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CENTRAL LIMIT THEOREM FOR COMMUTATIVE
SEMIGROUPS OF TORAL ENDOMORPHISMS

GUY COHEN AND JEAN-PIERRE CONZE

ABSTRACT. Let S be an abelian finitely generated semigroup of endomorphisms of
a probability space (2,4, ), with (71, ...,T4) a system of generators in §. Given an
increasing sequence of domains (D,,) C N¢, a question is the convergence in distribution
of the normalized sequence |Dn|*% Y keD, foTk for f € L&(1), where TE = lel ...de,
k= (ky,...,kq) € N%

After a preliminary spectral study when the action of S has a Lebesgue spectrum, we
consider N%- or Z?-actions given by commuting toral automorphisms or endomorphisms
on T?, p > 1. For a totally ergodic action by automorphisms, we show a CLT for the
above normalized sequence or other summation methods like barycenters, as well as a
criterion of non-degeneracy of the variance, when f is regular on the torus. A CLT is
also proved for some semigroups of endomorphisms. Classical results on the existence
and the construction of such actions by automorphisms are recalled.
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Introduction

Let & be an abelian finitely generated semigroup of endomorphisms of a probability
space (2, A, u). Each T' € S is a measurable map from Q to €2 preserving the probability
measure p. For f € L'(u) a random field is defined by (f(7T.)res) for which limit
theorems can be investigated: law of large numbers, behavior in distribution.

By choosing a system (T1, ..., Ty) of generators in S, every T' € S can be represented’ as
T =T~ = Tfl...de, for k = (ky,...,kg) € N%. Given an increasing sequence of domains
(D,) C N% there are cases where convergence in distribution toward a normal law can be
shown for the standard normalized sequence and the “multidimensional periodogram”
respectively defined by

_1 _1 T
(1) D72 Y TEf, D72 Y EMEOTEE fe (), 6 € R

ke€Dn keDn

Let us take for (€2, A, 1) a compact abelian group G endowed with its Borel o-algebra and
its Haar measure. In this framework, the first examples of dynamical systems satisfying
a CLT in a class of regular functions are due to R. Fortet and M. Kac for endomorphims
of T'. In 1960 V. Leonov ([17]) showed that, if T" is an ergodic endomorphism of G, then
the CLT holds for every function f on G under a certain regularity condition on f.

The d-dimensional extension of this situation leads to the question of validity of a CLT
for algebraic actions on an abelian compact group G, i.e., when T* in Formula (1) is
given by an action of N¢ on G by automorphisms or more generally endomorphisms.

By composition, one obtains an action by isometries on H = L2(1), the space of square
integrable functions f such that pu(f) = 0. The spectral analysis of this action is the
content of Section 1 where the methods of summation are also discussed.

In Section 2 we consider d-dimensional actions given by commuting toral automorphisms
on T?, p > 1. For f with a certain regularity on the torus, a CLT is shown for the above
normalized sequence (Theorem 2.28) and other summation methods like barycenters
(Theorem 2.31), as well as a criterion of non-degeneracy of the variance. The barycenters
yield a class of operators with a polynomial decay to zero of the iterates applied to regular
functions. This contrasts with the non commutative case where a spectral gap can be
expected.

We will focus on d-dimensional actions by automorphisms on tori. Some results are valid
for semigroups of endomorphisms. The martingale property is a powerful tool, which
can used in some cases. Here we use a different method, based on moments, valid in the

'We underline the elements of N% or Z? to distinguish them from the scalars and write TEf for foT%.
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general case. The key of the method is the mixing property for Z%actions given of toral
automorphisms ([23]) which is a consequence of deep results of the theory of S-units. In
an appendix, classical results on the construction of Z%actions by automorphisms are
recalled.

1. Spectral analysis

In this section we consider the general framework of the action of an abelian finitely
generated semigroup S of isometries on a Hilbert space H. We have in mind the example
of a semigroup S of endomorphisms of a compact abelian group G acting on ‘H =
L3(G, ), with p the Haar measure of G.

With the notations of the introduction, every 7' € S is represented as T = T% = Tfl ...Tjd,
where (T1, ..., Ty) is a system of generators in S and £ = ({1, ..., {4) € N%

Given f € H, for d > 1, there are various choices of the sets of summation D,, for the
field (T%f,£ € N%). We discuss this point, as well as the behavior of the associated (by
discrete Fourier transform) kernels. The second subsection is devoted to the spectral
analysis of the d-dimensional action.

1.1. Summation and kernels.

If (D,)n>1 is a sequence of subsets of N?, the corresponding rotated sum and kernel are
respectively: > ep. e2mi(L, 0) L f and 1 2mi (L, 1) | 2

is an increasing family of squares or rectangles.

