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ON L2 MODULUS OF CONTINUITY OF BROWNIAN LOCAL

TIMES AND RIESZ POTENTIALS

By Aurélien Deya, David Nualart1 and Samy Tindel2

Université de Lorraine, University of Kansas and Université de Lorraine

This article is concerned with modulus of continuity of Brownian
local times. Specifically, we focus on three closely related problems:
(a) Limit theorem for a Brownian modulus of continuity involving
Riesz potentials, where the limit law is an intricate Gaussian mix-
ture. (b) Central limit theorems for the projections of L2 modulus of
continuity for a one-dimensional Brownian motion. (c) Extension of
the second result to a two-dimensional Brownian motion. Our proofs
rely on a combination of stochastic calculus and Malliavin calculus
tools, plus a thorough analysis of singular integrals.

1. Introduction. Let {Bt,0≤ t≤ 1} be a standard linear Brownian mo-
tion defined on some complete probability space (Ω,F ,P). In the sequel,
we denote by Lt(x) the local time of B at a given point x ∈ R, defined for
t ∈ [0,1]. A nice combination of stochastic calculus, stochastic analysis and
evaluation of singularities associated with heat kernels have recently led to
a number of interesting limit theorems for quantities related to the fam-
ily {Lt(x); t ∈ [0,1], x ∈ R}. Let us quote, for instance, the use of Malliavin
and stochastic calculus tools in order to get suitably normalized limits for
L2 modulus of continuity (see [6, 13]) or third moment in space (cf. [7])
of Brownian local time. Malliavin calculus tools have also been essential in
order to generalize the notion of self-intersection local time [5, 8] and to ob-
tain central limit theorems for additive functionals [9] of fractional Brownian
motion.

The current article proposes to take another step into the relationships
between Brownian local time and stochastic analysis. Specifically, we shall
handle the following problems:
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(1) One of the motivation alluded to in [13] for the renormalization of L2

modulus of continuity of local times comes from the study of the Hamiltonian

Hh
t (B) =

∫

R

[Lt(x+ h)−Lt(x)]
2 dx

(1)

=

∫

R

[∫ t

0
(δx+h(Bu)− δx(Bu))du

]2
dx,

which is involved in the definition of some nonfolding polymers. However,
one might wish to consider a slightly weaker repelling self-interaction of the
polymer by introducing the following family of Hamiltonians indexed by
γ ∈ (0,1):

Hh,γ
t (B) =

∫

R

[∫ t

0
(|Bv + x+ h|−γ − |Bv + x|−γ)dv

]2
dx.(2)

For this modified Hamiltonian, we shall prove the following limiting theorem:

Theorem 1.1. Consider γ ∈ (3/4,1) and the family of Hamiltonians

{Hh,γ
t (B); t ∈ [0,1]} defined by (2). Then one has, as h tends to zero,

Hh,γ(B)−E[Hh,γ(B)]

cγh7/2−2γ

(d)→Wα(3)

in the space C([0,1];R) of real continuous functions on [0,1]. In relation (3),
cγ stands for a deterministic positive constant depending only on γ, W is a
standard Brownian motion independent of B and α is the self-intersection
local time of B, that is (formally),

αt :=

∫ t

0
dv

∫ v

0
duδ0(Bv −Bu),(4)

where δ0 is the Dirac delta function concentrated at 0.

Theorem 1.1 turns out to be interesting for several reasons:

• The Hamiltonian Hh,γ(B) quantifies a weak self-interaction of the Brow-
nian path, detecting if the path self intersects (products of the form
|Bv1 + x|−γ |Bv2 + x|−γ) or has a fold with amplitude h (products of the
form |Bv1 + x+ h|−γ |Bv2 + x|−γ). It can thus be related to the polymer
model studied in [15], where a discrete time random walk Sn on Z is
weighted according to the following Hamiltonian:

Hn =
n∑

i,j=1

1{Si=Sj} −
n∑

i,j=1

1{|Si−Sj |=1}.
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This relation was also the motivation behind the central limit theorem
given in [13], and other physically relevant models for self-interacting con-
tinuous paths include Brownian filaments (see [3] for a detailed definition
of these objects), motivated by turbulent fluids. We thus hope that the
scaling limit for our quantity Hh,γ(B) can shed some light on the afore-
mentioned models.

• Theorem 1.1 also exhibits an interesting phenomenon in terms of limiting
behavior. Indeed, the reader can easily observe that the limiting process
in the right-hand side of (3) does not depend on the parameter γ in
(3/4,1), the only difference lying in the normalizing quantity cγh

7/2−2γ .
Furthermore, it was shown in [6, 13] that relation (3) still holds true in
the limiting case γ = 1. This means that the process Wα, which can be
seen as a Gaussian mixture, might also be considered as a rather canonical
object.

• At a methodological level, our proof of Theorem 1.1 is another example of
the interest of stochastic calculus techniques with respect to the method
of moments in this context. We should compare our methodology, for
example, to the computationally demanding paper [2]. The advantage of
stochastic calculus methods had already been highlighted in [6, 13], but
our proof combines this approach with an extensive use of Fourier analysis
techniques.

(2) Go back now to the Hamiltonian Hh
t (B) defined by (1) and related to

L2 modulus of continuity of the Brownian local time. As mentioned above,
it has been shown in [6, 13] that h−3/2(Hh(B) − E[Hh(B)]) converges in
law to c1Wα for a universal constant c1, that is, relation (3) is still formally
satisfied for γ = 1. This noncentral limit theorem indicates that an interest-
ing phenomenon might occur as far as limiting behavior of the renormalized
quantity h−3/2(Hh(B)−E[Hh(B)]) on chaoses is concerned. We shall spec-
ify this with the following result:

Theorem 1.2. Let {Hh
t (B); t ∈ [0,1]} be the process defined by (1). For

a given random variable F ∈ L2(Ω) and for all n ≥ 0, we set Jn(F ) for

the projection of F on the nth chaos of B, and subsequently define Xn,h
t ≡

Jn(H
h
t (B)). Then:

(i) For all m≥ 0 and all t ∈ [0,1], h > 0 we have X2m+1,h
t = 0.

(ii) For all m≥ 1, we have as h tends to zero,

X2m,h

h2[ln(1/h)]1/2
(d)→ σmW with σ2m =

c(2m− 2)!

22m[(m− 1)!]2
,

where W stands for a Brownian motion independent of B and where the
convergence takes place in the space C([0,1];R) of real continuous functions
on [0,1].
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(iii) In particular, the series
∑

m≥1 σ
2
m is divergent.

Putting together the results of [6] and our Theorem 1.2, we thus get the
following picture: on the one hand, one can renormalize the process Hh(B)
by h3/2 in order to get a limit that is a mixture of Gaussian processes (a non-
central type limit theorem). On the other hand, each projection Jn(H

h(B))
can be properly renormalized (by h2[ln(1/h)]1/2) so as to obtain a limiting
object that is a weighted Brownian motion (corresponding to a central limit
theorem). Nevertheless, the sum of the weights σ2n obtained by projection
is divergent. To the best of our knowledge, this interesting limiting behav-
ior is exhibited here for the first time. Note that it contrasts, for instance,
with the situation described in [5], Theorem 3 (and more specifically in the
applications of this result), where under appropriate variance assumptions,
the normal convergence in each chaos guarantees the normal convergence of
the sum.

(3) Finally, we consider a suitable generalization of Theorem 1.2 to a
two-dimensional Brownian motion B. Namely, we shall obtain the following
convergence result.

Theorem 1.3. Let {Hh
t (B); t ∈ [0,1]} be the process defined by (1), for a

two-dimensional Brownian motion B. Like in Theorem 1.2, we define Xn,h
t

as the projection on the nth chaos of Hh
t (B). Then the assertions (i)–(iii)

of Theorem 1.2 are still valid in this situation, with (ii) replaced with the
following statement:

(ii-2d) For all m≥ 1, we have as h tends to zero,

X2m,h

|h|
(d)→ σmW,

where W stands for a linear Brownian motion independent of B, where the
exact expression of σm will be specified at Section 4.3 and where the conver-
gence takes place in the space C([0,1];R) of R-valued continuous functions
on [0,1].

It is worthwhile noting that the equivalent of the main result of [7],
namely the convergence in law of a suitably renormalized version of Hh

t (B),
is not available in the two-dimensional case. Indeed, one can formally show
that |h|−2(Hh

t (B)−E[Hh
t (B)]) converges to a random variable of the form

c2Wα, with α defined by (4) and a universal constant c2. Nevertheless, α
is a divergent quantity in the two-dimensional case and the convergence of
h−3/2(Hh

t (B)−E[Hh
t (B)]) is in fact an empty statement.

In spite of this lack of convergence, the analysis of projections on chaoses
is still a valuable information for two main reasons: (a) It indicates that a
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sort of convergence is at least possible for Hh
t (B). (b) We are able to show

that the series
∑

m≥1 σ
2
m is divergent just as in the one-dimensional case,

which seems to indicate that a noncentral limit theorem is to be expected
for the quantity (Hh

t (B)−E[Hh
t (B)]).

The methodology we have followed in order to get the results mentioned
above is based on three main ingredients: (a) Stochastic calculus is obviously
important in this Brownian context, and Itô formulae of backward type are
invoked in order to control terms of the form

∫ r
0 e

ıξ(Br−Bu) du (throughout

the paper, we will write ı for the complex number (−1)1/2). Theorem 1.1
will also be a consequence of limit theorems for martingales according to
the behavior of their bracket process. (b) An important contribution comes
from stochastic analysis techniques: our chaos decompositions are obtained
through repeated applications of Stroock’s formula and we use representa-
tions of Brownian local times by means of Watanabe distributions. We also
derive central limit theorems on chaoses by analyzing contractions of kernels
for multiple Wiener integrals, as assessed in [11, 12]. (c) After application
of the high level tools mentioned above, our results are reduced to rather
elementary (though intricate) computations, for which we resort to Fourier
analysis and thorough analysis of singularities for integrals defined on sim-
plexes. All those ingredients are detailed in the corresponding sections.

In the remainder of the paper, each section is devoted to the proof of one
of the theorems given above. Specifically, Section 2 handles the noncentral
limit Theorem 1.1 for Riesz type potentials. Section 3 is concerned with the
central limit Theorems 1.2 for L2 modulus of one-dimensional local time
on chaoses, while Section 4 deals with generalizations (Theorem 1.3) to the
two-dimensional case.

2. L
2 modulus of continuity of Brownian Riesz potentials. This section

is devoted to the proof of Theorem 1.1. We shall first reduce our problem
thanks to an application of Clark–Ocone’s formula, and then identify the
limiting process with a combination of Fourier analysis and stochastic cal-
culus tools.

2.1. Reduction of the problem. In order to proceed with our computa-
tions, let us first settle some useful notation:

Notation 2.1. The Gaussian heat kernel on R is denoted by pt(x),
namely

pt(z) = (2π)−1/2 exp

(
−z

2

2

)
, z ∈R.(5)
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For β ∈ (0,1), we call fβ :R
∗ → R

∗ the function defined by fβ(x) = |x|−β .
For β ∈ (0,1) and 0≤ r ≤ t≤ 1, we also consider the quantity

Qh,β
t,r =

∫ t

r
ds

∫ r

0
du[Kβ

s−r(Br −Bu + h)

(6)
+Kβ

s−r(Br −Bu − h)− 2Kβ
s−r(Br −Bu)],

where Kβ
u stands for the (convolved) Riesz kernel Kβ

u := fβ ∗p′u for all u≥ 0.

With these notation in mind, the Hamiltonian Hh,γ
t (B) can be expressed

as follows.

Lemma 2.2. For t ∈ [0,1], consider the quantity Hh,γ
t (B) defined by (2).

Then

Hh,γ
t (B) = cγ

∫

[0,t]2
[2fβ(Bv −Bu)

(7)
− fβ(Bv −Bu + h)− fβ(Bv −Bu − h)]dudv

with β = 2γ − 1.

Proof. Start from expression (2) and write Hh,γ
t (B) as

∫

R

(∫

[0,t]2
[fγ(Bv + x+ h)− fγ(Bv + x)]

× [fγ(Bu + x+ h)− fγ(Bu + x)]dudv

)
dx.

