξ 2 (t-r) -e -(1/2)ξ 2 (s-r) ||ξ| β ≤ ch 2 |t -s| ε |s -r| (1-ε)/2
and invoking this bound for ε := (1β)/3 one obtains that inequality (15) also holds true for A h,2 s,t . Going back to (13), we see that the bounds on A h,1 s,t and A h,2 s,t easily yield our claim (ii). Assertion (iii) is now a standard consequence of (i) and (ii).

Let us go back to expression [START_REF] Hu | Central limit theorem for an additive functional of the fractional Brownian motion[END_REF], as well as the decomposition ( 10) and [START_REF] Nualart | Central limit theorems for sequences of multiple stochastic integrals[END_REF] for Q h,β . Proposition 2.5 allows to reduce our study to an analysis of

Q h,β,1 defined by Q h,β,1 t = h -(5/2-β) t 0 Q h,β,1 r
dB r , where Q h,β,1 is given by [START_REF] Nualart | The Malliavin Calculus and Related Topics[END_REF]. In order to identify another negligible term within Q h,β,1 , let us resort to Itô's formula applied to the (backward) Brownian motion B r = {B r -B u ; 0 ≤ u ≤ r} and f (x) := e ıξx . This gives r 0 e ıξ(Br -Bu) du = -2(e ıξBr -1)

ξ 2 + 2ı ξ r 0 e ı(Br-Bu) d B r u ( 16 
)
and plugging this identity into [START_REF] Nualart | The Malliavin Calculus and Related Topics[END_REF] 

we get Q h,β,1 r = D h r -Q h,β,2 r
, with

D h r = 8ı π R ξψ(hξ) |ξ| 5-β (e ıξBr -1) dξ, (17) Q h,β,2 r = 8 π R ψ(hξ) |ξ| 3-β r 0 e ıξ(Br-Bu) d B r u dξ. ( 18 
)
We now prove the following proposition.

Proposition 2.6. Let D h be the process defined by ( 17), and for t ∈ [0, 1] set

D h t := 1 h 5/2-β t 0 D h r dB r .
Then the conclusions of Proposition 2.5 hold true for D h .

Proof. The proof goes along the same lines as for Proposition 2.5, and is left to the reader for the sake of conciseness. Let us just highlight the following decomposition:

E[( D h t ) 2 ] ≤ ch 2β-1 t 0 E 2 [B 2 r ] dr 1 -1 dξ |ξ| 1-β 2 + ch 2β-1 |ξ|≥1 dξ |ξ| 2-β 2 , which allows us to conclude that lim h→0 E[( D h t ) 2 ] = 0 since 1/2 < β < 1.
Remark 2.7. With Propositions 2.5 and 2.6 in hand, Theorem 2.3 now boils down to the following property:

M h h 5/2-β (d) → c β W α in C([0, 1]; R) with M h t := t 0 Q h,β,2 r dB r , (19) 
where Q h,β,2 is the process defined by (18). It should be observed that M h is now a Brownian martingale, for which specific limit theorems are available.

Study of the martingale term.

Similar to the argument used in [START_REF] Hu | Stochastic integral representation of the L 2 modulus of Brownian local time and a central limit theorem[END_REF][START_REF] Hu | Central limit theorem for the third moment in space of the Brownian local time increments[END_REF][START_REF] Rosen | A stochastic calculus proof of the CLT for the L 2 modulus of continuity of local time[END_REF], our strategy toward ( 19) is now based on the martingale convergence criterion summed up in [START_REF] Hayashi | Evaluating hedging errors: An asymptotic approach[END_REF], Theorem A.1. Using the latter result, the proof of (19) reduces to showing that, as h → 0, we have simultaneously

M h , B t h 5/2-β → 0 and M h t h 5-2β → c β α t (20)
in L 2 (Ω) for every fixed t ∈ [0, 1], with α t defined by (4).

To this aim, let us start by recasting M h in a suitable way. Indeed, thanks to a stochastic Fubini theorem we have

Q h,β,2 r h 5/2-β = r 0 g h (B r -B u ) d B r u , (21) 
where

g h = g β h := F(f h ) with f h (ξ) = f β h (ξ) := 1 h 5/2-β ψ(hξ) |ξ| 3-β . (22)
In the course of the reasoning, we shall appeal to the following key properties of g h : Lemma 2.8. It holds that:

(i) For some c β independent of h, we have R g h (x) 2 dx = c β > 0.
(ii) Recalling that p t stands for the Gaussian heat kernel defined by ( 5), we have for every t ∈ (0, 1]:

R g h (x)p t (x) dx ≤ ch β-1/2 t β/2 . (23) (iii)
The function g h can also be written as

g h (x) = c h 5/2-β x+h x-h (h -|x -y|) |y| β dy. (24)
In particular, g h (-x) = g h (x) and g h (x) ≥ 0 for all x ∈ R.

(iv) For every ε > 0 such that

β > 1/2 + ε, every h ≤ 1/4 and every |x| ≥ √ h, g β h (x) ≤ ch ε/2 g β-ε h (x). ( 25 
)
Proof. By Fourier isometry,

g h 2 L 2 = f h 2 L 2 = 1 h 5-2β R ψ 2 (hξ) |ξ| 6-2β dξ = R ψ 2 (ξ) |ξ| 6-2β dξ,
which gives (i). In order to prove (ii) use Fourier isometry again, which according to (22) yields

R g h (x)p t (x) dx = c h 5/2-β R ψ(hξ) |ξ| 3-β e -(tξ 2 )/2 dξ ≤ ch β-1/2 R e -(tξ 2 )/2 |ξ| 1-β dξ ≤ ch β-1/2 t β/2 .
For (iii), observe that

f h (ξ) = h 1/2 ϕ(hξ) with ϕ(u) = sinc 2 (u) |u| 1-β ,
where the sinc function refers to sinc(x) = sin(x)

x . Thus, using the fact

F(sinc 2 (•))(ξ) = 1 [-1,1] (ξ)(1 -|ξ|), we get g h (ξ) = F(f h )(ξ) = 1 h 1/2 F(ϕ) ξ h = 1 h 1/2 [F(| • | -1+β ) * F(sinc 2 (•))] ξ h = c h 1/2 (ξ/h)+1 (ξ/h)-1 dy |y| β 1 - ξ h -y ,
which clearly leads to (24). Now we can use (24) in order to prove (iv): for x > √ h, write

g β h (x) = ch ε 1 h 5/2-(β-ε) x+h x-h h -|x -y| |y| ε |y| β-ε dy ≤ ch ε g β-ε h (x) |x -h| ε ≤ ch ε/2 g β-ε h (x), since |x -h| ≥ 1 2 √ h.
By symmetry of g h , this completes our proof.

Let us develop now the strategy for the convergence of the martingale term, which has been summarized in (20). We shall prove the first claim of (20), namely the following. Proposition 2.9. For all t ∈ [0, 1], the martingale term M h satisfies

E[ M h , B 2 t ] h 5-2β ≤ c t h β-1/2 ,
where c t is a uniformly bounded function of t ∈ [0, 1].

Proof. According to ( 19) and ( 21), one has

M h , B t h 5/2-β = t 0 Q β,h,2 r dr h 5/2-β = t 0 dr r 0 d B r u g h (B r -B u ).
Hence,

E[ M h , B 2 t ] h 5-2β = 2 t 0 dr 1 r 1 0 dr 2 r 2 0 duE[g h (B r 1 -B u )g h (B r 2 -B u )]
and furthermore,

E[g h (B r 1 -B u )g h (B r 2 -B u )] = E[g h * p r 1 -r 2 (B r 2 -B u )g h (B r 2 -B u )] = R dξ[g h * p r 1 -r 2 ](ξ)g h (ξ)p r 2 -u (ξ) ≤ c g h * p r 1 -r 2 ∞ h β-1/2 √ r 2 -u ,
thanks to (23). In addition,

g h * p r 1 -r 2 ∞ ≤ g h L 2 p r 1 -r 2 L 2 ≤ c|r 1 - r 2 | -1/4
, and thus

E[ M h , B 2 t ] h 5-2β ≤ ch β-1/2 t 0 dr 1 r 1 0 dr 2 |r 1 -r 2 | -1/4 r 2 0 du|r 2 -u| -1/2
from which our claim is easily deduced.

Before we proceed with the proof of (20), let us label a technical lemma on Brownian local times. 

E[|L t (x + B t )| 2 ] ≤ c and sup t∈[0,1] E sup |x-y|<h 1/2 |L t (x) -L t (y)| 2 ≤ ch ε .
Proof. By applying Tanaka's formula to the backward Brownian motion B, we get, for all x ∈ R,

|L t (x + B t )| ≤ 2|B t | + 2 t 0 1 { B t s <-x} d B t s (26)
and the first assertion immediately follows. The second assertion of our lemma can be derived from [START_REF] Barlow | Semimartingale inequalities via the Garsia-Rodemich-Rumsey lemma, and applications to local times[END_REF], item (ii).

We are now ready to prove the second part of assertion (20), that is, the following proposition.