. The simplest choice for (D))

Notation 1.1. More generally, we will call summation sequence a sequence (R,,) of
functions from N? to R*. It could be also defined on Z%, but for simplicity in this section
we consider summation for £ € N?. We will suppose that sup,, ||R,||e < 00. If T = (T%)
is a semigroup of isometries, the associated sequence of operators on H is

Ry(T): f €H = Ro(T)f =) Rn(O)T*

£eNd

For simplicity we just write R, instead of R, (7). By introducing a rotation term, these
operators extend to a family of operators RY, for § € R,

f%Ref—ZR 27rz€«9>TZf
£eNd

We have || 3 cna Rn(£)e?™¢ HL2 rigny = 2sent | Bn()*. Taking the discrete Fourier

transform, we associate to R, the normalized “kernel” R, defined on T¢ by:

| ZeeNd R (E) 2milt, t>|

Bl = TROP
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We say that (R,,)n>1 is regular if (Rn)n21 weakly converges to a measure ¢ on T%, i.e.,
de R, pdt — de ¢ d(¢ for every continuous function ¢ on T¢,

Lemma 1.2. The kernel (R,,) associated to sets D,, C N converges to the Dirac measure
do if and only if (D,,) satisfies the Folner’s type condition:

(2) lim |D,| (D, 4+p) N D,| =1, Vp € Z%
n—oo - -

Proof. We have for the characters x,(t) = emilpt) p €7,

. 1 o [(Dn +p) N D
R, (t)x,(t)dt = ?mi k)0 g = =
/]Td . |Dn| Td Z |Dn|

k,kE'eDn

Therefore, since de én(t)dt = 1 and sup,, HRn % Qlloo < [|¢]loo sup,, HRnﬂl = |¢|loo, by

linearity and density, (R,,) weakly converges to dy if and only if (2) is satisfied. O

A family of examples satisfying (2) can be obtained as follows: take a non-empty domain
D C R? with smooth boundary and finite area and put D, = \,D N Z%, where ()\,) is
an increasing sequence of real numbers tending to +o0o. Below we consider different
examples.

Squares and rectangles. Using the usual one-dimensional Fejér kernel Ky (t) = - (3225)2,

the d-dimensional Fejér kernels on T¢ corresponding to rectangles are defined by
Knyong(ty e ta) = Ky (t1) -+ - K, (ta), for N = (Ny, ..., Ng) € N%

They are the kernels associated to Dy := {k € N¢: k; < N;,1 < i <d}.

Other examples
Kernels with unbounded gaps

Analogously to Lemma 1.2, we have that if (D,) is a sequence of domains such that

lim,, % = 0 for every p # 0 and if (R,) is the kernel associated to (D,,), then for

every continuous function ¢, lim, (R, * ¢)(f) = Jra @(t)dt for every 6 € T
An example is the following. Let k; be a sequence with k;; — k; — oo and put D,, =
{kj : 0<j <n-—1}. For p# 0 the number of solutions of k; — k, = p, for j,¢ > 0 is

finite, so that lim,, ., W =0 for p # 0.

Iteration of barycenter operators

Another method of summation, which is not of Fglner type, is given by a barycenter
of operators. Let Ti,...,Ty; be d commuting unitary operators on a Hilbert space H
generating a group S. If (pi,...,p4) is a probability vector such that p; > 0,Vj, for
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0 = (61,0,,...,04) € T?, we will consider the operators respectively defined on H by

d d
(3) P:if=> pTif, Py f—Y pe™iTf.
j=1 i=1

1.2. Lebesgue spectrum, variance.

Let S be a finitely generated torsion free commutative group of unitary operators on a
Hilbert space H. Assume that S has dimension d > 1. Let (71, ...,T;) be a system of
independent generators in S. Each 7' € S can be written in a unique way as T = T% =
TH.. T, with £ = (01, ..., £g) € Z.

For every f € H, there is a positive finite measure vy on T? such that, for every £ € Z%,
71(0) = (T4..TUF, f).

Definition 1.3. Recall that the action of S on H has a Lebesgue spectrum, if there exists
Ko, a closed subspace of H, such that the images by T“K, are pairwise orthogonal and
span a dense subspace in H.

Any set of generators (71, ..., Ty) in S defines a unitary representation of Z¢ on L2(, 11).
With the Lebesgue spectrum property, for every f € H, the corresponding spectral
measure vy of f on T? has a density ;. A change of basis induces for the spectral
density the composition by an automorphism acting on T¢.

As to examples of totally ergodic Z%actions by unitary operators, let us mention the
natural Z?-action on the full Z?-shift or Z9-subshifts. Another family of examples is
provided by the action of a group of commuting automorphisms on tori. In the present
paper, we will focus mainly on this latter class of examples.

Notation 1.4. For any orthonormal basis (¢;);es of Ko, the family (T%););c seza is
an orthonormal basis of . Let H; be the closed subspace (invariant by the Z%-action)
generated by (7™);)ez4.

We set a;,, = (f,T™);), j € J. Let f; be the orthogonal projection of f on H; and ~;

an everywhere finite square integrable function on T¢ with Fourier coefficients a;,,,.

The spectral measure is the sum of the spectral measures of f;. For f;, the density of the
spectral measure is |v;|?. Therefore, by orthogonality of the subspaces H;, the density
of the spectral measure of fis oy =3, 512

Since [, ZjeJ|'7j(0)|2 do = ZjeJ D nezs |ajnl®> = [raps(0) d0 = [ f]|* < oo, the set
Ao :=1{0eT?: > ies 1i(0)]? < oo} has full measure.