Next expand the product inside the integral, apply Fubini in order to inte-
grate with respect to the variable x first and apply the identity fγ ∗ fγ =
cγf2γ−1. Our claim is easily deduced from these elementary manipulations.
�

We shall now see that Theorem 1.1 can be reduced to the following.

Theorem 2.3. For every β ∈ (1/2,1], consider the process Qh,β defined
by (6). Then the following limit as h tends to zero holds true in the space
C([0,1];R) of real continuous functions on [0,1]:

Q̃h

h5/2−β

(d)→ cβWα where Q̃h
t :=

∫ t

0
Qh,β

t,r dBr.(8)

Here, cβ is a deterministic constant depending only on β, and the process
Wα has been introduced at equation (3).
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Proof of the equivalence between Theorems 1.1 and 2.3. Fol-
lowing expression (7), set

Hβ
t (B) =−

∫

[0,t]2
[2fβ(Bv −Bu)− fβ(Bv −Bu +h)− fβ(Bv −Bu −h)]dudv.

Then Lemma 2.2 asserts that Theorem 1.1 is proved once we can show that
the process h−(7/2−2γ)(Hβ(B)−E[Hβ(B)]) converges in law to cβWα for a
strictly positive constant cβ . It is obviously easier to express everything in

terms of β = 2γ−1, so that we are reduced to show that h−(5/2−β)(Hβ(B)−
E[Hβ(B)]) converges in law to cβWα. It should also be observed that if
γ ∈ (3/4,1) then β lies into (1/2,1).

Now along the same lines as in [6], a direct application of Clark–Ocone

formula enables to express Hβ
t (B) in the following way:

Hβ
t (B)−E[Hβ

t (B)] =

∫ t

0
Qh,β

t,r dBr,

where the process Qh,β is defined at Notation 2.1. This finishes the proof of
our equivalence. �

With this equivalence in hand, the remainder of the section is now devoted
to the proof of Theorem 2.3. As mentioned in the Introduction, our strategy
to show this result makes use of some convenient simplifications offered by
a Fourier-transform version of the problem. As a last preliminary step, let

us thus write an alternative expression for the quantity Qh,β
t,r :

Lemma 2.4. Let β ∈ (1/2,1) and 0≤ r≤ t≤ 1. Then

Qh,β
t,r =

4ı

π

∫

R

[
(1− e−(1/2)ξ2(t−r))ψ(hξ)

ξ

|ξ|3−β

∫ r

0
eıξ(Br−Bu) du

]
dξ,(9)

where ψ :R→R stands for the function defined by ψ(ξ) := sin2(ξ/2).

Proof. It is well known that for all x ∈R
∗ we have

Kβ
t (x) =− ı

2π

∫

R

eıξx
ξ

|ξ|1−β
e−(tξ2)/2 dξ.

Plugging this identity into (6) and applying Fubini’s theorem, we get

− ı

2π

∫

R

[(∫ t

r
e−((s−r)ξ2)/2 ds

)∫ r

0

ξ

|ξ|1−β
eıξ(Br−Bu)(eıξh + e−ıξh − 2)du

]
dξ

from which identity (9) is easily deduced. �

We now start by identifying the main contribution in the quantity
∫ t
0 Q

h,β
t,r dBr

appearing in (8) by means of our Fourier representation (9).
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2.2. Elimination of some negligible terms. The first term which might

yield a negligible contribution in Q̃h is given by the small exponential term

e−((t−r)ξ2)/2 in expression (9). We thus set Qh,β
t,r =Qh,β,1

r −Ah
t,r, with

Qh,β,1
r =

4ı

π

∫

R

[
ψ(hξ)

ξ

|ξ|3−β

∫ r

0
eıξ(Br−Bu) du

]
dξ,(10)

Ah
t,r =

4ı

π

∫

R

[
e−(1/2)ξ2(t−r)ψ(hξ)

ξ

|ξ|3−β

∫ r

0
eıξ(Br−Bu) du

]
dξ.(11)

Then the following proposition identifies a first vanishing term.

Proposition 2.5. Let Ah be the process defined by (11), and for t ∈
[0,1] set

Ãh
t :=

1

h5/2−β

∫ t

0
Ah

t,r dBr.

Then we have:

(i) For every fixed t ∈ [0,1], Ãh
t → 0 in L2(Ω) as h tends to zero.

(ii) There exist p≥ 1 and α> 0 such that for all 0≤ s < t≤ 1 and every
h ∈ (0,1),

E[|Ãh
t − Ãh

s |2p]≤ cph
2p(β−(1/2))|t− s|1+α

for some constant cp depending only on p.

(iii) As a consequence, we have Ãh (d)→ 0 in C([0,1];R) as h tends to zero.

Proof. Let us prove the three items separately:

(i) Consider a given t ∈ [0,1]. One has

E

[(∫ t

0
Ah

t,r dBr

)2]

= 2

∫ t

0
dr

∫

R

dξ

∫

R

dη

∫ r

0
dv

∫ v

0
du
ξe−(1/2)ξ2(t−r)ψ(hξ)

|ξ|3−β

× ηe−(1/2)η2(t−r)ψ(hη)

|η|3−β

×E[eı(ξ+η)(Br−Bv)+ıη(Bv−Bu)].

Furthermore, for u < v < r < t we have

0≤E[eı(ξ+η)(Br−Bv)+ıη(Bv−Bu)] = e−((ξ+η)2/2)(r−v)e−(η2/2)(v−u) ≤ e−(η2/2)(v−u).
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Now integrate this inequality in u and invoke the fact that ψ(z) ≤ cz2 in
order to get

E

[(∫ t

0
Ah

t,r dBr

)2]
≤ ch4

∫ t

0
dr

∫ r

0
dv

∫

R

dξ

∫

R

dη ℓtr,v(ξ, η),(12)

where

ℓtr,v(ξ, η)≡ e−(1/2)ξ2(t−r)e−(1/2)η2(t−r) |ξ|β
|η|2−β

{1− e−(η2/2)v}.

To see that the integral in the right-hand side of (12) is indeed finite, observe

first that
∫
R
e−(a/2)ξ2 |ξ|β dξ = cβa

−(1+β)/2 for any a > 0 and β ∈ (0,1). Thus,
∫

R

dξ

∫ 1

−1
dηℓtr,v(ξ, η)≤ c

∫

R

e−(1/2)ξ2(t−r)|ξ|β dξ
∫ 1

−1
|η|β dη

≤ c

∫

R

dξe−(1/2)ξ2(t−r)|ξ|β

≤ c

|t− r|(1+β)/2
.

In the same way, since β ∈ (0,1) we also have
∫

R

dξ

∫

|η|≥1
dηℓtr,v(ξ, η)≤ c

∫

|η|≥1
|η|−(2−β) dη

∫

R

e−(1/2)ξ2(t−r)|ξ|β dξ

≤ c

|t− r|(1+β)/2
.

Plugging these estimates into (12) and taking into account the fact that
β ∈ (0,1), we end up with

E

[(∫ t

0
Ah

t,r dBr

)2]
≤ ct,βh

4

∫ t

0

dr

|t− r|(1+β)/2
≤ ct,βh

4,

which yields our first claim (i).

(ii) In order to bound the increment Ãh
t − Ãh

s , set

kh,t(ξ) := e−(1/2)ξ2tψ(hξ)
ξ

|ξ|3−β
.

Then it is readily checked that

Ãh
t − Ãh

s =
1

h5/2−β

∫ t

s
dBr

∫

R

dξkh,t−r(ξ)

∫ r

0
eıξ(Br−Bu) du

+
1

h5/2−β

∫ s

0
dBr

∫

R

dξ[kh,t−r(ξ)− kh,s−r(ξ)]

∫ r

0
eıξ(Br−Bu) du(13)

:= Ãh,1
s,t + Ãh,2

s,t .
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Consider first Ãh,1
s,t and write

Ãh,1
s,t =

1

h5/2−β

∫ t

s
Ht,r dBr with Ht,r :=

∫

R

dξkh,t−r(ξ)

∫ r

0
eıξ(Br−Bu) du.

By using successively Burkholder–Davies–Gundy and Cauchy–Schwarz in-
equalities, we get

E[|Ãh,1
s,t |2p]≤

cp

h(5−2β)p

(∫ t

s
E[|Ht,r|2p]1/p dr

)p

,(14)

with

E[|Ht,r|2p] = cp

∫

R2p

dξ1 · · · dξ2p
∫

0<u1<···<u2p<r
du1 · · · du2p

×
2p∏

j=1

kh,t−r(ξj)E[eıξj(Br−Buj )],

which can also be expressed as

E[|Ht,r|2p] = cp

∫

R2p

dξ1 · · · dξ2p
∫

0<u1<···<u2p<r
du1 · · · du2p

×
2p∏

j=1

kh,t−r(ξj)e
−(1/2)ξ21 (u2−u1)

× e−(1/2)(ξ1+ξ2)2(u3−u2) · · · e−(1/2)(ξ1+···+ξ2p)2(r−u2p).

We can then rely on the uniform estimate

|kh,t−r(ξi)| ≤ ch2e−(1/2)ξ2i (t−r)|ξi|β ≤ c
h2

|t− r|β/2
and the fact that∫

R

dξ1e
−(1/2)ξ21 (u2−u1)

∫

R

dξ2e
−(1/2)(ξ1+ξ2)2(u3−u2) · · ·

×
∫

R

dξ2pe
−(1/2)(ξ1+···+ξ2p)2(r−u2p)

=

∫

R

dξ1e
−(1/2)ξ21 (u2−u1)

∫

R

dξ2e
−(1/2)ξ22 (u3−u2) · · ·

∫

R

dξ2pe
−(1/2)ξ22p(r−u2p)

= cp(u2 − u1)
−1/2(u3 − u2)

−1/2 · · · (r− u2p)
−1/2

in order to get

E[|Ht,r|2p]≤
cph

4prp

|t− r|βp .
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Plugging this estimate into (14), we end up with

E[|Ãh,1
s,t |2p]≤ cph

2p(β−1/2)|t− s|(1−β)p.(15)

The bound for Ãh,2
s,t can be derived from a similar procedure. Observe, for

instance, that

|kh,t−r(ξ)− kh,s−r(ξ)| ≤ h2|e−(1/2)ξ2(t−r) − e−(1/2)ξ2(s−r)||ξ|β

≤ ch2|t− s|ε|s− r|(1−ε)/2

and invoking this bound for ε := (1− β)/3 one obtains that inequality (15)

also holds true for Ãh,2
s,t . Going back to (13), we see that the bounds on

Ãh,1
s,t and Ãh,2

s,t easily yield our claim (ii). Assertion (iii) is now a standard
consequence of (i) and (ii). �

Let us go back to expression (9), as well as the decomposition (10) and (11)

for Qh,β. Proposition 2.5 allows to reduce our study to an analysis of Q̃h,β,1

defined by Q̃h,β,1
t = h−(5/2−β)

∫ t
0 Q

h,β,1
r dBr, where Q

h,β,1 is given by (10). In

order to identify another negligible term within Q̃h,β,1, let us resort to Itô’s
formula applied to the (backward) Brownian motion B̂r = {Br−Bu; 0≤ u≤
r} and f(x) := eıξx. This gives

∫ r

0
eıξ(Br−Bu) du=−2(eıξBr − 1)

ξ2
+

2ı

ξ

∫ r

0
eı(Br−Bu) dB̂r

u(16)

and plugging this identity into (10) we get Qh,β,1
r =Dh

r −Qh,β,2
r , with

Dh
r =

8ı

π

∫

R

[
ξψ(hξ)

|ξ|5−β
(eıξBr − 1)

]
dξ,(17)

Qh,β,2
r =

8

π

∫

R

[
ψ(hξ)

|ξ|3−β

∫ r

0
eıξ(Br−Bu) dB̂r

u

]
dξ.(18)

We now prove the following proposition.

Proposition 2.6. Let Dh be the process defined by (17), and for t ∈
[0,1] set

D̃h
t :=

1

h5/2−β

∫ t

0
Dh

r dBr.

Then the conclusions of Proposition 2.5 hold true for D̃h.