Proposition 2.11. Let t be an arbitrary time in [0, 1]. Then we have:

L 2 (Ω) -lim h→0 M h t h 5-2β = c β α t , ( 27 
)
where α is the self-intersection local time defined by [START_REF] Hayashi | Evaluating hedging errors: An asymptotic approach[END_REF].

Proof. Let us start by applying again the backward Itô formula [START_REF] Watanabe | Lectures on Stochastic Differential Equations and Malliavin Calculus[END_REF] in order to get the decomposition

M h t = t 0 dr r 0 d B r u g h (B r -B u ) 2 := N h,1 t + N h,2 t with N h,1 t = t 0 dr r 0 du[g h (B r -B u )] 2 , N h,2 t = 2 t 0 dr r 0 d B r u g h (B r -B u ) r u d B r s g h (B r -B s ) .
We shall now divide our proof in two steps.

Step 1. N h,2 vanishes as h → 0. Specifically, we shall prove that

L 2 (Ω) - lim h→0 N h,2 t = 0. Indeed, it is readily checked that E t 0 dr r 0 d B r u g h (B r -B u ) r u d B r s g h (B r -B s ) 2 = 2 t 0 ds t s du t u dr 1 r 1 u dr 2 E[g h (B r 1 -B s )g h (B r 1 -B u ) (28) × g h (B r 2 -B s )g h (B r 2 -B u )].
Furthermore, using the fact that g h is positive (Lemma 2.8(iii)), we have, for fixed 0 < s < u < r 2 < r 1 < t,

E[g h (B r 1 -B s )g h (B r 1 -B u )|F r 2 ] A. DEYA, D. NUALART AND S. TINDEL = R g h (x + B r 2 -B s )g h (x + B r 2 -B u )p r 1 -r 2 (x) dx ≤ p r 1 -r 2 ∞ g h 2 L 2 ≤ c √ r 1 -r 2 ,
where we have used Lemma 2.8(i), and

E[g h (B r 2 -B s )g h (B r 2 -B u )] = E[g h (B r 2 -B u )(g * p u-s )(B r 2 -B u )] ≤ g h * p u-s ∞ R g h (x)p r 2 -u (x) dx ≤ c g h L 2 p u-s L 2 h β-1/2 √ r 2 -u
with the help of Lemma 2.8(ii). Going back to (28), the result easily follows.

Step 2. Limit of N h,1 . We will show the following property:

t 0 dr r 0 du[g h (B r -B u )] 2 h→0 -→ c β t 0 drL r (B r ) in L 2 (Ω), (29) 
where c β is the constant defined at Lemma 2.8. To this aim, observe that according to the occupation density formula we have

∆ h := t 0 dr r 0 du[g h (B r -B u )] 2 -c β t 0 drL r (B r ) = t 0 R Z r (x) dx dr,
where Z is the process defined by

Z r (x) = g h (B r -x) 2 [L r (x) -L r (B r )].
Next, we decompose ∆ h as ∆ 1 h + ∆ 2 h , where

∆ 1 h = t 0 |x-Br|<h 1/2 Z r (x) dx dr and ∆ 2 h = t 0 |x-Br|≥h 1/2
Z r (x) dx dr.

We now estimate those two terms separately.

The term ∆ 1 h can be bounded as follows: owing to Lemma 2.8(i), we have

∆ 1 h ≤ c t 0 sup |x-y|<h 1/2 |L r (x) -L r (y)| dr.
Owing to Lemma 2.10, we thus get

E[|∆ 1 h | 2 ] ≤ c sup t∈[0,1] E sup |x-y|<h 1/2 |L t (x) -L t (y)| 2 ≤ ch ε
for some constant ε ∈ (0, 1). As far as ∆ 2 h is concerned, invoke Lemma 2.8(iv) in order to conclude that for any ε > 0 such that β > 1 2 + ε and every h ≤ 1/4, we have

E[|∆ 2 h | 2 ] ≤ ch ε t 0 E |x-Br|≥h 1/2 |g β-ε h (x -B r )| 2 |L r (x) -L r (B r )| dx 2 dr ≤ ch ε t 0 E R |g β-ε h (x -B r )| 2 |L r (x) -L r (B r )| 2 dx dr ≤ ch ε ,
where we have appealed to Lemma 2.10 for the last inequality.

Step 3. Conclusion. Putting together the bounds on ∆ 1 h and ∆ 2 h , we have proved our assertion (29), which easily yields

L 2 (Ω) -lim h→0 M h t h 5-2β = c β t 0 L r (B r ) dr.
In order to prove (27), we now just have to observe that This completes our proof.

3. L 2 modulus of one-dimensional local time on chaoses. In this section, we go back to the study of the L 2 modulus of the Brownian local time, that is, to the study of the quantity H h t (B) defined by [START_REF] Barlow | Semimartingale inequalities via the Garsia-Rodemich-Rumsey lemma, and applications to local times[END_REF] with the global aim of proving Theorem 1.2. Before we go on with the proof, let us introduce some additional notation. Notation 3.1. For any t > 0 and n ≥ 1, we write S n t for the simplex of order n on [0, t], that is,

S n t = {(t 1 , . . . , t n ) ∈ [0, t] n : t 1 < • • • < t n }.
For every n ≥ 2 and every h > 0, we also define a function Φ h (t 1 , t 2 ) as

Φ h (t 1 , t 2 ) = Φ h,n (t 1 , t 2 ) := h 0 p (n-2) t 2 -t 1 (y)(h -y) dy, 0 ≤ t 1 ≤ t 2 ≤ t.
From the classical uniform estimate sup y∈R |p

(2m) t (y)| ≤ c m t -m-(1/2)
, we can already derive the following bounds on Φ h,2m , which will be used in the course of our reasoning. Lemma 3.2. Fix m ≥ 1. Then there exists a constant c m such that for every h ∈ (0, 1) and all 0 ≤ t 1 < s < t < t 2 , one has

|Φ h,2m (s, t)| ≤ c m h 2 |t -s| -m+(1/2) (30)
and for any λ ∈ (0, 1),

|Φ h,2m (t 1 , t) -Φ h,2m (t 1 , s)| ≤ c m h 2 |t -s| λ |s -t 1 | -m+(1/2)-λ , (31) |Φ h,2m (t, t 2 ) -Φ h,2m (s, t 2 )| ≤ c m h 2 |t -s| λ |t 2 -t| -m+(1/2)-λ . ( 32 
)
The proof of Theorem 1.2 is decomposed in four main steps: after some preliminary material, we write an explicit chaos decomposition for each H h t (B). Then we study the asymptotic behavior of the variance in each chaos, and the central limit theorem for the finite-dimensional distributions of J n (H h . (B)) is obtained by analyzing the contractions of its sequence of kernels. Finally, we study the tightness of the process {J n (H h t (B)); t ∈ [0, 1]} properly normalized.

3.1. Stochastic analysis preliminaries. We will consider here the Brownian motion B as an isonormal process B ≡ {B(h); h ∈ H} defined on (Ω, F, P), with H = L 2 ([0, 1]). Recall that it means that B is a centered Gaussian family with covariance function E[B(h 1 )B(h 2 )] = h 1 , h 2 H . We also assume that F is generated by B.

At this point, we can introduce the Malliavin derivative operator on the Wiener space (Ω, H, P). Namely, we first let S be the family of smooth functionals F of the form

F = f (B(h 1 ), . . . , B(h n )),
where h 1 , . . . , h n ∈ H, n ≥ 1, and f is a smooth function having polynomial growth together with all its partial derivatives. Then the Malliavin derivative of such a functional F is the H-valued random variable defined by

DF = n i=1 ∂f ∂x i (B(h 1 ), . . . , B(h n ))h i .
For all p > 1, it is known that the operator D is closable from L p (Ω) into L p (Ω; H). We still denote by D the closure of this operator, whose domain is usually denoted by D 1,p and is defined as the completion of S with respect to the norm

F 1,p := (E[|F | p ] + E[ DF p H ]) 1/p
. We shall also denote by D ∞,p the intersection k≥1 D k,p .