Using the basis (T%);) we associate to f € Li(u) and 6 € T? an element My f in Ko
with orthogonal “increments” and such that the rotated sums corresponding to My f
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approximate in a sense (cf. (34)) the rotated sums of f:

(4) Mpf = 5(0) ¥,

One easily see that My f is defined for 6 in a set Ay of full measure in T%. It is defined
for every 60, 6 — || My||3 is continuous and is equal everywhere to ¢ under assumption

(5) Z (Z |aj,ﬂ|)2 < +o00.

jeJ n

Remark that the choice of the system (v;) generating the orthonormal basis (7™);) is not
unique, so that the definition of My f is not canonical. But for algebraic automorphisms
of a compact abelian group G, Fourier analysis gives a natural choice for the basis.

Mizing: Recall that S is mixing (or more precisely mizing of order 2) if

(6) lim [(T"f,g)| =0, Vf,g € H.

/| =00

The Lebesgue spectrum property implies mixing of order 2.

Variance for summation sequences

Let (D,) C N? be an increasing sequence of subsets. For f € LZ(u), the asymptotic
variance at 6 along (D,,) is, when it exists, the limit

1 gep, e “OTH S
7 S(f) =1li =S
( ) U@(f) 1rILn |Dn|

By the spectral theorem, if ¢y € L'(T?) is the spectral density of f and R,, the kernel
associated to (D,,), then

(8) DY ETENTES|S = (Ra % 05) (6).

LeDn

If (D,,) is a sequence of d-cubes, we obtain, when it exists, the usual asymptotic variance
at 0. By the Fejér-Lebesgue theorem, for every f in H, for of cubes, it exists for a.e. 6.

More generally, if (R,) is a summation sequence and (R,) the associated kernel, when
¢y is continuous and (R,,) is weakly converging to a measure ¢ on T¢, we have

IRV [ 5, B
m—/wm(e t)py(t) dt %/Td@f(e t)d¢(t).

For Fglner sequences (Condition (2)), ¢ is the Dirac measure at 0 and when ¢y is
continuous the corresponding asymptotic variance o3 (f) is equal to ¢;(6).
Variance for barycenter

Let P and Py be defined by (3) for d commuting unitary operators 77, ..., T, on a Hilbert
space ‘H generating a group S with the Lebesgue spectrum property and let (p1, ..., pq)
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be a probability vector such that p; > 0,Vj. If ¢, is the spectral density of f in H with
respect to the action of &, we have:

d
BB = [ 1S py e 2 0 b= 1) iy
T -
7j=1

In order to find the normalization of P"f for f € H, we need an estimation, when
n — o0, of the integral I, := [1,| 32, p;e*™4 > dt;...dt,.

Proposition 1.5. If (p1,...,pa) is a probability vector such that p; > 0,Vj, we have

9) limnz / \Zp €27 20ty dty = (A7) "7 (pr..pa) 2.

n
J

-

Lemma 1.6. Let r be an integer > 1 and let (q1, ..., qr) be a vector such that g; > 0,V
and Ej q; < 1. Then the quadratic form Q) on R" defined by

(10) Q) = Z%‘t? - (Z git;)?

is positive definite with determinant (1 —3_.q;) q1

Proof. We give a proof by induction on r. Let us consider the polynomial of second order
with respect to the variable ¢;:

at; + ) at — (@t + > gity)* = (a1 — ) =200 gty + Y qit; — O gity)’
2 2 2 2 2

It is always > 0, since its discriminant

(O ait;)—a(1—q)( Z% i Zq] ) =@ (1—q)*[( lﬁqutﬁ— 1?%75?],
2
is < 0for 70 ,t] 2 +£ 0 by induction hypothesis, since 3— >0and > 7, - - <1
The quadratic form is given by the symmetric matrix: A = diag (¢, ..., ¢,) B, where
-1 —¢ . —g
g | @ l-e. -
—q1 - . 1-gq

The determinant of B is of the form o + Zj B;q;, where the coefficients «, i, ..., 5,
are constant. Giving to ¢, ..., ¢, the values 0 except for one of them, we find o = 1,

p1=p02=..=p,=—1. Hence det A = (1 — Ej 4) q1---qr- O

Remark that the positive definiteness follows also from the properties of F' since ) gives
the approximation of F' defined below at order 2.
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Proof of Proposition 1.5 Observe that by strict convexity | Zj pje™i| < 1and | Zj pje™i| =
1if and only if £ = 0 modulo Z¢. Since | 3 p;e*™|*" = |p1+2j:2 pje?miti—t) |2 and us-
ing the invariance of the integral by translation, we have I,, = de_l | p1+zg.l:2 p;eX™ 20 diy...dt .

Putting ¢; := pj41, j = 1,...,d =1, r = d — 1, we have ¢; > 0, > ] ¢; < 1, and the
computation reduces to estimate:

/H+§) (e*it — 1 ]%(m:/u—mmmm@%

with F(t) =1 — 1+ 37 g;(e*™ — 1)|*.
1

A point t = (ty,...t,) of the torus by coordinates such that: —% < t; < 3. We have
F(t) > 0 and F(t) =0 if and only if £ = 0. A stronger property is the existence of ¢ > 0
such that

1 1
(11) F(t) > c||t]|?, Vt: —5 <t <3
Indeed Inequality (11) is clear, outside a small open neighborhood V' of 0, since F() is
bounded away from 0 for ¢t in V. On V| we can replace F' by a positive definite form as

we will see below. This shows the result on V.