Proof. The proof goes along the same lines as for Proposition 2.5, and
is left to the reader for the sake of conciseness. Let us just highlight the
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following decomposition:

E[(D̃h
t )

2]≤ ch2β−1

∫ t

0
E

2[B2
r ]dr

(∫ 1

−1

dξ

|ξ|1−β

)2

+ ch2β−1

(∫

|ξ|≥1

dξ

|ξ|2−β

)2

,

which allows us to conclude that limh→0E[(D̃h
t )

2] = 0 since 1/2< β < 1. �

Remark 2.7. With Propositions 2.5 and 2.6 in hand, Theorem 2.3 now
boils down to the following property:

Mh

h5/2−β

(d)→ cβWα in C([0,1];R) with Mh
t :=

∫ t

0
Qh,β,2

r dBr,(19)

where Qh,β,2 is the process defined by (18). It should be observed thatMh is
now a Brownian martingale, for which specific limit theorems are available.

2.3. Study of the martingale term. Similar to the argument used in [6,
7, 13], our strategy toward (19) is now based on the martingale convergence
criterion summed up in [4], Theorem A.1. Using the latter result, the proof
of (19) reduces to showing that, as h→ 0, we have simultaneously

〈Mh,B〉t
h5/2−β

→ 0 and
〈Mh〉t
h5−2β

→ cβαt(20)

in L2(Ω) for every fixed t ∈ [0,1], with αt defined by (4).
To this aim, let us start by recastingMh in a suitable way. Indeed, thanks

to a stochastic Fubini theorem we have

Qh,β,2
r

h5/2−β
=

∫ r

0
gh(Br −Bu)dB̂

r
u,(21)

where

gh = gβh :=F(fh) with fh(ξ) = fβh (ξ) :=
1

h5/2−β

ψ(hξ)

|ξ|3−β
.(22)

In the course of the reasoning, we shall appeal to the following key properties
of gh:

Lemma 2.8. It holds that:

(i) For some cβ independent of h, we have
∫
R
gh(x)

2 dx= cβ > 0.
(ii) Recalling that pt stands for the Gaussian heat kernel defined by (5),

we have for every t ∈ (0,1]:

∫

R

gh(x)pt(x)dx≤ chβ−1/2

tβ/2
.(23)
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(iii) The function gh can also be written as

gh(x) =
c

h5/2−β

∫ x+h

x−h

(h− |x− y|)
|y|β dy.(24)

In particular, gh(−x) = gh(x) and gh(x)≥ 0 for all x ∈R.
(iv) For every ε > 0 such that β > 1/2 + ε, every h ≤ 1/4 and every

|x| ≥
√
h,

gβh(x)≤ chε/2gβ−ε
h (x).(25)

Proof. By Fourier isometry,

‖gh‖2L2 = ‖fh‖2L2 =
1

h5−2β

∫

R

ψ2(hξ)

|ξ|6−2β
dξ =

∫

R

ψ2(ξ)

|ξ|6−2β
dξ,

which gives (i). In order to prove (ii) use Fourier isometry again, which
according to (22) yields

∫

R

gh(x)pt(x)dx=
c

h5/2−β

∫

R

ψ(hξ)

|ξ|3−β
e−(tξ2)/2 dξ

≤ chβ−1/2

∫

R

e−(tξ2)/2

|ξ|1−β
dξ ≤ chβ−1/2

tβ/2
.

For (iii), observe that

fh(ξ) = h1/2ϕ(hξ) with ϕ(u) =
sinc2(u)

|u|1−β
,

where the sinc function refers to sinc(x) = sin(x)
x . Thus, using the fact

F(sinc2(·))(ξ) = 1[−1,1](ξ)(1− |ξ|), we get

gh(ξ) =F(fh)(ξ) =
1

h1/2
F(ϕ)

(
ξ

h

)
=

1

h1/2
[F(| · |−1+β) ∗ F(sinc2(·))]

(
ξ

h

)

=
c

h1/2

∫ (ξ/h)+1

(ξ/h)−1

dy

|y|β
(
1−

∣∣∣∣
ξ

h
− y

∣∣∣∣
)
,

which clearly leads to (24).
Now we can use (24) in order to prove (iv): for x >

√
h, write

gβh(x) = chε
1

h5/2−(β−ε)

∫ x+h

x−h

h− |x− y|
|y|ε|y|β−ε

dy ≤ chεgβ−ε
h (x)

|x− h|ε ≤ chε/2gβ−ε
h (x),

since |x− h| ≥ 1
2

√
h. By symmetry of gh, this completes our proof. �

Let us develop now the strategy for the convergence of the martingale
term, which has been summarized in (20). We shall prove the first claim
of (20), namely the following.
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Proposition 2.9. For all t ∈ [0,1], the martingale term Mh satisfies

E[〈Mh,B〉2t ]
h5−2β

≤ cth
β−1/2,

where ct is a uniformly bounded function of t ∈ [0,1].

Proof. According to (19) and (21), one has

〈Mh,B〉t
h5/2−β

=

∫ t
0 Q

β,h,2
r dr

h5/2−β
=

∫ t

0
dr

∫ r

0
dB̂r

ugh(Br −Bu).

Hence,

E[〈Mh,B〉2t ]
h5−2β

= 2

∫ t

0
dr1

∫ r1

0
dr2

∫ r2

0
duE[gh(Br1 −Bu)gh(Br2 −Bu)]

and furthermore,

E[gh(Br1 −Bu)gh(Br2 −Bu)]

=E[gh ∗ pr1−r2(Br2 −Bu)gh(Br2 −Bu)]

=

∫

R

dξ[gh ∗ pr1−r2 ](ξ)gh(ξ)pr2−u(ξ)≤ c‖gh ∗ pr1−r2‖∞
hβ−1/2

√
r2 − u

,

thanks to (23). In addition, ‖gh ∗ pr1−r2‖∞ ≤ ‖gh‖L2‖pr1−r2‖L2 ≤ c|r1 −
r2|−1/4, and thus

E[〈Mh,B〉2t ]
h5−2β

≤ chβ−1/2

∫ t

0
dr1

∫ r1

0
dr2|r1 − r2|−1/4

∫ r2

0
du|r2 − u|−1/2

from which our claim is easily deduced. �

Before we proceed with the proof of (20), let us label a technical lemma
on Brownian local times.

Lemma 2.10. Let {Lt(a); t ∈ [0,1], a ∈ R} be the local time process of
Brownian motion on the interval [0,1]. Then there exist ε > 0 and a strictly
positive constant c such that

sup
x∈R,t∈[0,1]

E[|Lt(x+Bt)|2]≤ c

and

sup
t∈[0,1]

E

[
sup

|x−y|<h1/2

|Lt(x)−Lt(y)|2
]
≤ chε.
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Proof. By applying Tanaka’s formula to the backward Brownian mo-
tion B̂, we get, for all x ∈R,

|Lt(x+Bt)| ≤ 2|Bt|+2

∣∣∣∣
∫ t

0
1{B̂t

s<−x} dB̂
t
s

∣∣∣∣(26)

and the first assertion immediately follows. The second assertion of our
lemma can be derived from [1], item (ii). �

We are now ready to prove the second part of assertion (20), that is, the
following proposition.

Proposition 2.11. Let t be an arbitrary time in [0,1]. Then we have:

L2(Ω)− lim
h→0

〈Mh〉t
h5−2β

= cβαt,(27)

where α is the self-intersection local time defined by (4).

Proof. Let us start by applying again the backward Itô formula (16)
in order to get the decomposition

〈Mh〉t =
∫ t

0
dr

(∫ r

0
dB̂r

ugh(Br −Bu)

)2

:=Nh,1
t +Nh,2

t

with

Nh,1
t =

∫ t

0
dr

∫ r

0
du[gh(Br −Bu)]

2,

Nh,2
t = 2

∫ t

0
dr

∫ r

0
dB̂r

u

(
gh(Br −Bu)

∫ r

u
dB̂r

sgh(Br −Bs)

)
.

We shall now divide our proof in two steps.

Step 1. Nh,2 vanishes as h→ 0. Specifically, we shall prove that L2(Ω)−
limh→0N

h,2
t = 0. Indeed, it is readily checked that

E

[(∫ t

0
dr

∫ r

0
dB̂r

u

(
gh(Br −Bu)

∫ r

u
dB̂r

sgh(Br −Bs)

))2]

= 2

∫ t

0
ds

∫ t

s
du

∫ t

u
dr1

∫ r1

u
dr2E[gh(Br1 −Bs)gh(Br1 −Bu)(28)

× gh(Br2 −Bs)gh(Br2 −Bu)].

Furthermore, using the fact that gh is positive (Lemma 2.8(iii)), we have,
for fixed 0< s < u< r2 < r1 < t,

E[gh(Br1 −Bs)gh(Br1 −Bu)|Fr2 ]
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=

∫

R

gh(x+Br2 −Bs)gh(x+Br2 −Bu)pr1−r2(x)dx

≤ ‖pr1−r2‖∞‖gh‖2L2 ≤
c√

r1 − r2
,

where we have used Lemma 2.8(i), and

E[gh(Br2 −Bs)gh(Br2 −Bu)]

=E[gh(Br2 −Bu)(g ∗ pu−s)(Br2 −Bu)]

≤ ‖gh ∗ pu−s‖∞
∫

R

gh(x)pr2−u(x)dx

≤ c‖gh‖L2‖pu−s‖L2
hβ−1/2

√
r2 − u

with the help of Lemma 2.8(ii). Going back to (28), the result easily follows.

Step 2. Limit of Nh,1. We will show the following property:
∫ t

0
dr

∫ r

0
du[gh(Br −Bu)]

2 h→0−→ cβ

∫ t

0
drLr(Br) in L2(Ω),(29)

where cβ is the constant defined at Lemma 2.8. To this aim, observe that
according to the occupation density formula we have

∆h :=

∫ t

0
dr

∫ r

0
du[gh(Br −Bu)]

2 − cβ

∫ t

0
drLr(Br) =

∫ t

0

(∫

R

Zr(x)dx

)
dr,

where Z is the process defined by

Zr(x) = gh(Br − x)2[Lr(x)−Lr(Br)].

Next, we decompose ∆h as ∆1
h +∆2

h, where

∆1
h =

∫ t

0

(∫

|x−Br|<h1/2

Zr(x)dx

)
dr

and

∆2
h =

∫ t

0

(∫

|x−Br|≥h1/2

Zr(x)dx

)
dr.

We now estimate those two terms separately.
The term ∆1

h can be bounded as follows: owing to Lemma 2.8(i), we have

∆1
h ≤ c

∫ t

0
sup

|x−y|<h1/2

|Lr(x)−Lr(y)|dr.
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Owing to Lemma 2.10, we thus get

E[|∆1
h|2]≤ c sup

t∈[0,1]
E

[
sup

|x−y|<h1/2

|Lt(x)−Lt(y)|2
]
≤ chε

for some constant ε ∈ (0,1).
As far as ∆2

h is concerned, invoke Lemma 2.8(iv) in order to conclude that
for any ε > 0 such that β > 1

2 + ε and every h≤ 1/4, we have

E[|∆2
h|2]≤ chε

∫ t

0
E

[(∫

|x−Br|≥h1/2

|gβ−ε
h (x−Br)|2|Lr(x)−Lr(Br)|dx

)2]
dr

≤ chε
∫ t

0
E

[∫

R

|gβ−ε
h (x−Br)|2|Lr(x)−Lr(Br)|2 dx

]
dr ≤ chε,

where we have appealed to Lemma 2.10 for the last inequality.

Step 3. Conclusion. Putting together the bounds on ∆1
h and ∆2

h, we have
proved our assertion (29), which easily yields

L2(Ω)− lim
h→0

〈Mh〉t
h5−2β

= cβ

∫ t

0
Lr(Br)dr.

In order to prove (27), we now just have to observe that
∫ t

0
Lr(Br)dr =

∫ t

0

(∫ r

0
δBr (Bu)du

)
dr =

∫ t

0

(∫ r

0
δ0(Br −Bu)du

)
dr = αt.