Consider the nth Hermite polynomial H n defined on R, that is,

H n (x) = (-1) n n! e x 2 /2 ∂ n x e -x 2 /2 (33)
and let H n be the closed linear subspace of L 2 (Ω) generated by the random variables {H n (B(h)); h ∈ H, h H = 1}. Then H n is called Wiener chaos of order n, and L 2 (Ω) can be decomposed into the orthogonal sum of the H n : we have L 2 (Ω, F, P) = ∞ n=0 H n (see [START_REF] Nualart | The Malliavin Calculus and Related Topics[END_REF], Theorem 1.1.1). In the sequel, we denote by J n (F ) the projection of a given random variable F ∈ L 2 (Ω) onto H n for n ≥ 0, with J 0 (F ) = E[F ]. In this context, Stroock's formula (see [START_REF] Stroock | Homogeneous chaos revisited[END_REF]) states that, whenever F ∈ D ∞,2 , one can compute J n (F ) explicitly as follows for n ≥ 1:

J n (F ) = I n (f n ) with f n (t 1 , . . . , t n ) = E[D t 1 ,...,tn F ] n! , ( 34 
)
where I n (f n ) stands for the multiple Itô-Wiener integral of f n with respect to B. We also label the value of H 2m (0) here for further use: for m ≥ 1, we have

H 2m (0) = (-1) m 2 m m! . (35) 
Let now f n be a symmetric function in L 2 ([0, 1] n ). The contraction of order p of f n is the function defined on [0, 1] 2(n-p) as follows:

[f n ⊗ p f n ](t 1 , . . . , t 2(n-p) ) = [0,1] p f n (u 1 , . . . , u p , t 1 , . . . , t n-p ) (36) × f n (u 1 , . . . , u p , t n-p+1 , . . . , t 2(n-p) ) du 1 • • • du p .
With this definition in hand, let us state the following theorem (borrowed from [START_REF] Nualart | Central limit theorems for sequences of multiple stochastic integrals[END_REF]), which will be crucial in order to establish the convergence of our renormalized local times. Proposition 3.3. Let {F h = I n (f n,h ); h > 0} be a family of random variables belonging to a fixed Wiener chaos H n , for which we assume that the kernels f n,h are symmetric. We also suppose that:

(i) We have lim h→0 E[F 2 h ] = σ 2 > 0. (ii) For all p ∈ {1, . . . , n -1}, the relation lim h→0 f n,h ⊗ p f n,h H ⊗2(n-p) = 0 holds true.
Then F h converges in law to a Gaussian random variable N (0, σ 2 ) as h → 0.

In order to obtain convergence in law for processes, we shall also invoke a CLT for multidimensional vectors in a fixed chaos, originally proved in [START_REF] Peccati | Gaussian limits for vector-valued multiple stochastic integrals[END_REF]:

Proposition 3.4. Consider a family of d-dimensional random variables {F h ; h > 0} with F h = (F 1 h , . . . , F d h )
, such that F j h belongs to a fixed Wiener chaos H n for each j ∈ {1, . . . , d} and h > 0. Suppose furthermore that for a symmetric matrix Γ we have:

(i) Each F j h converges in law to a Gaussian random variable N (0, Γ(i, i)) as h → 0.
(ii) For each (i, j) ∈ {1, . . . , d} 2 , one has lim h→0 E[F i h F j h ] = Γ(i, j). Then F h converges in law to a Gaussian random variable N (0, Γ) as h → 0.

Chaos decomposition of H h t (B)

. In order to compute the chaos decomposition of H h t (B), we first recall a relation taken from [START_REF] Hu | Stochastic integral representation of the L 2 modulus of Brownian local time and a central limit theorem[END_REF], whose proof is similar to our identity (7): we have

H h t (B) = [0,t] 2 [δ 0 (B v -B u + h) (37) + δ 0 (B v -B u -h) -2δ 0 (B v -B u )] du dv,
where δ 0 (B v -B u + h) has to be understood as a distribution on the Wiener space in the sense of Watanabe (see [START_REF] Watanabe | Lectures on Stochastic Differential Equations and Malliavin Calculus[END_REF]). One can also show that the righthand side of (37) is the L 2 (Ω)-limit of the sequence obtained by replacing δ 0 with the Gaussian approximating kernel p ε (see [START_REF] Hu | Stochastic integral representation of the L 2 modulus of Brownian local time and a central limit theorem[END_REF], Section 2, for further details).

Let us also give an elementary yet useful lemma.

Lemma 3.5. Let p t be the Gaussian kernel defined by [START_REF] Hu | Renormalized self-intersection local time for fractional Brownian motion[END_REF], and N be a real valued random variable such that N ∼ N (h, σ 2 ) with h ∈ R and σ 2 > 0. Then for all n ≥ 0, we have

E[p (n) t (N )] = p (n) t+σ 2 (h). ( 38 
)
Proof. Taking into account the analytic form of expected values with respect to N , we have E[p

(n) t (N )] = [p (n) t * p σ 2 ](h)
. Furthermore, elementary relations for convolutions and the semigroup property for p yield:

p (n) t * p σ 2 = [p t * p σ 2 ] (n) = p (n) t+σ 2
from which relation (38) is easily deduced.

Recall now that the projection J n (F ) of a L 2 random variable F onto a fixed chaos H n has been defined at Section 3.1. For our Hamiltonian H h t (B), we get the following. Proposition 3.6. For every n ≥ 1 and every h > 0, recall that we have set X n,h t = J n (H h t (B)) for the projection of H h t (B) onto the nth Wiener chaos. Then we have

X n,h t = 0 if n is odd, (39) X n,h t = 16 n! I n ((f h + g h,t ) • 1 [0,t] n ) if n is even, where f h ∈ L 2 (R n + ), g h,t ∈ L 2 ([0, t] n ) are the symmetric functions defined by f h (t 1 , . . . , t n ) := Φ h (min(t 1 , . . . , t n ), max(t 1 , . . . , t n )), (40) g h,t (t 1 , . . . , t n ) := -Φ h (min(t 1 , . . . , t n ), t) + Φ h (0, t) (41) -Φ h (0, max(t 1 , . . . , t n ))
and where we recall that the function Φ h has been defined at Notation 3.1.

Proof. We divide this proof in two steps:

Step 1. Computation of the projection. Let us first compute the chaos decomposition of δ 0 (B v -B u + h). To this aim, recall that, as a distribution on the Wiener space (see [START_REF] Watanabe | Lectures on Stochastic Differential Equations and Malliavin Calculus[END_REF]), we have δ 0 (B v -B u + h) = lim ε→0 p ε (B v -B u + h) for the Gaussian kernel p ε defined at [START_REF] Hu | Renormalized self-intersection local time for fractional Brownian motion[END_REF]. Furthermore, according to Stroock's formula (34), we have

J n (p ε (B v -B u + h)) = I n (ϕ ε n ) with ϕ ε n (t 1 , . . . , t n ) = 1 n! E[D t 1 ,...,tn p ε (B v -B u + h)] = 1 n! E[p (n) ε (B v -B u + h)] n i=1 1 [u,v] (t i ).
We now compute E[p

(n) ε (B v -B u + h)
] by means of formula (38), which yields

ϕ ε n (t 1 , . . . , t n ) = p (n) v-u+ε (h) n! n i=1 1 [u,v] (t i ).
Taking limits as ε → 0, we end up with

J n (δ 0 (B v -B u + h)) = I n (ϕ n ), where ϕ n (t 1 , . . . , t n ) = p (n) v-u (h) n! n i=1 1 [u,v] (t i ).
The same kind of computations is valid for δ 0 (B v -B uh) and δ 0 (B v -B u ), and thus going back to (37), we have obtained

X n,h t = J n (H h t (B)) = 2 n! I n S 2 t n i=1 1 [u,v] (t i )[p (n) v-u (h) + p (n) v-u (-h) -2p (n) v-u (0)] du dv ,
where we recall that S 2 t stands for the simplex of order 2 on [0, t] (see Notation 3.1). Moreover, observe that p

(n) v-u (h) + p (n) v-u (-h) -2p (n)
v-u (0) ≡ 0 when n is odd, which yields the first claim in (39). Therefore, only even ns are considered from now on.

Step 2. Simplification of the expression for the projection. Notice first that, since we are dealing with a linear Brownian motion B, one can write X n,h t as

X n,h t = 2 S n t S 2 t n i=1 1 [u,v] (t i )[p (n) v-u (h) + p (n) v-u (-h) -2p (n) v-u (0)] du dv dB t 1 • • • dB tn (42) = 2 S n t t 1 0 t tn [p (n) v-u (h) + p (n) v-u (-h) -2p (n) v-u (0)] dv du dB t 1 • • • dB tn .

Let us transform now the expression p

(n) v-u (h) + p (n) v-u (-h) -2p (n)
v-u (0). First, since n is an even number and p is symmetric, we have

p (n) v-u (h) + p (n) v-u (-h) -2p (n) v-u (0) = 2[p (n) v-u (h) -p (n) v-u (0)]. Then write p (n) v-u (h) -p (n) v-u (0) = h 0 p (n+1) v-u (x) dx = h 0 x 0 p (n+2) v-u (y) dy dx = 2 h 0 x 0 ∂ v p (n) v-u (y) dy dx, which yields t 1 0 du t tn dv[p (n) v-u (h) -p (n) v-u (0)] = 2 t 1 0 du t tn dv h 0 dx x 0 dy ∂ v p (n) v-u (y) = 2 t 1 0 du h 0 dx x 0 dy[p (n) t-u (y) -p (n) tn-u (y)] = -4 t 1 0 du h 0 dx x 0 dy[∂ u p (n-2) t-u (y) -∂ u p (n-2) tn-u (y)] = -4 h 0 [p (n-2) t-t 1 (y) -p (n-2) tn-t 1 (y) -p (n-2) t (y) + p (n-2) tn (y)](h -y) dy.
Plugging this expression into (42) and symmetrizing again, relation (39) easily follows.