From the convergence

, Inn)?
hmm/ ﬂ—FU)ﬁ<Mm2G—(nm
{teT:|¢]|> 22}

n

)":0’

n

it follows:

limng/ (1 — F(t))" dt = limn2.J,,
teTd-1 "

n

where J, 1= f{te?l‘rtlllllﬁlnﬁ}(l — F(1))" dt.

By taking the Taylor approximation of order 2 at 0 of the exponential function e/ =
2 , :
Lt ity — 4+ im(t;) +a(ty), with [31(t;) + [72(t;)] = o(|t;]2), we obtain:

F(t) = Q2rt) + (1), with Q) = 3 g5t2 ~ (3 a5t5)? and () = o[

The quadratic form @ is the form defined by (10). Therefore, it is positive definite by
Lemma 1.6 and there is ¢ > 0 such that Q(t) > c||t]|?,Vt € R".

We have lims)o supy, <5 F'(t)/Q(27t) = 1. With the notation u = (u1,...,u,), t =
(t1,...,t,) and the change of variable u = \/nt, we get:

r 2Ty 1
n2J, ~ / (1-Q(—=))"du — / e~ QW dy,
{lul<inn} Vn 2m)" Jer

We have [, e=9® duy = 77 det(A)~ 2 =72 (py...pa) 2. Therefore we obtain:

imn“z / |Zp €27 |2ty dty = (47) 72 (pr...pa)”

D=

n
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As expected the final result is symmetric into the parameters pq, ..., pg, although the
variables tq, ..., t; play a dissymmetric role in the calculation. O

Example: With K, (t1,ty) = /7 |(M)|2", we have [, K, (1, to)dtdty — 1.
This can be shown also using Stirling’s approximation:

/ Kn(tl,tg)dtldtQ _ \/7TTL/ ’Z< ) 2mikty 27rz(n ktz’ dt dtg
T2

EE)EC)

Proposition 1.5 gives the normalization for the iterates of P or Pjy:

Proposition 1.7. If ¢y is continuous, then for every 6 € T¢ we have

(12) lim (47)°2 (pr..pa)2n’z |Prfl2 :/¢f<el+u,...,9d+u) du.
T

n—oo

d—1

Proof. Let us put ¢, := (47)“2 (p1...ps)2n"z for the normalization coefficient and

K (tla “" =, | Z p] 27rztj|2n

We have Cp HPGRfH% = (Kn*gpf><9177‘9d) and, by de tl,...,td) dtldtd—> 1.

Let us show that for ¢ continuous on T%, lim,, [1, K, @ dt;...dtq = [ ¢(u, ..., u) du. Using
the density of trigonometric polynomials for the uniform norm, it is enough to prove it
for characters y;(t) = ¢*™ i kit ., to prove that for ¢ = y; the limit is 0 if ",k # 0,
and 11if ), k, = 0. We have

Td

d
Kn(ty, ..., tg) ™2kt qpy  dty = ¢, / > py e e2mina e gt dt,
Td .
7j=1

d
= (Cn / |p1 + Z Dj e2milt; —t1)|2n 2T Si_s ke(te—t1) dtg...dtd) / 2™ (2, ko)t dt,.
Td—1 T

=2
Therefore it remains to show that the limit of the first factor when n — oo is 1. Using
the proof and the result of Proposition 1.5, we find that this factor is equivalent to

2TU 2 ST gy ML
/{ I ||<1nn}<1_Q<77;)) ik du,

which tends to 1. O

N

(4m) % (pr..pa)
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1.3. Nullity of variance and coboundaries.

Let H be a Hilbert space and let T} and 75 be two commuting unitary operators acting
on H. Assuming the Lebesgue spectrum property for the Z2-action generated by T; and
T,, we study in this subsection the degeneracy of the variance. Here we consider, for
simplicity, the case of two unitary commuting operators, but the results are valid for any
finite family of commuting unitary operators.

Single Lebesgue spectrum

At first, let us assume that there is 1 € H such that the family of vectors TFT5) for
(k,r) € Z? is an orthonormal basis of H (simplicity of the spectrum).

Lemma 1.8. Let f be in H and f = Z(W)GZQ ar, TET3 be the representation of f in
the orthonormal basis (TFT5, (k,r) € Z2). If

(13) A= 57 (L4 (k] + Ir]) fag] < +oo,

k,rez?

there exists u,v € H with ||ul[, [[v]] < A such that

F=0) a)v+ I =T)u+ (I -Tv

(k,r)ez?