This completes our proof. �

3. L
2 modulus of one-dimensional local time on chaoses. In this section,

we go back to the study of the L2 modulus of the Brownian local time, that
is, to the study of the quantity Hh

t (B) defined by (1) with the global aim of
proving Theorem 1.2. Before we go on with the proof, let us introduce some
additional notation.

Notation 3.1. For any t > 0 and n≥ 1, we write Sn
t for the simplex of

order n on [0, t], that is, Sn
t = {(t1, . . . , tn) ∈ [0, t]n : t1 < · · ·< tn}. For every

n≥ 2 and every h > 0, we also define a function Φh(t1, t2) as

Φh(t1, t2) = Φh,n(t1, t2) :=

∫ h

0
p
(n−2)
t2−t1 (y)(h− y)dy, 0≤ t1 ≤ t2 ≤ t.

From the classical uniform estimate supy∈R |p(2m)
t (y)| ≤ cmt

−m−(1/2), we
can already derive the following bounds on Φh,2m, which will be used in the
course of our reasoning.
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Lemma 3.2. Fix m≥ 1. Then there exists a constant cm such that for
every h ∈ (0,1) and all 0≤ t1 < s< t < t2, one has

|Φh,2m(s, t)| ≤ cmh
2|t− s|−m+(1/2)(30)

and for any λ ∈ (0,1),

|Φh,2m(t1, t)−Φh,2m(t1, s)| ≤ cmh
2|t− s|λ|s− t1|−m+(1/2)−λ,(31)

|Φh,2m(t, t2)−Φh,2m(s, t2)| ≤ cmh
2|t− s|λ|t2 − t|−m+(1/2)−λ.(32)

The proof of Theorem 1.2 is decomposed in four main steps: after some
preliminary material, we write an explicit chaos decomposition for each
Hh

t (B). Then we study the asymptotic behavior of the variance in each
chaos, and the central limit theorem for the finite-dimensional distributions
of Jn(H

h
. (B)) is obtained by analyzing the contractions of its sequence of

kernels. Finally, we study the tightness of the process {Jn(Hh
t (B)); t ∈ [0,1]}

properly normalized.

3.1. Stochastic analysis preliminaries. We will consider here the Brown-
ian motion B as an isonormal processB ≡ {B(h);h ∈H} defined on (Ω,F ,P),
with H= L2([0,1]). Recall that it means that B is a centered Gaussian fam-
ily with covariance function E[B(h1)B(h2)] = 〈h1, h2〉H. We also assume that
F is generated by B.

At this point, we can introduce the Malliavin derivative operator on the
Wiener space (Ω,H,P). Namely, we first let S be the family of smooth
functionals F of the form

F = f(B(h1), . . . ,B(hn)),

where h1, . . . , hn ∈H, n≥ 1, and f is a smooth function having polynomial
growth together with all its partial derivatives. Then the Malliavin derivative
of such a functional F is the H-valued random variable defined by

DF =
n∑

i=1

∂f

∂xi
(B(h1), . . . ,B(hn))hi.

For all p > 1, it is known that the operator D is closable from Lp(Ω) into
Lp(Ω;H). We still denote by D the closure of this operator, whose domain is
usually denoted by D

1,p and is defined as the completion of S with respect
to the norm

‖F‖1,p := (E[|F |p] +E[‖DF‖pH])
1/p.

We shall also denote by D
∞,p the intersection

⋂
k≥1D

k,p.
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Consider the nth Hermite polynomial Hn defined on R, that is,

Hn(x) =
(−1)n

n!
ex

2/2∂nxe
−x2/2(33)

and let Hn be the closed linear subspace of L2(Ω) generated by the random
variables {Hn(B(h));h ∈H,‖h‖H = 1}. Then Hn is called Wiener chaos of
order n, and L2(Ω) can be decomposed into the orthogonal sum of the Hn:
we have L2(Ω,F ,P) =

⊕∞
n=0Hn (see [10], Theorem 1.1.1). In the sequel, we

denote by Jn(F ) the projection of a given random variable F ∈ L2(Ω) onto
Hn for n ≥ 0, with J0(F ) = E[F ]. In this context, Stroock’s formula (see
[14]) states that, whenever F ∈ D

∞,2, one can compute Jn(F ) explicitly as
follows for n≥ 1:

Jn(F ) = In(fn) with fn(t1, . . . , tn) =
E[Dt1,...,tnF ]

n!
,(34)

where In(fn) stands for the multiple Itô–Wiener integral of fn with respect
to B. We also label the value of H2m(0) here for further use: for m≥ 1, we
have

H2m(0) =
(−1)m

2mm!
.(35)

Let now fn be a symmetric function in L2([0,1]n). The contraction of
order p of fn is the function defined on [0,1]2(n−p) as follows:

[fn ⊗p fn](t1, . . . , t2(n−p))

=

∫

[0,1]p
fn(u1, . . . , up, t1, . . . , tn−p)(36)

× fn(u1, . . . , up, tn−p+1, . . . , t2(n−p))du1 · · · dup.
With this definition in hand, let us state the following theorem (borrowed
from [11]), which will be crucial in order to establish the convergence of our
renormalized local times.

Proposition 3.3. Let {Fh = In(fn,h);h > 0} be a family of random
variables belonging to a fixed Wiener chaos Hn, for which we assume that
the kernels fn,h are symmetric. We also suppose that:

(i) We have limh→0E[F 2
h ] = σ2 > 0.

(ii) For all p ∈ {1, . . . , n−1}, the relation limh→0 ‖fn,h⊗p fn,h‖H⊗2(n−p) =
0 holds true.

Then Fh converges in law to a Gaussian random variable N (0, σ2) as
h→ 0.

In order to obtain convergence in law for processes, we shall also invoke a
CLT for multidimensional vectors in a fixed chaos, originally proved in [12]:
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Proposition 3.4. Consider a family of d-dimensional random variables
{Fh;h > 0} with Fh = (F 1

h , . . . , F
d
h ), such that F j

h belongs to a fixed Wiener
chaos Hn for each j ∈ {1, . . . , d} and h > 0. Suppose furthermore that for a
symmetric matrix Γ we have:

(i) Each F j
h converges in law to a Gaussian random variable N (0,Γ(i, i))

as h→ 0.
(ii) For each (i, j) ∈ {1, . . . , d}2, one has limh→0E[F i

hF
j
h ] = Γ(i, j).

Then Fh converges in law to a Gaussian random variable N (0,Γ) as
h→ 0.

3.2. Chaos decomposition of Hh
t (B). In order to compute the chaos de-

composition of Hh
t (B), we first recall a relation taken from [6], whose proof

is similar to our identity (7): we have

Hh
t (B) =

∫

[0,t]2
[δ0(Bv −Bu + h)

(37)
+ δ0(Bv −Bu − h)− 2δ0(Bv −Bu)]dudv,

where δ0(Bv −Bu+h) has to be understood as a distribution on the Wiener
space in the sense of Watanabe (see [16]). One can also show that the right-
hand side of (37) is the L2(Ω)-limit of the sequence obtained by replacing
δ0 with the Gaussian approximating kernel pε (see [6], Section 2, for further
details).

Let us also give an elementary yet useful lemma.

Lemma 3.5. Let pt be the Gaussian kernel defined by (5), and N be a
real valued random variable such that N ∼N (h,σ2) with h ∈R and σ2 > 0.
Then for all n≥ 0, we have

E[p
(n)
t (N)] = p

(n)
t+σ2(h).(38)

Proof. Taking into account the analytic form of expected values with

respect to N , we have E[p
(n)
t (N)] = [p

(n)
t ∗ pσ2 ](h). Furthermore, elementary

relations for convolutions and the semigroup property for p yield:

p
(n)
t ∗ pσ2 = [pt ∗ pσ2 ](n) = p

(n)
t+σ2

from which relation (38) is easily deduced. �

Recall now that the projection Jn(F ) of a L2 random variable F onto a
fixed chaos Hn has been defined at Section 3.1. For our Hamiltonian Hh

t (B),
we get the following.
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Proposition 3.6. For every n≥ 1 and every h > 0, recall that we have

set Xn,h
t = Jn(H

h
t (B)) for the projection of Hh

t (B) onto the nth Wiener
chaos. Then we have

Xn,h
t = 0 if n is odd,

(39)

Xn,h
t =

16

n!
In((fh + gh,t) · 1[0,t]n) if n is even,

where fh ∈L2(Rn
+), gh,t ∈ L2([0, t]n) are the symmetric functions defined by

fh(t1, . . . , tn) := Φh(min(t1, . . . , tn),max(t1, . . . , tn)),(40)

gh,t(t1, . . . , tn) :=−Φh(min(t1, . . . , tn), t) + Φh(0, t)
(41)

−Φh(0,max(t1, . . . , tn))

and where we recall that the function Φh has been defined at Notation 3.1.

Proof. We divide this proof in two steps:

Step 1. Computation of the projection. Let us first compute the chaos
decomposition of δ0(Bv −Bu+h). To this aim, recall that, as a distribution
on the Wiener space (see [16]), we have δ0(Bv −Bu + h) = limε→0 pε(Bv −
Bu + h) for the Gaussian kernel pε defined at (5). Furthermore, according
to Stroock’s formula (34), we have Jn(pε(Bv −Bu + h)) = In(ϕ

ε
n) with

ϕε
n(t1, . . . , tn) =

1

n!
E[Dt1,...,tnpε(Bv −Bu + h)]

=
1

n!
E[p(n)ε (Bv −Bu + h)]

n∏

i=1

1[u,v](ti).

We now compute E[p
(n)
ε (Bv − Bu + h)] by means of formula (38), which

yields

ϕε
n(t1, . . . , tn) =

p
(n)
v−u+ε(h)

n!

n∏

i=1

1[u,v](ti).

Taking limits as ε→ 0, we end up with Jn(δ0(Bv−Bu+h)) = In(ϕn), where

ϕn(t1, . . . , tn) =
p
(n)
v−u(h)

n!

n∏

i=1

1[u,v](ti).

The same kind of computations is valid for δ0(Bv−Bu−h) and δ0(Bv−Bu),
and thus going back to (37), we have obtained

Xn,h
t = Jn(H

h
t (B))

=
2

n!
In

(∫

S2
t

n∏

i=1

1[u,v](ti)[p
(n)
v−u(h) + p

(n)
v−u(−h)− 2p

(n)
v−u(0)]dudv

)
,
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where we recall that S2
t stands for the simplex of order 2 on [0, t] (see

Notation 3.1). Moreover, observe that p
(n)
v−u(h) + p

(n)
v−u(−h) − 2p

(n)
v−u(0) ≡ 0

when n is odd, which yields the first claim in (39). Therefore, only even ns
are considered from now on.

Step 2. Simplification of the expression for the projection. Notice first
that, since we are dealing with a linear Brownian motion B, one can write

Xn,h
t as

Xn,h
t = 2

∫

Sn
t

(∫

S2
t

n∏

i=1

1[u,v](ti)[p
(n)
v−u(h) + p

(n)
v−u(−h)

− 2p
(n)
v−u(0)]dudv

)
dBt1 · · · dBtn(42)

= 2

∫

Sn
t

(∫ t1

0

∫ t

tn

[p
(n)
v−u(h) + p

(n)
v−u(−h)− 2p

(n)
v−u(0)]dv du

)
dBt1 · · · dBtn .

Let us transform now the expression p
(n)
v−u(h) + p

(n)
v−u(−h)− 2p

(n)
v−u(0). First,

since n is an even number and p is symmetric, we have

p
(n)
v−u(h) + p

(n)
v−u(−h)− 2p

(n)
v−u(0) = 2[p

(n)
v−u(h)− p

(n)
v−u(0)].