3.3. Asymptotic behavior of the variance. In this section, we compute the correct amount of normalization needed for the convergence of each X 2m,h t = J 2m (H t (B)) for m ≥ 1. This will be obtained thanks to an asymptotic analysis of the variance of those random variables and recall that we have shown that X 2m,h t = 16 (2m

)! I 2m ((f h + g h,t ) • 1 [0,t] 2m ), which means in par- ticular that E[X 2m,h t X 2m,h s ] (43) = 16 2 (2m)! (f h + g h,t ) • 1 [0,t] 2m , (f h + g h,s ) • 1 [0,s] 2m L 2 (R 2m + ) .
Our aim is to prove the following.

Proposition 3.7. Fix m ≥ 1. Then for all 0 ≤ s ≤ t ≤ 1, it holds that lim h→0 E[X 2m,h t X 2m,h s ] h 4 ln(1/h) = σ 2 m s with σ 2 m = c(2m -2)! 2 2m [(m -1)!] 2 (44)
for some strictly positive universal constant c.

The strategy for the proof of Proposition 3.7 is rather simple. Namely, with the expression (43) in mind, our calculations will be decomposed into the following facts:

• The norm g h,t 2 L 2 ([0,t] 2m
) is of order at most h 4 as h tends to 0, and thus is negligible with respect to h 4 ln(1/h).

• The quantity f

h • 1 [0,t] 2m , f h • 1 [0,s] 2m L 2 (R 2m + )
scales as in relation (44). Let us thus start by identifying the negligible terms. Lemma 3.8. Fix m ≥ 1, and recall that for every t > 0, g h,t = g h,t,2m is defined by (41). Then there exists a constant c m such that for every h > 0,

sup t∈[0,1] g h,t 2 L 2 ([0,t] 2m ) ≤ c m h 4 . Proof. Write g h,t 2 L 2 ([0,t] 2m ) = (2m)! S 2m t [Φ h (t 1 , t) -Φ h (0, t) + Φ h (0, t 2m )] 2 dt 1 • • • dt 2m ≤ c m [0,t] (t -t 1 ) 2m-1 Φ h (t 1 , t) 2 dt 1 + t 2m Φ h (0, t) 2 + [0,t] t 2m-1 2m Φ h (0, t 2m ) 2 dt 2m
and the bound is then easily derived from (30).

We can now turn to the proof of the main proposition of this section.

Proof of Proposition 3.7. Thanks to Lemma 3.8, we only have to focus on

A h (s, t) ≡ f h • 1 [0,t] 2m , f h • 1 [0,s] 2m L 2 (R 2m +
) . An easy integration over the simplex gives

A h (s, t) = (2m)! S 2m s [Φ h,2m (t 1 , t 2m )] 2 dt 1 • • • dt 2m = (2m)! S 2 s (t 2m -t 1 ) 2m-2 (2m -2)! [Φ h,2m (t 1 , t 2m )] 2 dt 1 dt 2m .
Then, using the classical formula for the 2mth derivative of p t , that is,

p (2m) t (y) = (2m)!t -m p t (y)H 2m y t 1/2 , ( 45 
)
where H 2m is defined by (33), we deduce that

A h (s, t) = (2m)!(2m -2)! × S 2 s (t 2 -t 1 ) 2m-2 h 0 (t 2 -t 1 ) -(m-1) e -y 2 /(2(t 2 -t 1 )) (2π(t 2 -t 1 )) 1/2 × H 2m-2 y (t 2 -t 1 ) 1/2 (h -y) dy 2 dt 1 dt 2 = (2m)!(2m -2)! × S 2 s h 0 e -y 2 /(2(t 2 -t 1 )) (2π(t 2 -t 1 )) 1/2 H 2m-2 y (t 2 -t 1 ) 1/2 (h -y) dy 2 dt 1 dt 2 .
Perform the change of variable t 2t 1 = τ and t 1 = σ, which yields

A h (s, t) = (2m)!(2m -2)! × s 0 (s -τ ) h 0 e -y 2 /(2τ ) (2πτ ) 1/2 H 2m-2 y τ 1/2 (h -y) dy 2 dτ. Now set y/τ 1/2 = z in order to get A h (s, t) = (2m)!(2m -2)! 2π h 2 × s 0 (s -τ ) h/τ 1/2 0 e -z 2 /2 H 2m-2 (z) 1 - τ 1/2 z h dz 2 dτ.
Finally, let u = h/τ 1/2 , so that we end up with

A h (s, t) = 1 π (2m)!(2m - 2)!h 4 a(h), where a(h) ≡ ∞ h/s 1/2 u -3 s - h 2 u 2 u 0 e -z 2 /2 H 2m-2 (z) 1 - z u dz 2 du.
It is now readily checked that the main singularity in the integral defining a(h) is due to a term u -3 u 2 = u -1 integrated close to 0, so that for small h, a(h) is of order ln(1/h).

In order to quantify this fact, let us apply l'Hopital's rule to a(h)/ ln(1/h). We get

lim h→0 a(h) ln(1/h) = lim h→0 b(h) h -2 with b(h) = 2 ∞ h/s 1/2 u -5 u 0 e -z 2 /2 H 2m-2 (z) 1 - z u dz 2 du.
It is now easily seen that b ′ (h) is equivalent to -s 2 h -3 [H 2m-2 (0)] 2 in a neighborhood of the origin, so that a second application of l'Hopital's rule to b

(h)/h -2 yields lim h→0 a(h) ln(1/h) = s 4 [H 2m-2 (0)] 2 .
In order to conclude recall that A h (s, t) = 1 π (2m)!(2m -2)!h 4 a(h), and thus with the value of H 2m-2 (0) in mind [see (35)] we end up with

lim h→0 A h (s, t) h 4 ln(1/h) = s 4 [H 2m-2 (0)] 2 (2m)!(2m -2)! = (2m)!(2m -2)! 2 2m-1 [(m -1)!] 2 s, which completes the proof of relation (44) since lim h→0 E[X 2m,h t X 2m,h s ] h 4 ln(1/h) = 128 π(2m)! lim h→0 A h (s, t) h 4 ln(1/h) .
Remark 3.9. The fact that σ 2 m = ∞, mentioned at Theorem 1.2(iii), follows at once from relation (44). Indeed, using Stirling's formula, we can easily conclude that σ 2 m is asymptotically equivalent to c √ m for some constant c > 0.

3.4. Contractions. In this section, we shall prove that for a fixed t ∈ [0, 1] the random variable H t (B)/[h 2 ln(1/h) 1/2 ] converges in law to a Gaussian random variable as h goes to 0. Owing to Proposition 3.3 and with Proposition 3.7 in hand, this boils down to the study of contractions for the functions f h , g h involved in the definition of J n (H t (B)) given at (39). Those contractions are evaluated in the following proposition. Proposition 3.10. Fix n = 2m ≥ 2, and recall that f h , g h,t also depend on n as highlighted in ( 40)-( 41). Then for every r ∈ {1, . . . , n -1}, one has

1 h 8 ln 2 (1/h) (f h + g h,t ) ⊗ r (f h + g h,t ) 2 L 2 ([0,t] 2n-2r ) → 0 (46)
as h tends to 0.

Proof. Due to Lemma 3.8, the proof of Proposition 3.7 and thanks to the fact that

f h ⊗ r g h,t L 2 ([0,t] 2n-2r ) ≤ f h L 2 ([0,t] 2m ) g h,t L 2 ([0,t] 2m ) ,
it is readily checked that as h tends to 0,

1 h 8 ln 2 (1/h) (f h + g h,t ) ⊗ r (f h + g h,t ) 2 L 2 ([0,t] 2n-2r ) = 1 h 8 ln 2 (1/h) f h ⊗ r f h 2 L 2 ([0,t] 2n-2r ) + o(1).
We are thus reduced to prove that

lim h→0 f h ⊗ r f h 2 L 2 ([0,t] 2n-2r ) h 8 ln 2 (1/h) = 0. (47) In order to compute f h ⊗ r f h 2 L 2 ([0,t] 2n-2r
) , let us consider the following general problem: fix an integrable function ϕ defined on S 2 t and compute the contraction norm:

R n,r (ϕ) = [0,t] 2(n-r) [0,t] r ϕ(max(s, t 1 ), min(s, t 1 )) × ϕ(max(s, t 2 ), min(s, t 2 )) ds 2 dt 1 dt 2 ,
where we have set max(s, t) = max(s 1 , . . . , s r , t 1 , . . . , t n-r ), min(s, t) = min(s 1 , . . . , s r , t 1 , . . . , t n-r ).

Note that R n,r (ϕ) can also be written as

R n,r (ϕ) = [0,t] 2(n-r) [0,t] 2r 2 i,j=1
ϕ(max(s i , t j ), min(s i , t j )) ds 1 ds 2 dt 1 dt 2 .