If Z(k’r)ezg ag, =0, then f is sum of two coboundaries respectively for Ty and T5:

Proof. 1) We start with a formal computation. Let us decompose f into vectors
whose coefficients are supported on disjoint quadrants of increasing dimensions. If

f= Ek,reZQ ay, TFT5 ), we write
(14) f="foot+fio+for+ oot for+fin+foaa+fia+foo g,
with

Joo = @00, fio= Zak,o T4, Joi = ZCLO,T T3,

k>0 >0
frr0=> awo ™, fo1 = a0 Ty ",
k>0 >0
k —k
fl,l = Z A r T1 TQT@Z% f—l,l - Z A—k,r Tl T£¢>
k,r>0 k,r>0
krp— —krn—
Ji-1= Z k- TYT5 "0, for,1 = Z a—po— Ty T570.
k,r>0 k,r>0

For each component given by a quadrant, we solve the corresponding coboundary equa-
tion up to constant x 1.
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With f decomposed as in (14), the components can be formally written in the following
way, with g;, &} € {0,+1,—1}, for 1 =1, 2:

fo,o = Ug,o = aoo% fal, = 21 o+ (Tel - I)ugjg, fO,eg Uo JE2 + (T62 I)ug Za
f61762 = uel o + (T61 _ I) e0 4 (T52 _ I) 02 _ (Tfl _ I)(T262 _ I)um,eg

61 €2 61 €2 €1,€27

where

0 ) k
Ugi0 = (Z a€1t,0) 1/}7 2,0 = Z Z Qeyt, 0 TEl

t>1 k>0 t>k+1
0 0,
e, = (O 0es) ¥y wgZ =Y (D 0,05 ¢
s>1 r>0 s>r+1
0 0 k
Ut ey = (Z Ueyt,e0s) U, US) e, = Z ( Z eyt eor) TT TS 0,
t,s>1 kO,r>1 t>k+1

07 — k
ug?, = Z (Z Qeyk,ens) T1 157 0,

E>1,r>0 s>r41

k
Uiilﬁi = Z( Z Qeyt,ens) T 157 9.

k>0 t>k+1,s>r+1

More explicitly we have, for instance,

fro=uSo+ (i = Durg = O _ae) o+ (T =D [D_( Y ao)Tf ¢,

t>1 k>0 t>k+1
fii=uly+ (T — Dupl + (T — Duyy + (T — (T — Duyy

(Y a) e+ -01 Y (Y a) T3]

t,s>1 E>0,r>1 t>k+1

=D Y (Y a) T —(L-D(G =D (), a)TIT3 Y]

k>1,r>0 s>r+1 k,r>0 t>k+1,s>r+1

By summing the previous expressions, we obtain the following representation of f:

= (Z ars) (T =D (u} =Ty ety 4wy = T Ty +uy ™ = T Ty ™)
HT = g = T3 Ty g™ = Tyt + 157 — T3ty ™)
+H( = D)(Te — I)(uys — Ty ulys — Ty tuy T + T Ty 'y 05).

The first term is the vector a(f) 1, Where a(f) is the constant ), ;. ay, obtained as
the sum ud + u® + ud + u®, + u®, + uy”® + ug " + uy* + uy 2. The second term is a
sum of coboundaries. If a(f) = 0, then f reduces to a sum of coboundaries.
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2) Now we examine the question of convergence in the previous computation. We need
the convergence of the following series (for €1,e9 = £1):

E a'Elt, €28 E aalt,{;‘gr) E aalk,&‘gsa E aalt,&‘gsa

t,s>1 t>k+1 s>r+1 t>k+1,s>r+1
2 2 2
E | E eyt exr|s E | E ek, s E | E (eyt,eas
k>0,r>1  t>k+1 k>1,r>0 s>r+1 k,or>0 t>k+1,s>r+1

Sufficient conditions for the convergence are:

Z |k, | < 400, Z ( Z | eyt e0r])? < 400,

k,rcz2 E>00>1 t>k+1
Z ( Z |a€1/€,628|)2 < +00, Z( Z |a51t,525|)2 < too.
E>1,r>0 s>r-+1 k>0 t>k+1,5>r+1

To obtain the convergence of the above sums, we use the following inequality: if a, b, c,d >
0, then (1 +vab)(1++Ved) < (1+a+ ¢)(1+ b+ d), which implies, for t,s,t',s' > 0:

(1 +inf(t,t") (1 +inf(s,s)) < (1 +Vtt") (1+Vss') < (1 +t+5) (1+1 + ).

Hence we have:

Do la?= D (Y lallag))

k>0,r>0 t>k,s>r k>0,r>0 t,t'>k,s,s'>r

< Z la.s||ay s | Z Lo<k<inf(t, ") Z Lo<r<int(s,s")
t,t’>0,s,5'>0 k r

- Z lars||ay | (1 +inf(¢, ")) (1 + inf(s, s'))
t,t/>0,5,5'>0

< Y allavgl(T+t+s) L+t +8) =( > (L+t+s)|an])”
t,t’,s,8'>0 t>0,5s>0

An analogous bound is valid for the indices with + signs. Therefore, convergence holds

if (13) is satisfied and we get >, ;. (1 + [|Z]|) [a¢| as a bound for the norm of the vectors

0 €1,0 0 0,e2 0 €1,0 0,62 £1,€2
Ugy,00 Uey,00 U0,e05 U069 Uey,e0r Uey enr Uet g0 Uel en- [

Countable Lebesgue spectrum

We suppose now that the action generated by 77 and T on the Hilbert space H has
a countable Lebesgue spectrum. With the notation 1.4, there exists a countable set
(¢j,7 € J) in H such that the family of vectors {T¥T5v;,j € J,(k,r) € Z*} is an
orthonormal basis of H.