Then write

p
(n)
v−u(h)− p

(n)
v−u(0) =

∫ h

0
p
(n+1)
v−u (x)dx=

∫ h

0

∫ x

0
p
(n+2)
v−u (y)dy dx

= 2

∫ h

0

∫ x

0
∂vp

(n)
v−u(y)dy dx,

which yields
∫ t1

0
du

∫ t

tn

dv[p
(n)
v−u(h)− p

(n)
v−u(0)]

= 2

∫ t1

0
du

∫ t

tn

dv

∫ h

0
dx

∫ x

0
dy ∂vp

(n)
v−u(y)

= 2

∫ t1

0
du

∫ h

0
dx

∫ x

0
dy[p

(n)
t−u(y)− p

(n)
tn−u(y)]

=−4

∫ t1

0
du

∫ h

0
dx

∫ x

0
dy[∂up

(n−2)
t−u (y)− ∂up

(n−2)
tn−u (y)]

=−4

∫ h

0
[p

(n−2)
t−t1 (y)− p

(n−2)
tn−t1 (y)− p

(n−2)
t (y) + p

(n−2)
tn (y)](h− y)dy.
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Plugging this expression into (42) and symmetrizing again, relation (39)
easily follows. �

3.3. Asymptotic behavior of the variance. In this section, we compute
the correct amount of normalization needed for the convergence of each

X2m,h
t = J2m(Ht(B)) for m≥ 1. This will be obtained thanks to an asymp-

totic analysis of the variance of those random variables and recall that we

have shown that X2m,h
t = 16

(2m)!I2m((fh+ gh,t) ·1[0,t]2m), which means in par-

ticular that

E[X2m,h
t X2m,h

s ]
(43)

=
162

(2m)!
〈(fh + gh,t) · 1[0,t]2m , (fh + gh,s) · 1[0,s]2m〉L2(R2m

+ ).

Our aim is to prove the following.

Proposition 3.7. Fix m≥ 1. Then for all 0≤ s≤ t≤ 1, it holds that

lim
h→0

E[X2m,h
t X2m,h

s ]

h4 ln(1/h)
= σ2ms with σ2m =

c(2m− 2)!

22m[(m− 1)!]2
(44)

for some strictly positive universal constant c.

The strategy for the proof of Proposition 3.7 is rather simple. Namely,
with the expression (43) in mind, our calculations will be decomposed into
the following facts:

• The norm ‖gh,t‖2L2([0,t]2m) is of order at most h4 as h tends to 0, and thus

is negligible with respect to h4 ln(1/h).
• The quantity 〈fh · 1[0,t]2m , fh · 1[0,s]2m〉L2(R2m

+ ) scales as in relation (44).

Let us thus start by identifying the negligible terms.

Lemma 3.8. Fix m≥ 1, and recall that for every t > 0, gh,t = gh,t,2m is
defined by (41). Then there exists a constant cm such that for every h > 0,

sup
t∈[0,1]

‖gh,t‖2L2([0,t]2m) ≤ cmh
4.

Proof. Write

‖gh,t‖2L2([0,t]2m)

= (2m)!

∫

S2m
t

[Φh(t1, t)−Φh(0, t) +Φh(0, t2m)]2 dt1 · · · dt2m
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≤ cm

{∫

[0,t]
(t− t1)

2m−1Φh(t1, t)
2 dt1

+ t2mΦh(0, t)
2 +

∫

[0,t]
t2m−1
2m Φh(0, t2m)2 dt2m

}

and the bound is then easily derived from (30). �

We can now turn to the proof of the main proposition of this section.

Proof of Proposition 3.7. Thanks to Lemma 3.8, we only have to
focus on

Ah(s, t)≡ 〈fh · 1[0,t]2m , fh · 1[0,s]2m〉L2(R2m
+ ).

An easy integration over the simplex gives

Ah(s, t) = (2m)!

∫

S2m
s

[Φh,2m(t1, t2m)]2 dt1 · · · dt2m

= (2m)!

∫

S2
s

(t2m − t1)
2m−2

(2m− 2)!
[Φh,2m(t1, t2m)]2 dt1 dt2m.

Then, using the classical formula for the 2mth derivative of pt, that is,

p
(2m)
t (y) = (2m)!t−mpt(y)H2m

(
y

t1/2

)
,(45)

where H2m is defined by (33), we deduce that

Ah(s, t) = (2m)!(2m− 2)!

×
∫

S2
s

(t2 − t1)
2m−2

[∫ h

0
(t2 − t1)

−(m−1) e
−y2/(2(t2−t1))

(2π(t2 − t1))1/2

×H2m−2

(
y

(t2 − t1)1/2

)
(h− y)dy

]2
dt1 dt2

= (2m)!(2m− 2)!

×
∫

S2
s

[∫ h

0

e−y2/(2(t2−t1))

(2π(t2 − t1))1/2
H2m−2

(
y

(t2 − t1)1/2

)
(h− y)dy

]2
dt1 dt2.

Perform the change of variable t2 − t1 = τ and t1 = σ, which yields

Ah(s, t) = (2m)!(2m− 2)!

×
∫ s

0
(s− τ)

[∫ h

0

e−y2/(2τ)

(2πτ)1/2
H2m−2

(
y

τ1/2

)
(h− y)dy

]2
dτ.
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Now set y/τ1/2 = z in order to get

Ah(s, t) =
(2m)!(2m− 2)!

2π
h2

×
∫ s

0
(s− τ)

[∫ h/τ1/2

0
e−z2/2H2m−2(z)

(
1− τ1/2z

h

)
dz

]2
dτ.

Finally, let u = h/τ1/2, so that we end up with Ah(s, t) =
1
π (2m)!(2m −

2)!h4a(h), where

a(h)≡
∫ ∞

h/s1/2
u−3

(
s− h2

u2

)[∫ u

0
e−z2/2H2m−2(z)

(
1− z

u

)
dz

]2
du.

It is now readily checked that the main singularity in the integral defining
a(h) is due to a term u−3u2 = u−1 integrated close to 0, so that for small h,
a(h) is of order ln(1/h).

In order to quantify this fact, let us apply l’Hopital’s rule to a(h)/ ln(1/h).
We get

lim
h→0

a(h)

ln(1/h)
= lim

h→0

b(h)

h−2

with

b(h) = 2

∫ ∞

h/s1/2
u−5

[∫ u

0
e−z2/2H2m−2(z)

(
1− z

u

)
dz

]2
du.

It is now easily seen that b′(h) is equivalent to − s
2h

−3[H2m−2(0)]
2 in a neigh-

borhood of the origin, so that a second application of l’Hopital’s rule to
b(h)/h−2 yields

lim
h→0

a(h)

ln(1/h)
=
s

4
[H2m−2(0)]

2.

In order to conclude recall that Ah(s, t) =
1
π (2m)!(2m− 2)!h4a(h), and thus

with the value of H2m−2(0) in mind [see (35)] we end up with

lim
h→0

Ah(s, t)

h4 ln(1/h)
=
s

4
[H2m−2(0)]

2(2m)!(2m− 2)! =
(2m)!(2m− 2)!

22m−1[(m− 1)!]2
s,

which completes the proof of relation (44) since

lim
h→0

E[X2m,h
t X2m,h

s ]

h4 ln(1/h)
=

128

π(2m)!
lim
h→0

Ah(s, t)

h4 ln(1/h)
.

�

Remark 3.9. The fact that
∑
σ2m =∞, mentioned at Theorem 1.2(iii),

follows at once from relation (44). Indeed, using Stirling’s formula, we can
easily conclude that σ2m is asymptotically equivalent to c√

m
for some constant

c > 0.
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3.4. Contractions. In this section, we shall prove that for a fixed t ∈ [0,1]
the random variable Ht(B)/[h2 ln(1/h)1/2] converges in law to a Gaussian
random variable as h goes to 0. Owing to Proposition 3.3 and with Proposi-
tion 3.7 in hand, this boils down to the study of contractions for the functions
fh, gh involved in the definition of Jn(Ht(B)) given at (39). Those contrac-
tions are evaluated in the following proposition.

Proposition 3.10. Fix n= 2m≥ 2, and recall that fh, gh,t also depend
on n as highlighted in (40)–(41). Then for every r ∈ {1, . . . , n− 1}, one has

1

h8 ln2(1/h)
‖(fh + gh,t)⊗r (fh + gh,t)‖2L2([0,t]2n−2r) → 0(46)

as h tends to 0.

Proof. Due to Lemma 3.8, the proof of Proposition 3.7 and thanks to
the fact that

‖fh ⊗r gh,t‖L2([0,t]2n−2r) ≤ ‖fh‖L2([0,t]2m)‖gh,t‖L2([0,t]2m),

it is readily checked that as h tends to 0,

1

h8 ln2(1/h)
‖(fh + gh,t)⊗r (fh + gh,t)‖2L2([0,t]2n−2r)

=
1

h8 ln2(1/h)
‖fh ⊗r fh‖2L2([0,t]2n−2r) + o(1).

We are thus reduced to prove that

lim
h→0

‖fh ⊗r fh‖2L2([0,t]2n−2r)

h8 ln2(1/h)
= 0.(47)

In order to compute ‖fh ⊗r fh‖2L2([0,t]2n−2r), let us consider the following

general problem: fix an integrable function ϕ defined on S2
t and compute

the contraction norm:

Rn,r(ϕ) =

∫

[0,t]2(n−r)

(∫

[0,t]r
ϕ(max(s, t1),min(s, t1))

×ϕ(max(s, t2),min(s, t2))ds

)2

dt1 dt2,

where we have set

max(s, t) = max(s1, . . . , sr, t1, . . . , tn−r),

min(s, t) = min(s1, . . . , sr, t1, . . . , tn−r).
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Note that Rn,r(ϕ) can also be written as

Rn,r(ϕ) =

∫

[0,t]2(n−r)

∫

[0,t]2r

2∏

i,j=1

ϕ(max(si, tj),min(si, tj))ds1 ds2 dt1 dt2.

In order to evaluate this integral, the following simple transformations can
be performed: (i) Replace max(si, tj) by max(si) ∨max(tj). (ii) Integrate
on simplexes such as 0< s1 < · · ·< sr < t. For 2≤ r ≤ n− 2; this simplifies
the above expression into

Rn,r(ϕ) = [(n− r)!r!]2

×
∫

(S2
t )

2

∫

(S2
t )

2

2∏

i,j=1

ϕ(max(σi2, τ
j
2 ),min(σi1, τ

j
1 ))

×
2∏

k=1

[
(σk2 − σk1 )

r−2(τk2 − τk1 )
n−r−2

(r− 2)!(n− r− 2)!

]
dσk1 dσ

k
2 dτ

k
1 dτ

k
2 ,

that is,

Rn,r(ϕ) = Pr(n)

×
∫

(S2
t )

2

∫

(S2
t )

2

2∏

i,j=1

ϕ(max(σi2, τ
j
2 ),min(σi1, τ

j
1 ))(48)

×
2∏

k=1

(σk2 − σk1 )
r−2(τk2 − τk1 )

n−r−2 dσk1 dσ
k
2 dτ

k
1 dτ

k
2 ,

where we have set Pr(n) = [(n− r)(n− r− 1)r(r− 1)]2.
We now recall that fh is defined by (40), which means that we shall apply

identity (48) to the function ϕ=Φh where Φh is introduced at Notation 3.1.
Toward this aim, observe that one can write Φh(u, v) = ℓn,h(v − u) with

ℓn,h :R+ → R+ given by ℓn,h(w) :=
∫ h
0 p

(n−2)
w (y)(h − y)dy. Thanks to the

expression (45) we have already recalled for p
(n−2)
w we thus get

ℓn,h(w) =
(−1)n(n− 2)!√

2π

∫ h

0

e−y2/(2w)

w(n−1)/2
Hn−2

(
y

w1/2

)
(h− y)dy ≤ cn

h2

w(n−1)/2
.

Plugging this relation into (48), we obtain that for 2≤ r ≤ n− 2,

‖fh ⊗r fh‖2L2([0,t]2n−2r)

≤ cn,rh
8

∫

(S2
t )

2

∫

(S2
t )

2

2∏

i,j=1

(max(σi2, τ
j
2 )−min(σi1, τ

j
1 ))

−(n−2)/2
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×
2∏

k=1

(σk2 − σk1 )
r−2(τk2 − τk1 )

n−r−2 dσk1 dσ
k
2 dτ

k
1 dτ

k
2(49)

≤ cn,rh
8

∫

(S2
t )

2

∫

(S2
t )

2

2∏

i,j=1

(max(σi2, τ
j
2 )−min(σi1, τ

j
1 ))

−3/2

×
2∏

k=1

dσk1 dσ
k
2 dτ

k
1 dτ

k
2 .