In order to evaluate this integral, the following simple transformations can be performed: (i) Replace max(s i , t j ) by max(s i ) ∨ max(t j ). (ii) Integrate on simplexes such as 0 < s 1 < • • • < s r < t. For 2 ≤ r ≤ n -2; this simplifies the above expression into

R n,r (ϕ) = [(n -r)!r!] 2 × (S 2 t ) 2 (S 2 t ) 2 2 i,j=1 ϕ(max(σ i 2 , τ j 2 ), min(σ i 1 , τ j 1 )) × 2 k=1 (σ k 2 -σ k 1 ) r-2 (τ k 2 -τ k 1 ) n-r-2 (r -2)!(n -r -2)! dσ k 1 dσ k 2 dτ k 1 dτ k 2 ,
that is,

R n,r (ϕ) = P r (n) × (S 2 t ) 2 (S 2 t ) 2 2 i,j=1 ϕ(max(σ i 2 , τ j 2 ), min(σ i 1 , τ j 1 )) (48) × 2 k=1 (σ k 2 -σ k 1 ) r-2 (τ k 2 -τ k 1 ) n-r-2 dσ k 1 dσ k 2 dτ k 1 dτ k 2 ,
where we have set P r (n) = [(nr)(nr -1)r(r -1)] 2 . We now recall that f h is defined by (40), which means that we shall apply identity (48) to the function ϕ = Φ h where Φ h is introduced at Notation 3.1. 

Toward this aim, observe that one can write Φ

h (u, v) = ℓ n,h (v -u) with ℓ n,h : R + → R + given by ℓ n,h (w) := h 0 p (n-2) w (y)(h -y) dy.
ℓ n,h (w) = (-1) n (n -2)! √ 2π h 0 e -y 2 /(2w) w (n-1)/2 H n-2 y w 1/2 (h -y) dy ≤ c n h 2 w (n-1)/2 .
Plugging this relation into (48), we obtain that for 2 ≤ r ≤ n -2,

f h ⊗ r f h 2 L 2 ([0,t] 2n-2r ) ≤ c n,r h 8 (S 2 t ) 2 (S 2 t ) 2 2 i,j=1 (max(σ i 2 , τ j 2 ) -min(σ i 1 , τ j 1 )) -(n-2)/2
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× 2 k=1 (σ k 2 -σ k 1 ) r-2 (τ k 2 -τ k 1 ) n-r-2 dσ k 1 dσ k 2 dτ k 1 dτ k 2 (49) ≤ c n,r h 8 (S 2 t ) 2 (S 2 t ) 2 2 i,j=1 (max(σ i 2 , τ j 2 ) -min(σ i 1 , τ j 1 )) -3/2 × 2 k=1 dσ k 1 dσ k 2 dτ k 1 dτ k 2 .
This kind of integral will be handled in Lemma A.13, which allows to conclude that

f h ⊗ r f h 2 L 2 ([0,t] 2n-2r ) ≤ c n,r h 8 .
Hence, relation (47) obviously holds true, which in turn implies (46).

We have thus proved relation (46) for n ≥ 4 and 2 ≤ r ≤ n -2. The remaining possibilities can be treated applying the same reasoning: in the case (n ≥ 4, r ∈ {1, n -1}), we have

f h ⊗ r f h 2 L 2 ([0,t] 2n-2r ) ≤ c r,n h 8 × (S 2 t ) 2 [0,t] 2 2 i,j=1 (max(σ i , τ j 2 ) -min(σ i , τ j 1 )) -1 dσ 1 dσ 2 2 k=1 dτ k 1 dτ k 2
and we recognize here the second (finite) integral involved in Lemma A. [START_REF] Rosen | A stochastic calculus proof of the CLT for the L 2 modulus of continuity of local time[END_REF]. Finally, the case (n = 2, r = 1) reduces to

f h ⊗ r f h 2 L 2 ([0,t] 2n-2r ) ≤ c r,n h 8 × [0,t] 2 [0,t] 2 2 i,j=1
(max(σ i , τ j )min(σ i , τ j )) -1/2 dσ 1 dσ 2 dτ 1 dτ 2 , so that we can conclude with Lemma A.13 as well.

Summarizing our considerations up to now, we have obtained the following convergence in law for the finite-dimensional distributions of X 2m,h : Proposition 3.11. Taking up the notation of Theorem 1.2, consider t 1 , . . . , t d ∈ [0, 1] and m ≥ 1. Then as h → 0 we have

1 h 2 [ln(1/h)] 1/2 (X 2m,h t 1 , . . . , X 2m,h t d ) (d) → σ m N (0, Γ) where σ 2 m = c(2m -2)! 2 2m [(m -1)!] 2
and N (0, Γ) is the centered Gaussian law in R d with covariance matrix Γ(i, j) = min(t i , t j ).

Proof. We shall simultaneously apply Propositions 3.3 and 3.4 to the random vector

h -2 [ln(1/h)] -1/2 (X 2m,h t 1 , . . . , X 2m,h t d
), which is of course a sequence of random vectors in (H 2m ) d . Moreover:

(i) According to Proposition 3.7, we have for every t i , t j ,

lim h→0 E[X 2m,h t i X 2m,h t j ] h 4 ln(1/h) = σ 2 m Γ(i, j).
(ii) For each fixed t i , one can write X 2m,h

t i I 2m (k 2m,h ) with k 2m,h = 16 (2m)! (f h + g h,t i ) • 1 [0,t i ] 2m
. Then Proposition 3.10 asserts that, for all r ∈ {1, . . . , 2m -1},

lim h→0 1 h 4 ln(1/h) k 2m,h ⊗ r k 2m,h H ⊗2(n-r) = 0.
We can thus combine Propositions 3.3 and 3.4 so as to conclude.

3.5. Tightness. Now endowed with Proposition 3.11, the proof of Theorem 1.2 reduces to showing that the sequence of processes {h -2 ln(1/h) -1/2 × X 2m,h t , t ∈ [0, 1]} is tight. These are contents of the following proposition. Proposition 3.12. Fix m ≥ 1. Then:

(i) There exist λ > 0 and a constant c m such that for all 0 ≤ s ≤ t ≤ 1, sup h∈(0,1)

1 h 4 ln(1/h) E[|X 2m,h t -X 2m,h s | 2 ] ≤ c m |t -s| λ . (50) (ii) The family {h -2 ln(1/h) -1/2 X 2m,h ; h > 0} is tight in C([0, 1]).
In order to prove Proposition 3.12, recall that X 2m,h 40)-(41). We will also use the following additional property of g h , which can be readily checked with the help of (31)-(32), as in the proof of Lemma 3.8. Lemma 3.13. Fix m ≥ 1, and recall that we write g h,t instead of g h,t,2m for notational sake. Then there exist λ > 0 and a constant c m such that for all 0 ≤ s ≤ t ≤ 1, one has sup h∈(0,1)

t = 16 (2m)! I 2m ((f h + g h,t ) • 1 [0,t] 2m ) with f h , g h defined by (
g h,t -g h,s 2 L 2 ([0,s] 2m ) ≤ c m h 4 |t -s| λ .
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We can now turn to the proof of the main proposition of this section.

Proof of Proposition 3.12. We prove the two claims of the proposition separately:

Step 1. Proof of assertion (i). Let us write

X 2m,h t -X 2m,h s = c m {I n ((f h + g h,t ) • {1 [0,t] 2m -1 [0,s] 2m }) + I n ((g h,t -g h,s ) • 1 [0,s] 2m )}.
The second term of this decomposition can be treated with Lemma 3.13. As for the first term, we clearly have

E[(I n ((f h + g h,t ) • {1 [0,t] 2m -1 [0,s] 2m })) 2 ] ≤ c m (A h s,t + B h s,t ) with A h s,t = 0<t 1 <•••<t 2m s<t 2m <t Φ h (t 1 , t 2m ) 2 dt 1 • • • dt 2m , B h s,t = 0<t 1 <•••<t 2m s<t 2m <t g h,t (t 1 , . . . , t 2m ) 2 dt 1 • • • dt 2m .
We now bound those two terms: first, split up

A h s,t into A h s,t = c m {A h,1 s,t + A h,2 s,t } with A h,1 s,t ≡ 0<t 1 <s<t 2m <t (t 2m -t 1 ) 2m-2 Φ h (t 1 , t 2m ) 2 dt 1 dt 2m and A h,2 s,t ≡ s<t 1 <t 2m <t (t 2m -t 1 ) 2m-2 Φ h (t 1 , t 2m ) 2 dt 1 dt 2m = 0<t 1 <t 2m <t-s (t 2m -t 1 ) 2m-2 Φ h (t 1 , t 2m ) 2 dt 1 dt 2m .
Then by (30), one has for any small ε > 0,

A h,1 s,t ≤ c m h 4 0<t 1 <s<t 2m <t (t 2m -t 1 ) -1 dt 1 dt 2m ≤ c m h 4 0<t 1 <s (s -t 1 ) -1+ε dt 1 s<t 2m <t (t 2m -t 1 ) -ε dt 2m ≤ c m h 4 |t -s| 1-ε .
As far as A h,2 s,t is concerned, we can follow the lines of the proof of Proposition 3.7 and conclude that lim

1 h 4 ln(1/h) A h,2
s,t = c m |t -s| as h tends to zero, which gives us a proper estimate.