The representation of f in the orthonormal basis (TFTy1;, 7 € J, (k,r) € Z?) is given by
F=200 1= e O hmeze @ik TET305), With a; o) = (f, TFT55).
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Recall that
My(f) = Z%(Q)wj, with v;(0) = Z g p2mi(k,0)

JjeJ kezd

Using the previous results, we have under the convergence conditions:
fi = (00 + (I — ™" T)ujg+ (I — ™" Ty)v; 4,V € J,
fr= My(f)+ (I =) Y juzo+ (I =P T) Y vy,
jeJ jeJ
Lemma 1.9. Suppose that the following condition is satisfied:

(15) > > (L&D Jajul < co.

J kez?

Then there are v,uy, uy € H such that the family {T%v,n € Z} is orthogonal

(16) f =v+ ([ — Tl)U1 + ([ — TQ)UQ’

and o*(f) = [Jvl|* = 22, O keze @jx)?. Moreover, we have o*(f) = 0 if and only if f is
a mized coboundary: there exist uy,us € H such that

(17) f=0-T)u+ (I - To)us.

More generally, for every 6, the rotated variance o3(f) is null if and only if there are
U1 g, Ugp € H such that f = (I — ¥ T uy g+ (I — 22Ty uygg.

2. Multidimensional actions by endomorphisms on tori

We consider now Zd-actions or N-actions given by automorphisms or endomorphisms
of the p-dimensional torus. The first three subsections are preparatory for the proof of
the CLT for such actions.

2.1. Preliminaries.

Notation 2.1. Let M*(p,Z) denote the semigroup of p x p non singular matrices with
coefficients in Z and GL(p,Z) the group of matrices with coefficients in Z such that
det A = +1.

Every A in M*(p,Z) defines a surjective endomorphism of T?, hence a measure preserving
transformation on (T?, u) and a dual endomorphism on the group of characters of T”
identified with Z° (action by the transposed of A). If A is in GL(p,Z), it defines an
automorphism of T*.

For simplicity, we denote with the same notation the matrix A, its action on the torus
and the dual endomorphism. Since we are composing commuting matrices, there is no
problem with the transposition. If f is a function on the torus, A f stands for the function

r — f(Az).
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After choosing a system Aq, ..., Ay of generators, every element in S can be represented as
An = AT LAY n = (nq,...,n4) € N¢ and we obtain an action of N? by endomorphisms
on T?. We use also the notation T™f.

It is well known that ergodicity for the action of a single A € M*(p,Z) on (T?, ) is
equivalent to the absence of eigenvalue root of 1 for A. Recall also Kronecker’s result:
an integer matrix with all eigenvalues on the unit circle has all eigenvalues roots of unity.

In what follows the data will be a finite set of commuting matrices A; in M*(p,Z) for
p > 1 and S the semigroup generated. We suppose that the group S generated by the
matrices A; in GL(p, Q) is torsion-free.

Since S is finitely generated and torsion-free, it has a system of d independent generators
(not necessarily in §) and it is isomorphic to Z?. The rank of the action of S is d.

Embedding of a semigroup of endomorphisms in a group

Lemma 2.2. Let S be a commutative semigroup of endomorphz’sms on a compact abelian
group G with dual group H. There is a compact abelian group G such that S is embedded
in a group S of automorphisms of G. If G is connected, then G is also connected.

If § is a finitely generated commutative semigroup of endomorphisms of T, it can be
embedded in a group S of automorphisms, isomorphic to Z2, acting on a compact abelian
connected group G which contains T? as a factor.

Proof. The construction is done in a discrete group H such that H is isomorphic to
a subgroup of H. The group H is the quotient of the group {(h,A)},h € H/ A € S
(endowed with the additive law on the components) by the equivalence relation:

[(h, A) ~ (W, A)] & [A'h = AR.

The map h € H — (h,Id)/ ~ is injective. The elements A € S act on H by (h, B)/ ~—
(Ah, B)/ ~. One checks immediately the stability of the equivalence classes. We can
identify S and its image.

For A € S, the automorphism (h, B)/ ~— (h,AB)/ ~ is the inverse of (h,B)/ ~—
(Ah,B)/ ~.

If H is torsion free, then H is also torsion free, and therefore its dual, the compact
abelian group G, is connected.

In the case of endomorphisms A; of T”, the construction can be describe in the following
way. Let G be the compact dual group of the discrete group Z° := {k pri,ﬁ e 2l l; €
Z}, where p; is the determinant of A;, for each i. Z* is a subgroup of 7 and G has T*
as a factor.

The dual action of & on Z7 is embedded in a group of automorphisms S acting on Z¢
and this defines by duality a group (still denoted S) acting by automorphisms on G. O
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S is isomorphic to the subgroup S generated by the matrices A; in GL(p,Q). Since a
matrix A € M*(p,Z) is uniquely determined by the corresponding measure preserving
transformation on (T?, i), we can identify S and the associated commutative semigroup
of measure preserving transformations acting on (T?, ).