This kind of integral will be handled in Lemma A.13, which allows to con-
clude that ‖fh ⊗r fh‖2L2([0,t]2n−2r) ≤ cn,rh

8. Hence, relation (47) obviously

holds true, which in turn implies (46).
We have thus proved relation (46) for n ≥ 4 and 2 ≤ r ≤ n− 2. The re-

maining possibilities can be treated applying the same reasoning: in the case
(n≥ 4, r ∈ {1, n− 1}), we have

‖fh ⊗r fh‖2L2([0,t]2n−2r)

≤ cr,nh
8

×
∫

(S2
t )

2

∫

[0,t]2

2∏

i,j=1

(max(σi, τ j2 )−min(σi, τ j1 ))
−1 dσ1 dσ2

2∏

k=1

dτk1 dτ
k
2

and we recognize here the second (finite) integral involved in Lemma A.13.
Finally, the case (n= 2, r= 1) reduces to

‖fh ⊗r fh‖2L2([0,t]2n−2r)

≤ cr,nh
8

×
∫

[0,t]2

∫

[0,t]2

2∏

i,j=1

(max(σi, τ j)−min(σi, τ j))−1/2 dσ1 dσ2 dτ1 dτ2,

so that we can conclude with Lemma A.13 as well. �

Summarizing our considerations up to now, we have obtained the following
convergence in law for the finite-dimensional distributions of X2m,h:

Proposition 3.11. Taking up the notation of Theorem 1.2, consider
t1, . . . , td ∈ [0,1] and m≥ 1. Then as h→ 0 we have

1

h2[ln(1/h)]1/2
(X2m,h

t1 , . . . ,X2m,h
td

)
(d)→ σmN (0,Γ)

where σ2m =
c(2m− 2)!

22m[(m− 1)!]2
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and N (0,Γ) is the centered Gaussian law in R
d with covariance matrix

Γ(i, j) =min(ti, tj).

Proof. We shall simultaneously apply Propositions 3.3 and 3.4 to the

random vector h−2[ln(1/h)]−1/2(X2m,h
t1 , . . . ,X2m,h

td
), which is of course a se-

quence of random vectors in (H2m)d. Moreover:
(i) According to Proposition 3.7, we have for every ti, tj ,

lim
h→0

E[X2m,h
ti

X2m,h
tj

]

h4 ln(1/h)
= σ2mΓ(i, j).

(ii) For each fixed ti, one can write X2m,h
ti

= I2m(k2m,h) with k2m,h =
16

(2m)! (fh + gh,ti) · 1[0,ti]2m . Then Proposition 3.10 asserts that, for all r ∈
{1, . . . ,2m− 1},

lim
h→0

1

h4 ln(1/h)
‖k2m,h ⊗r k2m,h‖H⊗2(n−r) = 0.

We can thus combine Propositions 3.3 and 3.4 so as to conclude. �

3.5. Tightness. Now endowed with Proposition 3.11, the proof of Theo-
rem 1.2 reduces to showing that the sequence of processes {h−2 ln(1/h)−1/2 ×
X2m,h

t , t ∈ [0,1]} is tight. These are contents of the following proposition.

Proposition 3.12. Fix m≥ 1. Then:

(i) There exist λ > 0 and a constant cm such that for all 0≤ s≤ t≤ 1,

sup
h∈(0,1)

1

h4 ln(1/h)
E[|X2m,h

t −X2m,h
s |2]≤ cm|t− s|λ.(50)

(ii) The family {h−2 ln(1/h)−1/2X2m,h;h > 0} is tight in C([0,1]).

In order to prove Proposition 3.12, recall that X2m,h
t = 16

(2m)!I2m((fh +

gh,t) ·1[0,t]2m) with fh, gh defined by (40)–(41). We will also use the following
additional property of gh, which can be readily checked with the help of (31)–
(32), as in the proof of Lemma 3.8.

Lemma 3.13. Fix m≥ 1, and recall that we write gh,t instead of gh,t,2m
for notational sake. Then there exist λ > 0 and a constant cm such that for
all 0≤ s≤ t≤ 1, one has

sup
h∈(0,1)

‖gh,t − gh,s‖2L2([0,s]2m) ≤ cmh
4|t− s|λ.
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We can now turn to the proof of the main proposition of this section.

Proof of Proposition 3.12. We prove the two claims of the propo-
sition separately:

Step 1. Proof of assertion (i). Let us write

X2m,h
t −X2m,h

s

= cm{In((fh + gh,t) · {1[0,t]2m − 1[0,s]2m}) + In((gh,t − gh,s) · 1[0,s]2m)}.

The second term of this decomposition can be treated with Lemma 3.13. As
for the first term, we clearly have

E[(In((fh + gh,t) · {1[0,t]2m − 1[0,s]2m}))2]≤ cm(Ah
s,t +Bh

s,t)

with

Ah
s,t =

∫

0<t1<···<t2m
s<t2m<t

Φh(t1, t2m)2 dt1 · · · dt2m,

Bh
s,t =

∫

0<t1<···<t2m
s<t2m<t

gh,t(t1, . . . , t2m)2 dt1 · · · dt2m.

We now bound those two terms: first, split up Ah
s,t into Ah

s,t = cm{Ah,1
s,t +

Ah,2
s,t } with

Ah,1
s,t ≡

∫

0<t1<s<t2m<t
(t2m − t1)

2m−2Φh(t1, t2m)2 dt1 dt2m

and

Ah,2
s,t ≡

∫

s<t1<t2m<t
(t2m − t1)

2m−2Φh(t1, t2m)2 dt1 dt2m

=

∫

0<t1<t2m<t−s
(t2m − t1)

2m−2Φh(t1, t2m)2 dt1 dt2m.

Then by (30), one has for any small ε > 0,

Ah,1
s,t ≤ cmh

4

∫

0<t1<s<t2m<t
(t2m − t1)

−1 dt1 dt2m

≤ cmh
4

∫

0<t1<s
(s− t1)

−1+ε dt1

∫

s<t2m<t
(t2m − t1)

−ε dt2m

≤ cmh
4|t− s|1−ε.
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As far as Ah,2
s,t is concerned, we can follow the lines of the proof of Propo-

sition 3.7 and conclude that lim 1
h4 ln(1/h)A

h,2
s,t = cm|t− s| as h tends to zero,

which gives us a proper estimate.
Finally, the bound for Bh

s,t is easily derived as follows: first notice that,
according to Definition (41) of gh,t, we have

Bh
s,t ≤ c

∫

0<t1<···<t2m
s<t2m<t

[Φ2
h(t1, t) +Φ2

h(0, t) +Φ2
h(0, t2m)]dt1 · · · dt2m.

The three terms above are handled easily, and along the same lines, thanks
to (30). For the first one, we get, for instance,

∫

0<t1<t2m<t
s<t2m<t

(t2m − t1)
2m−2Φ2

h(t1, t)dt1 · · · dt2m

≤ cmh
4

∫

0<t1<t2m<t
s<t2m<t

(t2m − t1)
2m−2(t− t1)

−2m+1 dt1 dt2m

≤ cmh
4(t− s)

∫

0<t1<s
(t− t1)

−1 dt1

+ cmh
4

∫

s<t1<t
(t− t1)

2m−1(t− t1)
−2m+1 dt1

≤ cmh
4|t− s|1−ε

for any small ε > 0. Gathering now our estimates on Ah
s,t and B

h
s,t, we have

proved our claim (50).

Step 2. Proof of assertion (ii). With inequality (50) in hand, the tightness

result is easily deduced. Indeed, the random variable X2m,h
t −X2m,h

s living
in a finite chaos, we are in a position to use hypercontractivity (see [10]) and
assert that for all p≥ 1,

sup
h∈(0,1)

1

h4p ln(1/h)p
E[|X2m,h

t −X2m,h
s |2p]≤ cm,p|t− s|λp.

As we have done before, Kolmogorov’s tightness criterion is therefore verified
for every p such that λp > 1, which finishes our proof. �

4. L
2 modulus of 2-dimensional local time on chaoses. We now carry

on the task of proving Theorem 1.3 for projections of the quantity Hh
t (B)

defined by (1) when B is a two-dimensional Brownian motion. For the sake
of simplicity, we shall take up most of the notation introduced at Section 3,
starting from the fact that our Hamiltonian is written Hh

t (B) independently



32 A. DEYA, D. NUALART AND S. TINDEL

of the fact that B is a one-dimensional or a two-dimensional Brownian mo-
tion. Like in [7], we shall also invoke the following important representation
formula for Hh

t (B):

Hh
t (B) =

∫

[0,t]2
[δ0(Bv −Bu + h)

(51)
+ δ0(Bv −Bu − h)− 2δ0(Bv −Bu)]dudv.

Remark 4.1. The reader should be aware of the fact that expression
(51) is formal, since the self-intersection local time is a divergent quantity for
a two-dimensional Brownian motion. Notice, however, that only projections
on fixed chaoses will be considered in the sequel, and all projections of the
random distribution defined by (51) are well defined.

Next, we introduce the equivalent of the functions Φ introduced at Nota-
tion 3.1. In the 2-d case, we will let this set of functions appear in a Fourier
transform procedure, as follows.

Notation 4.2. For every n≥ 2, every i= (i1, . . . , in) ∈ {1,2}n and every
h ∈R

2, we define a function Φi(t1, t2) as

Φi(t, s) = Φi,h(t, s) :=

∫

R2

dξ

(
n∏

k=1

ξik

)
{1− cos(〈h, ξ〉)}

|ξ|4 e−(t−s)|ξ|2/2.

Remark 4.3. In order to draw a link between Φi and the function Φ=
Φ1-d introduced at Notation 3.1, observe that, at least for n= 2m even (the
only cases of interest in our study), one can also write Φ1-d as

Φ1-d
h,2m(t, s) =

∫ h

0
p
(2m−2)
t−s (y)(h− y)dy

= p
(2m−2)
t−s (h)− p

(2m−2)
t−s (0)

=
1

2
{p(2m−2)

t−s (h) + p
(2m−2)
t−s (−h)− 2p

(2m−2)
t−s (0)}

= c

∫

R

dξξ2m−2{1− cos(hξ)}e−(t−s)ξ2/2,

where we have used the Fourier representation pt−s(x) = c
∫
R
dξeıxξe−(t−s)ξ2/2.

The continuity properties of the functions Φi, mimicking (30)–(32), are
summarized below.
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Lemma 4.4. Fix m≥ 1 and α ∈ (0,2). Then there exists a constant cm,α

such that for every h ∈R
2 and all 0≤ t1 < s < t < t2,

max
i∈{1,2}2m

|Φi,h(t, s)| ≤ cm,α|h|α|t− s|−m+1−(α/2),(52)

max
i∈{1,2}2m

|Φi,h(t, t1)−Φi,h(s, t1)| ≤ cm,α|h|α|t− s|λ|s− t1|−m+1−(α/2)−λ,(53)

max
i∈{1,2}2m

|Φi,h(t2, t)−Φi,h(t2, s)| ≤ cm,α|h|α|t− s|λ|t2 − t|−m+1−(α/2)−λ.(54)

The strategy of the proof for Theorem 1.3 is now similar to the one-
dimensional case of Theorem 1.2: exact computation of the chaos decompo-
sition, analysis of the variance and contraction properties for Hh

t (B). This
is why we shall skip some details below, and mainly stress the differences
between the 1-d and the 2-d case.

4.1. Stochastic analysis in dimension 2. The Malliavin calculus setting
we shall use in this section is very similar to the one explained at Section 3.1.
However, we stress here some differences between stochastic analysis for 1-d
and 2-d Brownian motions.

Notice first that our standing Wiener space is now the space of R
2-

valued continuous functions C(R+;R
2), while the related Hilbert space is

H≡ (L2([0,1]))2 . We set B = (B1,B2) for the two-dimensional Wiener pro-
cess and for h = (h1, h2) ∈ H we define B(h) = B1(h1) + B2(h2). Starting
from this definition of Wiener integral, the Malliavin derivatives and Sobolev
spaces are defined along the same lines as in Section 3.1.