Finally, the bound for B h s,t is easily derived as follows: first notice that, according to Definition (41) of g h,t , we have

B h s,t ≤ c 0<t 1 <•••<t 2m s<t 2m <t [Φ 2 h (t 1 , t) + Φ 2 h (0, t) + Φ 2 h (0, t 2m )] dt 1 • • • dt 2m .
The three terms above are handled easily, and along the same lines, thanks to (30). For the first one, we get, for instance,

0<t 1 <t 2m <t s<t 2m <t (t 2m -t 1 ) 2m-2 Φ 2 h (t 1 , t) dt 1 • • • dt 2m ≤ c m h 4 0<t 1 <t 2m <t s<t 2m <t (t 2m -t 1 ) 2m-2 (t -t 1 ) -2m+1 dt 1 dt 2m ≤ c m h 4 (t -s) 0<t 1 <s (t -t 1 ) -1 dt 1 + c m h 4 s<t 1 <t (t -t 1 ) 2m-1 (t -t 1 ) -2m+1 dt 1 ≤ c m h 4 |t -s| 1-ε
for any small ε > 0. Gathering now our estimates on A h s,t and B h s,t , we have proved our claim (50).

Step 2. Proof of assertion (ii). With inequality (50) in hand, the tightness result is easily deduced. Indeed, the random variable X 2m,h t -X 2m,h s living in a finite chaos, we are in a position to use hypercontractivity (see [START_REF] Nualart | The Malliavin Calculus and Related Topics[END_REF]) and assert that for all p ≥ 1, sup h∈(0,1)

1 h 4p ln(1/h) p E[|X 2m,h t -X 2m,h s | 2p ] ≤ c m,p |t -s| λp .
As we have done before, Kolmogorov's tightness criterion is therefore verified for every p such that λp > 1, which finishes our proof.

4. L 2 modulus of 2-dimensional local time on chaoses. We now carry on the task of proving Theorem 1.3 for projections of the quantity H h t (B) defined by (1) when B is a two-dimensional Brownian motion. For the sake of simplicity, we shall take up most of the notation introduced at Section 3, starting from the fact that our Hamiltonian is written H h t (B) independently of the fact that B is a one-dimensional or a two-dimensional Brownian motion. Like in [START_REF] Hu | Central limit theorem for the third moment in space of the Brownian local time increments[END_REF], we shall also invoke the following important representation formula for H h t (B):

H h t (B) = [0,t] 2 [δ 0 (B v -B u + h) (51) + δ 0 (B v -B u -h) -2δ 0 (B v -B u )] du dv.
Remark 4.1. The reader should be aware of the fact that expression (51) is formal, since the self-intersection local time is a divergent quantity for a two-dimensional Brownian motion. Notice, however, that only projections on fixed chaoses will be considered in the sequel, and all projections of the random distribution defined by (51) are well defined.

Next, we introduce the equivalent of the functions Φ introduced at Notation 3.1. In the 2-d case, we will let this set of functions appear in a Fourier transform procedure, as follows.

Notation 4.2. For every n ≥ 2, every i = (i 1 , . . . , i n ) ∈ {1, 2} n and every h ∈ R 2 , we define a function Φ i (t 1 , t 2 ) as

Φ i (t, s) = Φ i,h (t, s) := R 2 dξ n k=1 ξ i k {1 -cos( h, ξ )} |ξ| 4 e -(t-s)|ξ| 2 /2 .
Remark 4.3. In order to draw a link between Φ i and the function Φ = Φ 1-d introduced at Notation 3.1, observe that, at least for n = 2m even (the only cases of interest in our study), one can also write Φ 1-d as

Φ 1-d h,2m (t, s) = h 0 p (2m-2) t-s (y)(h -y) dy = p (2m-2) t-s (h) -p (2m-2) t-s (0) = 1 2 {p (2m-2) t-s (h) + p (2m-2) t-s (-h) -2p (2m-2) t-s (0)} = c R dξξ 2m-2 {1 -cos(hξ)}e -(t-s)ξ 2 /2 ,
where we have used the Fourier representation p t-s (x) = c R dξe ıxξ e -(t-s)ξ 2 /2 .

The continuity properties of the functions Φ i , mimicking (30)-(32), are summarized below. Lemma 4.4. Fix m ≥ 1 and α ∈ (0, 2). Then there exists a constant c m,α such that for every h ∈ R 2 and all 0 ≤ t 1 < s < t < t 2 ,

max i∈{1,2} 2m |Φ i,h (t, s)| ≤ c m,α |h| α |t -s| -m+1-(α/2) , (52) max i∈{1,2} 2m |Φ i,h (t, t 1 ) -Φ i,h (s, t 1 )| ≤ c m,α |h| α |t -s| λ |s -t 1 | -m+1-(α/2)-λ , (53) max i∈{1,2} 2m |Φ i,h (t 2 , t) -Φ i,h (t 2 , s)| ≤ c m,α |h| α |t -s| λ |t 2 -t| -m+1-(α/2)-λ . ( 54 
)
The strategy of the proof for Theorem 1.3 is now similar to the onedimensional case of Theorem 1.2: exact computation of the chaos decomposition, analysis of the variance and contraction properties for H h t (B). This is why we shall skip some details below, and mainly stress the differences between the 1-d and the 2-d case.

4.1. Stochastic analysis in dimension 2. The Malliavin calculus setting we shall use in this section is very similar to the one explained at Section 3.1. However, we stress here some differences between stochastic analysis for 1-d and 2-d Brownian motions.

Notice first that our standing Wiener space is now the space of R 2valued continuous functions C(R + ; R 2 ), while the related Hilbert space is H ≡ (L 2 ([0, 1])) 2 . We set B = (B 1 , B 2 ) for the two-dimensional Wiener process and for h = (h 1 , h 2 ) ∈ H we define B(h) = B 1 (h 1 ) + B 2 (h 2 ). Starting from this definition of Wiener integral, the Malliavin derivatives and Sobolev spaces are defined along the same lines as in Section 3.1.

Stroock's formula takes the following form in the two-dimensional situation: designate by i = (i 1 , . . . , i n ) a generic element of {1, 2} n . Then for a functional F ∈ D ∞,2 , we have J n (F ) = I n (f n ), with

I n (f n ) = i∈{1,2} n [0,1] n f i (t 1 , . . . , t n ) dB i 1 t 1 • • • dB in tn , (55) 
f i (t 1 , . . . , t n ) = E[D i t 1 ,...,tn F ] n! .
Finally, Propositions 3.3 and 3.4 are still valid in our 2-d Wiener space context, except for the fact that the expression for the rth contraction (r ∈ {1, . . . , n}) of a given kernel f reads as follows: for k 1 , k 2 ∈ {1, 2} n-r and 

t 1 , t 2 ∈ [0, 1] n-r , (f ⊗ r f ) (k 1 ,k 2 ) (t 1 , t 2 ) := l∈{1,2} r [0,1] r dsf (k 1 ,l) (t 1 , s)f (k 2 ,l) (t
= c n! i∈{1,2} n [0,t] n S 2 t ∂ n p v-u ∂x i (h) + ∂ n p v-u ∂x i (-h) -2 ∂ n p v-u ∂x i (0) × n i=1 1 [u,v] (t i ) du dv dB i 1 t 1 • • • dB in tn = c i∈{1,2} n S n t t 1 0 t tn ∂ n p v-u ∂x i (h) + ∂ n p v-u ∂x i (-h) -2 ∂ n p v-u ∂x i (0) du dv dB i 1 t 1 • • • dB in tn ,
where p t (x) stands here for the 2-dimensional Gaussian kernel and where we have set ∂x

i := ∂x i 1 • • • ∂x in . Observe first that ∂ n p v-u ∂x i (h) + ∂ n p v-u ∂x i (-h) - 2 ∂ n p v-u
∂x i (0) vanishes when n is odd, which yields our claim X n,h t = 0 in this situation. In the case where n is even, use the Fourier representation

p v-u (x) = c R 2 e ı x,ξ e -(v-u)|ξ| 2 /2 dξ
and Fubini's theorem in order to derive

X n,h t = c i∈{1,2} n S n t [Φ i (t n , t 1 ) -Φ i (t 1 , t) + Φ i (0, t) -Φ i (t n , 0)] dB i 1 t 1 • • • dB in tn .
Formula (57) follows by symmetrization.

Asymptotic behavior of the variance.

With expression (57) in hand, we now proceed as for the one-dimensional case, and compute E[X 2m,h t X 2m,h s ] in order to see how this kind of quantity scales in h. Let us first label the following analytic lemma which will feature in our future computations. Then L ϕ 2m,e is well defined and for all unit vectors e, ẽ ∈ R 2 , one has L ϕ 2m,e = L ϕ 2m,ẽ . We denote by L ϕ 2m this common quantity.

Proof. The fact that L ϕ 2m,e is well defined can be easily checked using (60). As for the second assertion, introduce the rotation A which sends e to ẽ and then use the isometric change of variables ξ = A * ξ, η = A * η, so as to turn L ϕ 2m,e into L ϕ 2m,ẽ .