The spectral analysis for S, as for S, takes place in T?, where d is the rank of S.

The Lebesgue spectrum property as in Sec~tion~1 can be applied to the action of S. It is
equivalent to the fact that the Z-action S on Z° \{0} is free.

Definition 2.3. We say that n — A™ is totally ergodic if AT"...A}}* is ergodic for every
n=(n1,..,nq) # 0.

Total ergodicity is equivalent to the property that A% has no eigenvalue root of 1, for
n # 0. Replacing n by a multiple, there is no n # 0 such that AZ has a fixed vector
v # {0}. In other words, total ergodicity is equivalent to say that the Z?-action n =
(n1,...,nq) : (v — A%0) on Z° \{0} is free.

Using a common triangular representation over C for the commuting matrices A;, one
sees that if Ay;,..., \,; are the eigenvalues of A; (with multiplicity), for j = 1,...,d, this

is equivalent to (H;l:1 )\Z-j =1 = (n1,...,nq) =0), Vi € {1, ..., p}.

Lemma 2.4. Let B € M*(p,Z) be a matriz with irreducible (over Q) characteristic
polynomial P. Let {Ay, ..., Aq} be d matrices in M*(p,Z) commuting with B. They

generates a commutative semigroup of endomorphisms on TP which is totally ergodic, if
and only if for any n € Z\{0}, A™ # Id.

Proof. Since P is irreducible, the eigenvalues of B are distinct. It follows that (on C)
the matrices A; are simultaneously diagonalizable, hence are pairwise commuting. Now
suppose that there are n € Z4\{0} and v € Z* \ {0} such that A% = v. Let W be the
subspace of R” generated by v and its images by B. The restriction of A% to W is the
identity. W is B-invariant, the characteristic polynomial of the restriction of B to W
has rational coefficients and factorizes P. By the assumption of irreducibility over Q,
this implies W = R”. Therefore AZ is the identity. O

Lemma 2.5. The following conditions are equivalent for a Z-action T by automor-
phisms on a compact abelian group:

i) T is totally ergodic;

i) T is 2-mizing?;

ii1) T has the Lebesgue spectrum property.

Proof. The free action property expressed in terms of orbits gives immediately the
Lebesgue spectrum property. Mixing of order 2 is a priori stronger than total ergod-
icity. At last the implication (i77) = (i7) is a general fact, as remarked in Section 1. [

2 Mixing of order 2 is expressed by (6) (here H = L2(T?, p)) or equivalently by lim, . (B1 N
T_QBQ) = M(Bl)M(Bg), VBi,Bs € A.
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Remark 2.6. Finding the dimension of S and computing a set of independent generators
can be very difficult in practice. For p = 3, we will give explicit examples in the Appendix.
Given a finite set of commuting matrices in dimension p with determinant 1 for p > 3,
it can be difficult and even computationally impossible to find independent generators.

In some cases the problem can be easier with endomorphisms. For instance, let p;,7 =

.,d be coprime positive integers and A; : * — ¢;x mod 1 the corresponding endo-
morphlsms acting on T'. Then the A;’s give a system of 1ndependent generators of the
group S generated on the compact abelian group dual of ZF = {k Hq keZrt; € L}.
More generally we have:

Corollary 2.7. Let S be the semigroup generated by d matrices { Ay, ..., Ag} in M*(p, Z)
with the irreducibility property like in Lemma 2.4, with determinant q;. If the numbers
log |q;| are linearly independent over Q, then S is totally ergodic.

Proof. If § is not totally ergodic, from the hypothesis, by Lemma 2.4 there exists n €
ZN\{0} such that A™ = Id; therefore > n;log|g| = 0, contrary to the assumptions. [

Notation 2.8. When § is a totally ergodic group of automorphisms, J will denote a
section of its action on ZP\{0}, i.e., a subset J C Z*\{0} such that every k € Z*\{0}
can be written in a unique way as k = A7'...A}? j, with j € J and (n4,...,nq) € Z*.

Remark 2.9. It is useful to choose the section in the following way. For a fixed ¢, the
set {A%, k € Z} is discrete and lim o0 || A%(|| = +00. Therefore the minimum of the
norm is achieved for some value of k. We can choose an element j in each class modulo
the action of S on Z”, which achieves the minimum of the norm. ]§y this choice, we have

(18) 171l < [IA%4]], ¥j € J, k € Z°,

If Ko denotes the closed subspace of L§(T?) generated by 1;(z) = e?miie) for j € J,
the subspaces A7'...A;*KCy are pairwise orthogonal, since A7*...A;*J N A?i...AZ&J = 0,
for (ny, ..., ng) # (nf, ..., nj)).

Let f be in L*(T?). Recall that the Fourier coefficient of f are denoted c;(k) =
Jro e~ 2mik) f(x) dz. Then, with the convention of Notation 2.1, the decorrelation is

(19) (fLA™F) = cp(A"0) cs(0).