Stroock’s formula takes the following form in the two-dimensional situ-
ation: designate by i= (i1, . . . , in) a generic element of {1,2}n. Then for a
functional F ∈D

∞,2, we have Jn(F ) = In(fn), with

In(fn) =
∑

i∈{1,2}n

∫

[0,1]n
fi(t1, . . . , tn)dB

i1
t1 · · · dB

in
tn ,

(55)

fi(t1, . . . , tn) =
E[Di

t1,...,tnF ]

n!
.

Finally, Propositions 3.3 and 3.4 are still valid in our 2-d Wiener space
context, except for the fact that the expression for the rth contraction (r ∈
{1, . . . , n}) of a given kernel f reads as follows: for k

1,k2 ∈ {1,2}n−r and
t
1, t2 ∈ [0,1]n−r ,

(f ⊗r f)(k1,k2)(t
1, t2) :=

∑

l∈{1,2}r

∫

[0,1]r
dsf(k1,l)(t

1, s)f(k2,l)(t
2, s).(56)
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4.2. Chaos decomposition of Hh
t (B). We are now ready to compute the

projections Xn,h of Hh(B) on chaoses, which is the analogous statement to
Proposition 3.6 in the 2-d situation.

Proposition 4.5. For every n ≥ 1 and every nonzero h ∈ R
2, recall

that we have set Xn,h
t = Jn(H

h
t (B)) for the projection of Hh

t (B) onto the

nth Wiener chaos. Then we have Xn,h
t = 0 if n is odd and

Xn,h
t =

c

n!

∑

i∈{1,2}n

∫

[0,t]n
{fi(t1, . . . , tn) + gi,t(t1, . . . , tn)}dBi1

t1 · · · dB
in
tn

(57)
if n is even

for some universal constant c. In the previous equation, the symmetric func-
tions fi ∈L2(Rn

+) and gi,t ∈L2([0, t]n) are defined for each i ∈ {1,2}n by

fi(t1, . . . , tn)
(58)

= fhi (t1, . . . , tn) := Φi(min(t1, . . . , tn),max(t1, . . . , tn))

and

gi,t(t1, . . . , tn)

= ghi,t(t1, . . . , tn)(59)

:=−Φi(min(t1, . . . , tn), t) +Φi(0, t)−Φi(0,max(t1, . . . , tn)),

where we recall that the functions Φi are introduced at Notation 4.2.

Proof. By applying Stroock’s formula (55) to expression (51) in a sim-

ilar manner as in the proof of Proposition 3.6, we obtain that Xn,h
t is equal

to

=
c

n!

∑

i∈{1,2}n

∫

[0,t]n

(∫

S2
t

[
∂npv−u

∂xi
(h) +

∂npv−u

∂xi
(−h)

− 2
∂npv−u

∂xi
(0)

]

×
n∏

i=1

1[u,v](ti)dudv

)
dBi1

t1 · · · dB
in
tn

= c
∑

i∈{1,2}n

∫

Sn
t

(∫ t1

0

∫ t

tn

[
∂npv−u

∂xi
(h) +

∂npv−u

∂xi
(−h)

− 2
∂npv−u

∂xi
(0)

]
dudv

)
dBi1

t1 · · · dB
in
tn ,
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where pt(x) stands here for the 2-dimensional Gaussian kernel and where we

have set ∂xi := ∂xi1 · · · ∂xin . Observe first that ∂npv−u

∂xi
(h) + ∂npv−u

∂xi
(−h) −

2∂npv−u

∂xi
(0) vanishes when n is odd, which yields our claim Xn,h

t = 0 in this
situation. In the case where n is even, use the Fourier representation

pv−u(x) = c

∫

R2

eı〈x,ξ〉e−(v−u)|ξ|2/2 dξ

and Fubini’s theorem in order to derive

Xn,h
t = c

∑

i∈{1,2}n

∫

Sn
t

[Φi(tn, t1)−Φi(t1, t) + Φi(0, t)−Φi(tn,0)]dB
i1
t1 · · · dB

in
tn .

Formula (57) follows by symmetrization. �

4.3. Asymptotic behavior of the variance. With expression (57) in hand,

we now proceed as for the one-dimensional case, and compute E[X2m,h
t X2m,h

s ]
in order to see how this kind of quantity scales in h. Let us first label the
following analytic lemma which will feature in our future computations.

Lemma 4.6. Fix m≥ 1 and ϕ :R2 →R such that

|ϕ(x, y)| ≤ c{|x|1−ε|y|1−ε + |x|1+ε|y|1+ε}(60)

for some small ε > 0. For every nonzero e ∈R
2, set

Lϕ
2m,e :=

∫

R2

dξ

∫

R2

dη
〈ξ, η〉2m
|ξ|4|η|4 ϕ(〈ξ, e〉, 〈η, e〉) exp

(
−1

2
(|ξ|2 + |η|2)

)
.(61)

Then Lϕ
2m,e is well defined and for all unit vectors e, ẽ ∈R

2, one has Lϕ
2m,e =

Lϕ
2m,ẽ. We denote by Lϕ

2m this common quantity.

Proof. The fact that Lϕ
2m,e is well defined can be easily checked us-

ing (60). As for the second assertion, introduce the rotation A which sends
e to ẽ and then use the isometric change of variables ξ =A∗ξ̃, η =A∗η̃, so
as to turn Lϕ

2m,e into Lϕ
2m,ẽ. �

We will also make use of the following uniform estimate for gh
i,t, which (as

in the proof of Lemma 3.8) can be easily derived from the bound (52):

Lemma 4.7. Fix m ≥ 1, and recall that for every t > 0 and every i ∈
{1,2}2m, gi,t is defined by (41). Then there exist a constant cm and a small
ε > 0 such that for every h ∈R

2,

sup
t∈[0,1],i∈{1,2}2m

‖gh
i,t‖2L2([0,t]2m) ≤ cm|h|2+ε.
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We can now compute the correct order of E[X2m,h
t X2m,h

s ] as follows.

Proposition 4.8. Fix m≥ 1. Then for all 0≤ s≤ t≤ 1, it holds that

lim
h→0

|h|−2
E[X2m,h

t X2m,h
s ] = σ2ms with σ2m =

cLϕ
2m

(2m− 2)!
,

where c is a universal constant, where ϕ is defined for every (x, y) ∈R
2 by

ϕ(x, y) :=

∫ ∞

0

du

u3
{1− cos(ux)}{1− cos(uy)}

and where we recall that Lϕ
2m has been introduced at relation (61).

Proof. Recall that

E[X2m,h
t X2m,h

s ] =
c

(2m)!

∑

i∈{1,2}2m
〈(fi+gi,t) ·1[0,t]2m, (fi+gi,s) ·1[0,s]2m〉L2(R2m)

and thanks to Lemma 4.7, we only have to focus on the sum of the terms

Ai

s,t := 〈fi · 1[0,t]2m , fi · 1[0,s]2m〉L2(R2m).

An integration over the simplex gives

Ai

s,t =
(2m)!

(2m− 2)!

∫

∆2
s

Φi,h(t2m, t1)
2(t2m − t1)

2m−2 dt1 dt2m.

The change of variables t2m − t1 = τ and t1 = σ easily leads us to

Ai

s,t =
(2m)!

(2m− 2)!

∫ s

0
(s− τ)Φ

i,h/τ1/2(1,0)
2 dτ.

Setting eh ≡ h
|h| , the change of variable u= |h|/τ1/2 now gives

Ai

s,t =
2(2m)!

(2m− 2)!
|h|2

∫ ∞

|h|/s1/2
u−3

(
s− |h|2

u2

)
Φi,ueh(1,0)

2 du.

By using (52), one can check that |h|2
∫∞
|h|/s1/2 u

−5Φi,ueh(1,0)
2 du→ 0 as h→

0, so that the main contribution will come from the terms

Âi

s,t :=
2(2m)!

(2m− 2)!
|h|2s

∫ ∞

|h|/s1/2
u−3Φi,ueh(1,0)

2 du.

Now write

Φi,ueh(1,0)
2

=

∫

R2

dξ

∫

R2

dη

∏2m
k=1 ξikηik
|ξ|4|η|4

×{1− cos(u〈eh, ξ〉)}{1− cos(u〈eh, η〉)}e−(1/2)(|ξ|2+|η|2)
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and observe that
∑

i∈{1,2}2m
∏2m

k=1 ξikηik = 〈ξ, η〉2m. Thus, thanks to Lemma 4.6
and using Fubini theorem, we deduce that

|h|−2
∑

i∈{1,2}2m
Âi

s,t =
2(2m)!

(2m− 2)!
s ·Lϕh

2m,

where ϕh is defined as

ϕh(x, y) :=

∫ ∞

|h|/s1/2
{1− cos(ux)}{1− cos(uy)}

u3
du.

Finally, the convergence of Lϕh
2m toward Lϕ

2m easily follows from the fact that
ϕ satisfies relation (60) for some small ε > 0, and this achieves the proof.
�

4.4. Contractions. We now turn to the contractions estimation for the
functions fh, gh, where our two-dimensional contractions are defined by (56).
The following is of course an analog of Proposition 3.10 in our 2-d setting.

Proposition 4.9. For every r ∈ {1, . . . , n− 1}, one has

‖(f.1[0,t]n + g.,t)⊗r (f.1[0,t]n + g.,t)‖2

=
∑

i∈{1,2}2n−2r

‖((f.1[0,t]n + g.,t)⊗r (f.1[0,t]n + g.,t))i‖
2
L2([0,t]2n−2r)

= o(|h|4).

Proof. Thanks to Lemma 4.7, it suffices to focus on the sum
∑

k1,k2∈{1,2}n−r

‖((f.1[0,t]n)⊗r (f.1[0,t]n))(k1,k2)‖
2
L2([0,t]2n−2r).

Assume first that 2m≥ 4 and 2≤ r ≤ 2m− 2. Then we can follow the lines
of the proof of Proposition 3.10 and deduce that

∑

k1,k2∈{1,2}n−r

‖((f.1[0,t]n)⊗r (f.1[0,t]n))(k1,k2)‖
2
L2([0,t]2n−2r)

= cm
∑

k1,k2∈{1,2}n−r

l1,l2∈{1,2}r

∫

(S2
t )

2

∫

(S2
t )

2

2∏

i,j=1

Φ(ki,lj),h(max(σi2, τ
j
2 ),min(σi1, τ

j
1 ))

×
2∏

k=1

(σk2 − σk1 )
r−2

× (τk2 − τk1 )
n−r−2 dσk1 dσ

k
2 dτ

k
1 dτ

k
2 .
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Now, plugging the bound (52) (uniformly over (ki, lj)) into the latter ex-
pression yields, similar to (49): for any small ε > 0,

∑

k1,k2∈{1,2}n−r

‖((f.1[0,t]n)⊗r (f.1[0,t]n))(k1,k2)‖
2
L2([0,t]2n−2r) ≤ cm|h|4+4εJε

with

Jε :=

∫

(∆2
1)

2

∫

(∆2
1)

2

2∏

i,j=1

(max(σi2, τ
j
2 )−min(σi1, τ

j
1 ))

−3/2−ε/2

×
2∏

k=1

dσk1 dσ
k
2 dτ

k
1 dτ

k
2 .

By Lemma A.13, we know that this integral is finite for ε > 0 small enough,
which achieves the proof of the proposition in the case (2m ≥ 4, 2 ≤ r ≤
2m− 2).

The two situations (2m≥ 4, r ∈ {1,2m−1}) and (2m= 2, r = 1) can also
be handled with the same arguments as in the proof of Proposition 3.10
(with the help of Lemma A.13 as well). Details are left to the reader. �

As in Section 3.4, by combining Propositions 4.8 and 4.9 we end up with
the following convergence in law result for the finite-dimensional distribu-
tions of X2m,h:

Proposition 4.10. Taking up the above notation, consider t1, . . . , td ∈
[0,1] and m≥ 1. Then as h→ 0, we have

1

|h| (X
2m,h
t1 , . . . ,X2m,h

td
)
(d)→ σmN (0,Γ) where σ2m =

cLϕ
2m

(2m− 2)!

and N (0,Γ) is the centered Gaussian law in R
d with covariance matrix

Γ(i, j) =min(ti, tj). Recall that the quantity Lϕ
2m has been defined in Propo-

sition 4.8.