We will also make use of the following uniform estimate for g h i,t , which (as in the proof of Lemma 3.8) can be easily derived from the bound (52): Lemma 4.7. Fix m ≥ 1, and recall that for every t > 0 and every i ∈ {1, 2} 2m , g i,t is defined by (41). Then there exist a constant c m and a small ε > 0 such that for every h

∈ R 2 , sup t∈[0,1],i∈{1,2} 2m g h i,t 2 L 2 ([0,t] 2m ) ≤ c m |h| 2+ε .
We can now compute the correct order of E[X 2m,h t X 2m,h s ] as follows.

Proposition 4.8. Fix m ≥ 1. Then for all 0 ≤ s ≤ t ≤ 1, it holds that

lim h→0 |h| -2 E[X 2m,h t X 2m,h s ] = σ 2 m s with σ 2 m = cL ϕ 2m (2m -2)! ,
where c is a universal constant, where ϕ is defined for every

(x, y) ∈ R 2 by ϕ(x, y) := ∞ 0 du u 3 {1 -cos(ux)}{1 -cos(uy)}
and where we recall that L ϕ 2m has been introduced at relation (61).

Proof. Recall that

E[X 2m,h t X 2m,h s ] = c (2m)! i∈{1,2} 2m (f i +g i,t )•1 [0,t] 2m , (f i +g i,s )•1 [0,s] 2m L 2 (R 2m )
and thanks to Lemma 4.7, we only have to focus on the sum of the terms

A i s,t := f • 1 [0,t] 2m , f i • 1 [0,s] 2m L 2 (R 2m
) . An integration over the simplex gives

A i s,t = (2m)! (2m -2)! ∆ 2 s Φ i,h (t 2m , t 1 ) 2 (t 2m -t 1 ) 2m-2 dt 1 dt 2m .
The change of variables t 2mt 1 = τ and t 1 = σ easily leads us to

A i s,t = (2m)! (2m -2)! s 0 (s -τ )Φ i,h/τ 1/2 (1, 0) 2 dτ.
Setting e h ≡ h |h| , the change of variable u = |h|/τ 1/2 now gives

A i s,t = 2(2m)! (2m -2)! |h| 2 ∞ |h|/s 1/2 u -3 s - |h| 2 u 2 Φ i,ue h (1, 0) 2 du.
By using (52), one can check that |h| 2 ∞ |h|/s 1/2 u -5 Φ i,ue h (1, 0) 2 du → 0 as h → 0, so that the main contribution will come from the terms

A i s,t := 2(2m)! (2m -2)! |h| 2 s ∞ |h|/s 1/2 u -3 Φ i,ue h (1, 0) 2 du. Now write Φ i,ue h (1, 0) 2 = R 2 dξ R 2 dη 2m k=1 ξ i k η i k |ξ| 4 |η| 4 × {1 -cos(u e h , ξ )}{1 -cos(u e h , η )}e -(1/2)(|ξ| 2 +|η| 2 )
and observe that i∈{1,2} 2m 2m k=1 ξ i k η i k = ξ, η 2m . Thus, thanks to Lemma 4.6 and using Fubini theorem, we deduce that

|h| -2 i∈{1,2} 2m A i s,t = 2(2m)! (2m -2)! s • L ϕ h 2m ,
where ϕ h is defined as

ϕ h (x, y) := ∞ |h|/s 1/2 {1 -cos(ux)}{1 -cos(uy)} u 3 du.
Finally, the convergence of L ϕ h 2m toward L ϕ 2m easily follows from the fact that ϕ satisfies relation (60) for some small ε > 0, and this achieves the proof. 4.4. Contractions. We now turn to the contractions estimation for the functions f h , g h , where our two-dimensional contractions are defined by (56). The following is of course an analog of Proposition 3.10 in our 2-d setting.

Proposition 4.9. For every r ∈ {1, . . . , n -1}, one has

(f . 1 [0,t] n + g .,t ) ⊗ r (f . 1 [0,t] n + g .,t ) 2 = i∈{1,2} 2n-2r ((f . 1 [0,t] n + g .,t ) ⊗ r (f . 1 [0,t] n + g .,t )) i 2 L 2 ([0,t] 2n-2r ) = o(|h| 4 ).
Proof. Thanks to Lemma 4.7, it suffices to focus on the sum

k 1 ,k 2 ∈{1,2} n-r ((f . 1 [0,t] n ) ⊗ r (f . 1 [0,t] n )) (k 1 ,k 2 ) 2 L 2 ([0,t] 2n-2r ) .
Assume first that 2m ≥ 4 and 2 ≤ r ≤ 2m -2. Then we can follow the lines of the proof of Proposition 3.10 and deduce that

k 1 ,k 2 ∈{1,2} n-r ((f . 1 [0,t] n ) ⊗ r (f . 1 [0,t] n )) (k 1 ,k 2 ) 2 L 2 ([0,t] 2n-2r ) = c m k 1 ,k 2 ∈{1,2} n-r l 1 ,l 2 ∈{1,2} r (S 2 t ) 2 (S 2 t ) 2 2 i,j=1 Φ (k i ,l j ),h (max(σ i 2 , τ j 2 ), min(σ i 1 , τ j 1 )) × 2 k=1 (σ k 2 -σ k 1 ) r-2 × (τ k 2 -τ k 1 ) n-r-2 dσ k 1 dσ k 2 dτ k 1 dτ k 2 .
Now, plugging the bound (52) (uniformly over (k i , l j )) into the latter expression yields, similar to (49): for any small ε > 0,

k 1 ,k 2 ∈{1,2} n-r ((f . 1 [0,t] n ) ⊗ r (f . 1 [0,t] n )) (k 1 ,k 2 ) 2 L 2 ([0,t] 2n-2r ) ≤ c m |h| 4+4ε J ε with J ε := (∆ 2 1 ) 2 (∆ 2 1 ) 2 2 i,j=1 (max(σ i 2 , τ j 2 ) -min(σ i 1 , τ j 1 )) -3/2-ε/2 × 2 k=1 dσ k 1 dσ k 2 dτ k 1 dτ k 2 .
By Lemma A.13, we know that this integral is finite for ε > 0 small enough, which achieves the proof of the proposition in the case (2m ≥ 4, 2 ≤ r ≤ 2m -2). The two situations (2m ≥ 4, r ∈ {1, 2m -1}) and (2m = 2, r = 1) can also be handled with the same arguments as in the proof of Proposition 3.10 (with the help of Lemma A.13 as well). Details are left to the reader.

As in Section 3.4, by combining Propositions 4.8 and 4.9 we end up with the following convergence in law result for the finite-dimensional distributions of X 2m,h : Proposition 4.10. Taking up the above notation, consider t 1 , . . . , t d ∈ [0, 1] and m ≥ 1. Then as h → 0, we have and N (0, Γ) is the centered Gaussian law in R d with covariance matrix Γ(i, j) = min(t i , t j ). Recall that the quantity L ϕ 2m has been defined in Proposition 4.8.

Let us briefly check point (iii) of Theorem 1.3, that is, the divergence of the series of variances, as it is less obvious than in the 1-d case. Proof. We use the same arguments as in the proof of Proposition 3.12. First, observe that 

E[|X 2m,h t -X 2m,h s | 2 ] ≤ c m i∈{1,2}
Φ i (t 1 , t 2m ) 2 dt 1 • • • dt 2m ,
The necessity of the condition α < 7/4 for the convergence of (67) stems from the following fact: observe that if S := {x ∈ [0, 1] 4 : 0 < x 1 < x 5 < x 2 < x 6 < x 3 < x 7 < x 4 < x 8 < 1} one has I 7/4 ≥ S (x 7x 1 ) -7/4 (x 8x 1 ) -7/4 (x 7x 2 ) -7/4 (x 8x 2 ) -7/4 dx dy ≥ c In order to prove the convergence of I α when α < 7/4, we propose to rely on some block-type representation of the integral, described as follows. Now and for the rest of the proof, we fix a generic permutation σ ∈ S 8 and consider the simplex S σ generated by σ, that is, S σ := {x ∈ [0, 1] 8 : x σ(1) < • • • < x σ(8) }, assuming that S σ ⊂ D. If J i = [x σ(m i ) , x σ(n i ) ] on S σ (for m i < n i ∈ {1, . . . , 8} depending on σ as well), we introduce the block B σ i := {m i , m i + 1, . . . , n i } and set B σ := {B σ 1 , . . . , B σ 4 }. Then, using an elementary change of variables, it is readily checked that

I α,σ := S σ 4 i=1 ℓ(J i ) -α = S σ 4 i=1 (x σ(n i ) -x σ(m i ) ) -α = I α,B σ ,
where we have used the following general notation: Notation A.14. Given B i := {m i , m i + 1, . . . , n i } (i = 1, . . . , 4) with m i < n i ∈ {1, . . . , 8} and B := {B 1 , . . . , B 4 }, we set

I α,B := 0<x 1 <•••<x 8 <1 4 i=1 (x n i -x m i ) -α ∈ [0, ∞].
Of course, I α = σ : S σ ⊂D I α,σ = σ : S σ ⊂D I α,B σ . Our key argument to prove that I α,B σ < ∞ for every σ ∈ S 8 and α < 7 4 lies in the following three basic observations regarding the four blocks B σ i composing B σ : (i) Card(B σ i ) ≥ 4 (J i involves the min/max over four points); (ii) Card(B σ i ∪ B σ j ) ≥ 6 if i = j (J i ∪ J j involves the min/max over at least six points);

(iii) Each of the extremum points 1 and 8 appears exactly twice in B σ . Indeed, on S σ , the minimum x σ(1) [resp., maximum x σ(8) ] appears exactly twice as a left (resp., right) bound in J 1 , . . . , J 4 .

Let us now discriminate the possible situations for B σ according to this last condition (iii) (see Figure 1 for a representation in each case): Case 1. 1 and 8 never appear in the same block B σ 1 , . . . , B σ 4 . Then, by focusing on the possibilities for the two blocks with left-hand side 1 (resp., the two blocks with right-hand side 8), and given the above constraints (i)-(ii), we end up with I α,B σ ≤ I α,B 0 where B 0 := {{1, . . . , 4}, {1, . . . , 6}, {5, . . . , 8}, {3, . . . , 8}}.

Case 2. 1 and 8 appear once and only once in a same block (and so each of them appears once "alone" in another block). Then it remains to pick one block over the points {2, . . . , 7}, and given the constraints (i)-(ii) on this block, we can easily conclude that there exists k ∈ {1, 2} such that I α,B σ ≤ I α,B k where B 1 := {{1, . . . , 8}, {1, . . . , 4}, {5, . . . , 8}, {2, . . . , 5}},
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 210 Let {L t (a); t ∈ [0, 1], a ∈ R} be the local time process of Brownian motion on the interval [0, 1]. Then there exist ε > 0 and a strictly positive constant c such that sup x∈R,t∈[0,1]

t 0 Lr 0 δ

 00 r (B r ) dr = t 0 Br (B u ) du dr = t 0 r 0 δ 0 (B r -B u ) du dr = α t .

  Thanks to the expression (45) we have already recalled for p (n-2) w we thus get

Lemma 4 . 6 . 2 dξ R 2 dη ξ, η 2m |ξ| 4 2 (|ξ| 2 +

 4622422 Fix m ≥ 1 and ϕ : R 2 → R such that |ϕ(x, y)| ≤ c{|x| 1-ε |y| 1-ε + |x| 1+ε |y| 1+ε } (60) for some small ε > 0. For every nonzero e ∈ R 2 , set L ϕ 2m,e := R |η| 4 ϕ( ξ, e , η, e ) exp -1 |η| 2 ) . (61)
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 41144452 With the notation of Proposition 4.10, it holds that∞ |η| 4 {e ξ,η + e -ξ,η }ϕ(ξ 1 , η 1 )e -(1/2)(|ξ| 2 +|η| 2 ) |η| 4 ϕ(ξ 1 , η 1 )e -(1/2)|ξ-η| 2 |η| 4 ϕ(ξ 1 , η 1 )for every R > 0 and where the notation B ξ refers to the unit ball around ξ.Now observe that for R large enough, ξ ∈ [R, ∞) 2 and η ∈ B ξ , one has ϕ(ξ 1 , η 1 ) = ξ 2 1 • ϕ 1, η 1 ξ 1 ≥ ξ 2 1 • c ϕ with c ϕ = inf 1/2≤x≤2 ϕ(1, x) > 0and also ξ, η 2 ≥ 1 2 |ξ| 4 . Therefore, going back to (62), one has for R large enough and a suitable (finite) R, Tightness. In order to complete the proof of Theorem 1.3, we are now left with the tightness property for the family of processes {h -1 X 2m,h t , t ∈ [0, 1]}. The following proposition is thus the equivalent of Proposition 3.12 in our 2-d context.Proposition 4.12. Fix m ≥ 1. Then:(i) There exist λ > 0 and a constant c m such that for all 0 ≤ s ≤ t ≤ 1, sup |h|∈(0,1)1 |h| 2 E[|X 2m,h t -X 2m,h s ≤ c m |t -s| λ . (63)(ii) The family {X 2m,h ; |h| > 0} is tight in C([0, 1]).

[0, 1 ] 3 (u 1 +

 131 u 2 ) -7/4 (u 1 + u 2 + u 3 ) -7/4 × u -7/4 2 (u 2 + u 3 ) -7/4 u 1 u 2 2 u 3 du 1 du 2 du 3

4 i=1ℓ

 4 First, given x ∈ D, denote J 1 := [x 3 ∧ x 1 , x 7 ∨ x 5 ], J 2 := [x 4 ∧ x 1 , x 8 ∨ x 5 ], J 3 := [x 3 ∧ x 2 , x 7 ∨ x 6 ], J 4 := [x 4 ∧ x 2 , x 8 ∨ x 6 ], so that I α = D (J i ) -αwhere ℓ([a, b]) = ba.

Fig. 1 .

 1 Fig.1. Representation of the "extremal" situations in each case, that is, the B k (k ∈ {0, . . . , 4}). Each line connects the extremities of a block in B k . In case 2 (resp., case 3), the black lines are the ones common to B1 and B2 (resp., B3 and B3).

  2 , s). Chaos decomposition of H h t (B). We are now ready to compute the projections X n,h of H h (B) on chaoses, which is the analogous statement to Proposition 3.6 in the 2-d situation.{f i (t 1 , . . . , t n ) + g i,t (t 1 , . . . , t n )} dB i 1 t 1 • • • dB in In the previous equation, the symmetric functions f i ∈ L 2 (R n + ) and g i,t ∈ L 2 ([0, t] n ) are defined for each i ∈ {1, 2} n by f i (t 1 , . . . , t n ) (58) = f h i (t 1 , . . . , t n ) := Φ i (min(t 1 , . . . , t n ), max(t 1 , . . . , t n )) and g i,t (t 1 , . . . , t n ) -Φ i (min(t 1 , . . . , t n ), t) + Φ i (0, t) -Φ i (0, max(t 1 , . . . , t n )),where we recall that the functions Φ i are introduced at Notation 4.2.

	4.2. Proposition 4.5. For every n ≥ 1 and every nonzero h ∈ R 2 , recall that we have set X n,h t = J n (H h t (B)) for the projection of H h t (B) onto the nth Wiener chaos. Then we have X n,h t = 0 if n is odd and
	X n,h t (57)	=	c n!	i∈{1,2} n [0,t] n	tn if n is even
	for some universal constant c. = g h i,t (t 1 , . . . , t n ) (59)	
	:= Proof. By applying Stroock's formula (55) to expression (51) in a sim-
	ilar manner as in the proof of Proposition 3.6, we obtain that X n,h t to	is equal
	(56)				
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|h| -2 g i,tg i,s

2

for some λ > 0. Then the treatments of i∈{1,2} 2m A i s,t and i∈{1,2} 2m B i s,t , as well as the derivation of assertion (ii), follow the lines of the proof of Proposition 3.12. For the sake of conciseness, we do not repeat the details of the procedure.

APPENDIX: A TECHNICAL LEMMA

It only remains to prove the technical result on which the contraction computations of Propositions 3.10 and 4.9 rely.

Lemma A.13. The three following integrals

(max(σ i , τ j )min(σ i , τ j )) -3δ dσ 1 dσ 2 dτ 1 dτ 2 , (64)

and

We only focus on (66), since ( 64) and ( 65) can be treated with similar arguments (see Remark A.15 at the end of the proof). In order to ease notation, we shall also change our time indices and set (σ

2 ) = (x 4 , x 8 ). Our integral of interest can thus be written as

where

B 2 := {{1, . . . , 8}, {1, . . . , 4}, {5, . . . , 8}, {3, . . . , 6}}.

Case 3. 1 and 8 appear twice in a same block (necessarily {1, . . . , 8}). Then we have to pick two blocks over the points {2, . . . , 7}, and given the constraints (i)-(ii) on these two blocks [note, e.g., that, given (ii), 2 and 7 are necessarily involved in the union of these blocks], we can easily conclude that there exists k ∈ {1, 2} such that I α,B σ ≤ I α,B 2+k , where B 3 := {{1, . . . , 8}, {1, . . . , 8}, {2, . . . , 5}, {4, . . . , 7}}, B 4 := {{1, . . . , 8}, {1, . . . , 8}, {2, . . . , 7}, {3, . . . , 6}}.

As a consequence of this reasoning, the problem is now reduced to the sole consideration of the five "extremal" integrals I α,B k (k ∈ {0, . . . , 4}), which can be very easily done with basic estimates. For instance, if α = 7 4ε with ε > 0, one has

where we have used the elementary bounds

Remark A.15. This reduction of the problem, based on a block representation of the integral, can be easily adapted to prove the convergence of (64) [resp., (65)], by working with blocks {1, . . . , 4} (resp., {1, . . . , 6}) made of at least two (resp., three) elements. Thus, for relation (64) [resp., (65)], one can check that the situation reduces to the sole consideration of two (resp., three) easy-to-handle integrals on specific simplexes.