Let us briefly check point (iii) of Theorem 1.3, that is, the divergence of
the series of variances, as it is less obvious than in the 1-d case.

Proposition 4.11. With the notation of Proposition 4.10, it holds that∑∞
m=1 σ

2
m =∞.

Proof. One has
∞∑

m=1

σ2m = c
∞∑

m=1

Lϕ
2m

(2m− 2)!



MODULUS OF CONTINUITY OF BROWNIAN LOCAL TIMES 39

= c

∫

R2

dξ

∫

R2

dη
〈ξ, η〉2
|ξ|4|η|4 {e

〈ξ,η〉 + e−〈ξ,η〉}ϕ(ξ1, η1)e−(1/2)(|ξ|2+|η|2)

(62)

≥ c

∫

R2

dξ

∫

R2

dη
〈ξ, η〉2
|ξ|4|η|4ϕ(ξ1, η1)e

−(1/2)|ξ−η|2

≥ c

∫

[R,∞)2
dξ

∫

Bξ

dη
〈ξ, η〉2
|ξ|4|η|4ϕ(ξ1, η1)

for every R> 0 and where the notation Bξ refers to the unit ball around ξ.
Now observe that for R large enough, ξ ∈ [R,∞)2 and η ∈Bξ , one has

ϕ(ξ1, η1) = ξ21 ·ϕ
(
1,
η1
ξ1

)
≥ ξ21 · cϕ with cϕ = inf

1/2≤x≤2
ϕ(1, x)> 0

and also 〈ξ, η〉2 ≥ 1
2 |ξ|4. Therefore, going back to (62), one has for R large

enough and a suitable (finite) R̃,

∞∑

m=1

σ2m ≥ c

∫

[R,∞)2

ξ2

|ξ|4 dξ ≥ c

∫

R̃

dr

r
,

which achieves the proof. �

4.5. Tightness. In order to complete the proof of Theorem 1.3, we are

now left with the tightness property for the family of processes {h−1X2m,h
t , t ∈

[0,1]}. The following proposition is thus the equivalent of Proposition 3.12
in our 2-d context.

Proposition 4.12. Fix m≥ 1. Then:

(i) There exist λ > 0 and a constant cm such that for all 0≤ s≤ t≤ 1,

sup
|h|∈(0,1)

1

|h|2E[|X2m,h
t −X2m,h

s |2]≤ cm|t− s|λ.(63)

(ii) The family {X2m,h; |h|> 0} is tight in C([0,1]).

Proof. We use the same arguments as in the proof of Proposition 3.12.
First, observe that

E[|X2m,h
t −X2m,h

s |2]≤ cm
∑

i∈{1,2}2m
{Ai

s,t +Bi

s,t + ‖gi,t − gi,s‖2L2([0,s]2m)},

where

Ai

s,t :=

∫

0<t1<···<t2m
s<t2m<t

Φi(t1, t2m)2 dt1 · · · dt2m,
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Bi

s,t :=

∫

0<t1<···<t2m
s<t2m<t

gi,t(t1, . . . , t2m)2 dt1 · · · dt2m.

By using both (53) and (54), it is readily checked that

max
i∈{1,2}2m

|h|−2‖gi,t − gi,s‖2L2([0,s]2m) ≤ c|t− s|λ

for some λ > 0. Then the treatments of
∑

i∈{1,2}2m A
i
s,t and

∑
i∈{1,2}2m B

i
s,t,

as well as the derivation of assertion (ii), follow the lines of the proof of
Proposition 3.12. For the sake of conciseness, we do not repeat the details
of the procedure. �

APPENDIX: A TECHNICAL LEMMA

It only remains to prove the technical result on which the contraction
computations of Propositions 3.10 and 4.9 rely.

Lemma A.13. The three following integrals

∫

[0,1]2

∫

[0,1]2

2∏

i,j=1

(max(σi, τ j)−min(σi, τ j))−3δ dσ1 dσ2 dτ1 dτ2,(64)

∫

(∆2
1)

2

∫

[0,1]2

2∏

i,j=1

(max(σi, τ j2 )−min(σi, τ j1 ))
−5δ dσ1 dσ2

2∏

k=1

dτk1 dτ
k
2(65)

and

∫

(∆2
1)

2

∫

(∆2
1)

2

2∏

i,j=1

(max(σi2, τ
j
2 )−min(σi1, τ

j
1 ))

−7δ
2∏

k=1

dσk1 dσ
k
2 dτ

k
1 dτ

k
2(66)

are convergent if and only if δ < 1/4.

We only focus on (66), since (64) and (65) can be treated with similar
arguments (see Remark A.15 at the end of the proof). In order to ease
notation, we shall also change our time indices and set (σ11 , σ

1
2) = (x1, x5),

(σ21 , σ
2
2) = (x2, x6), (τ

1
1 , τ

1
2 ) = (x3, x7), (τ

2
1 , τ

2
2 ) = (x4, x8). Our integral of in-

terest can thus be written as

Iα :=

∫

D
[(x7 ∨ x5)− (x3 ∧ x1)]−α[(x8 ∨ x5)− (x4 ∧ x1)]−α

(67)
× [(x7 ∨ x6)− (x3 ∧ x2)]−α[(x8 ∨ x6)− (x4 ∧ x2)]−α dx,

where D = {x ∈ [0,1]8 :xi <x4+i,1≤ i≤ 4} and α< 7/4.
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The necessity of the condition α < 7/4 for the convergence of (67) stems
from the following fact: observe that if

S := {x ∈ [0,1]4 : 0< x1 < x5 < x2 < x6 < x3 < x7 < x4 < x8 < 1}
one has

I7/4 ≥
∫

S
(x7 − x1)

−7/4(x8 − x1)
−7/4(x7 − x2)

−7/4(x8 − x2)
−7/4 dxdy

≥ c

∫

[0,1]3
(u1 + u2)

−7/4(u1 + u2 + u3)
−7/4

× u
−7/4
2 (u2 + u3)

−7/4u1u
2
2u3 du1 du2 du3

≥ c

∫ 1

0

dr

r

by using spherical coordinates.
In order to prove the convergence of Iα when α < 7/4, we propose to

rely on some block-type representation of the integral, described as follows.
First, given x ∈ D, denote J1 := [x3 ∧ x1, x7 ∨ x5], J2 := [x4 ∧ x1, x8 ∨ x5],
J3 := [x3 ∧ x2, x7 ∨ x6], J4 := [x4 ∧ x2, x8 ∨ x6], so that

Iα =

∫

D

4∏

i=1

ℓ(Ji)
−α where ℓ([a, b]) = b− a.

Now and for the rest of the proof, we fix a generic permutation σ ∈S8 and
consider the simplex Sσ generated by σ, that is, Sσ := {x ∈ [0,1]8 :xσ(1) <
· · ·< xσ(8)}, assuming that Sσ ⊂D. If Ji = [xσ(mi), xσ(ni)] on Sσ (for mi <
ni ∈ {1, . . . ,8} depending on σ as well), we introduce the block Bσ

i := {mi,mi+
1, . . . , ni} and set Bσ := {Bσ

1 , . . . ,B
σ
4 }. Then, using an elementary change of

variables, it is readily checked that

Iα,σ :=

∫

Sσ

4∏

i=1

ℓ(Ji)
−α =

∫

Sσ

4∏

i=1

(xσ(ni) − xσ(mi))
−α = Iα,Bσ ,

where we have used the following general notation:

Notation A.14. Given Bi := {mi,mi + 1, . . . , ni} (i = 1, . . . ,4) with
mi < ni ∈ {1, . . . ,8} and B := {B1, . . . ,B4}, we set

Iα,B :=

∫

0<x1<···<x8<1

4∏

i=1

(xni − xmi)
−α ∈ [0,∞].

Of course, Iα =
∑

σ : Sσ⊂D Iα,σ =
∑

σ : Sσ⊂D Iα,Bσ . Our key argument to

prove that Iα,Bσ <∞ for every σ ∈S8 and α< 7
4 lies in the following three

basic observations regarding the four blocks Bσ
i composing Bσ:
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Fig. 1. Representation of the “extremal” situations in each case, that is, the Bk

(k ∈ {0, . . . ,4}). Each line connects the extremities of a block in Bk. In case 2 (resp.,
case 3), the black lines are the ones common to B1 and B2 (resp., B3 and B3).

(i) Card(Bσ
i )≥ 4 (Ji involves the min/max over four points);

(ii) Card(Bσ
i ∪ Bσ

j ) ≥ 6 if i 6= j (Ji ∪ Jj involves the min/max over at
least six points);

(iii) Each of the extremum points 1 and 8 appears exactly twice in Bσ.
Indeed, on Sσ, the minimum xσ(1) [resp., maximum xσ(8)] appears exactly
twice as a left (resp., right) bound in J1, . . . , J4.

Let us now discriminate the possible situations for Bσ according to this
last condition (iii) (see Figure 1 for a representation in each case):

Case 1. 1 and 8 never appear in the same block Bσ
1 , . . . ,B

σ
4 . Then, by

focusing on the possibilities for the two blocks with left-hand side 1 (resp.,
the two blocks with right-hand side 8), and given the above constraints
(i)–(ii), we end up with Iα,Bσ ≤ Iα,B0 where

B0 := {{1, . . . ,4},{1, . . . ,6},{5, . . . ,8},{3, . . . ,8}}.
Case 2. 1 and 8 appear once and only once in a same block (and so

each of them appears once “alone” in another block). Then it remains to
pick one block over the points {2, . . . ,7}, and given the constraints (i)–(ii)
on this block, we can easily conclude that there exists k ∈ {1,2} such that
Iα,Bσ ≤ Iα,Bk

where

B1 := {{1, . . . ,8},{1, . . . ,4},{5, . . . ,8},{2, . . . ,5}},
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B2 := {{1, . . . ,8},{1, . . . ,4},{5, . . . ,8},{3, . . . ,6}}.

Case 3. 1 and 8 appear twice in a same block (necessarily {1, . . . ,8}).
Then we have to pick two blocks over the points {2, . . . ,7}, and given the
constraints (i)–(ii) on these two blocks [note, e.g., that, given (ii), 2 and 7
are necessarily involved in the union of these blocks], we can easily conclude
that there exists k ∈ {1,2} such that Iα,Bσ ≤ Iα,B2+k

, where

B3 := {{1, . . . ,8},{1, . . . ,8},{2, . . . ,5},{4, . . . ,7}},
B4 := {{1, . . . ,8},{1, . . . ,8},{2, . . . ,7},{3, . . . ,6}}.

As a consequence of this reasoning, the problem is now reduced to the sole
consideration of the five “extremal” integrals Iα,Bk

(k ∈ {0, . . . ,4}), which
can be very easily done with basic estimates. For instance, if α= 7

4 − ε with
ε > 0, one has

Iα,B0 =

∫

0<x1<···<x8<1
dx(x4 − x1)

−α(x6 − x1)
−α(x8 − x5)

−α(x8 − x3)
−α

= c

∫

[0,1]5
du(u1 + u2)

−α(u1 + · · ·+ u4)
−α

× (u4 + u5)
−α(u2 + · · ·+ u5)

−αu1u5

≤ c

∫

[0,1]5
duu−1+ε

1 u−1+ε
5 u

−1+(2/3)ε
2 u

−1+(2/3)ε
3 u

−1+(2/3)ε
4 <∞,

where we have used the elementary bounds

(u1 + u2)
−α ≤ u−α

1 , (u4 + u5)
−α ≤ u−α

5 ,

(u1 + · · ·+ u4)
−α ≤ u−α+3κ

1 u−κ
2 u−κ

3 u−κ
4

with κ := 1
2 − ε

3 .

Remark A.15. This reduction of the problem, based on a block repre-
sentation of the integral, can be easily adapted to prove the convergence of
(64) [resp., (65)], by working with blocks {1, . . . ,4} (resp., {1, . . . ,6}) made
of at least two (resp., three) elements. Thus, for relation (64) [resp., (65)],
one can check that the situation reduces to the sole consideration of two
(resp., three) easy-to-handle integrals on specific simplexes.

Acknowledgements. We are grateful to the Associate Editor and to an
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