Lezr

2.2. Rate of decorrelation.

If a N%action by endomorphisms is mixing, a question is the rate of decorrelation for
regular functions on T”. A key lemma for the decorrelation property is the following:

Lemma 2.10. (Leonov [18], Katznelson [14, Lemma 3]) If B is a p X p matriz with
integral coefficients and V' a m-dimensional eigenspace of B such that V N 7Z° = {0},
then there exists a constant C' such that, for every j € ZP\{0}, the distance (for the
euclidian norm) d(j,V') of j to V satisfies d(j,V) > C||7||~™.
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The rate of decorrelation for sufficiently regular functions is related to following lemma
(cf. D. Damjanovi¢ and A. Katok [6]).

Lemma 2.11. If (A% n € Z%) is a totally ergodic Z*-action on T? by automorphisms,
there are 7 > 0 and C > 0, such that for all k € Z°\{0} and for all n € Z°

(20) |AK|| > Ceml= U k|~
Proof. We give a proof which follows closely the proof of Lemma 4.3 in [6]. We suppose

the action is irreducible.

= (n1,...,nq) €
w.,d. For t =

The Lyapunov exponents of A% are x;(n) = ijlnj In |\;;|, where
Z4i = 1,..,p, and Atj,-.s Ap; are the eigenvalues of A;, for j =
(t1, ... ta) €RY let x;(t) = S0 ;10 |Ay).

We have >, x;(n) = In|det A% > 0, for n € Z%. This inequality extends to R? since, if
(ny/qr) is a sequence of rational vectors approximating ¢ with components n;,/qe, nje €
Z,j=1,..,d, q € Z*, then

> lt) = lim 3 vil/a) = lim = 3 vilm) 2

n
1,

Let 7 := min; max; y;(¢), for ¢ on the unit sphere U of R? and let ¢, be a point on U
where this minimum is achieved. Let us show that 7 > 0.

If 7 <0, then y;(ty) <0, for i = 1,...,p. Since >, x;(t) > 0 for all £ € R?, it follows
that x;(t,) = 0 for i = 1, ..., p and consequently 7 = 0. This implies that, for the points
of the half line L := {st,, s € R}, xi(st,) = 0 for all 7.

There are non zero integer vectors either in L or arbitrary close to L. More precisely, let
to;,7 = 1,...,d, be the coordinates of {;,. By Dirichlet’s theorem, there are sequences of
integers (py,;) and (gx), with g, > 0 and limy, g, = +o0, such that |py ; — gito ;| < 1/q,1/d,

for j =1,....d. Since > _;In|A; [ to; = xi(ty) = 0, for i =1, ..., p, we have

d
|Zln [Xiglpesl < ax Zln Nl (Prg/ar — tog)| + qr | Zln [ Aii] to,l
j=1 J J

< Z | In [ X jl| [Pr.; — awtos] +0 < (Z | 1ﬂ\)\@-,j||)q,;1/d 0

J J

It follows that, for the sequence (p,) in 71, (AP+) is a sequence of integer matrices
whose eigenvalues tend to 1 in absolute value as & — oo. Now, by an improvement of
Kronecker’s result (P. E. Blanksby and H. L. Montgomery [3]), for every p > 1, there
exists a number b(p) > 1 such that any integer matrix in G L(p, Z) with all eigenvalues in
absolute value less than b(p) has its eigenvalues roots of unity. Thus we conclude that,
for k big enough, the eigenvalues of AZ are roots of unity, contrary to the assumption
of total ergodicity. Therefore, 7 > 0.
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For k € Z°\{0}, let k; be the projections of k to the corresponding proper direction.
Individual proper directions are irrational and, due to the irreducibility assumption, each
of the projections k; is nontrivial. By applying Lemma 2.10 we have ||k;|| > C||k|~* for
each ¢ and we obtain:

P P
n nE || — A 4 Tl , T|nl -p
| A%kl > C; || A=K, | C; Ik; |l exp xi(n) > Ce Din. [k; || = Ce™™ k[ 7.

0

Notice that for endomorphisms Inequality (20) is valid for n € N For the proof, we
replace the unit sphere U by U, the set of vectors with non negative coordinates in the
unit sphere of R¢.

Regularity and Fourier series

We need some results from the theory of approximation of functions by trigonometric
polynomials. For the sake of completeness, we give a short proof.

For f € L*(T?), the rectangular Fourier partial sums of f are denoted by Sn,.. n,(f).
Its integral modulus of continuity is defined as

w2(517"'75d7f): sup ||f(x1+7_17"'7$d+7d)_f(x17”'axd)||2-
|71 <01, Ta| <6
Let Iy, ng(tie o ota) = KRy v, (b ta) /1K, N[ 72 (pay De the d-dimensional
Jackson’s kernel, where Ky, n, is the d-dimensional Fejér Kernel.
Clearly, Jn, .. .n,(t1, - ,ta) = Jn(t1) - JIn,(ta). It is known that the 1-dimensional

Jackson’s kernel satisfies the following moment relations:

1

(21) / t* In(t)dt = O(N7%), YN > 1, k=0,1,2.
0

Lemma 2.12. There exists a positive constant Cy such that, for every f € L?(T?), for
every Ny, ..., Na > 1, [Ty, vy % f = fll2 € Cawn(zs -+ s 370 ).

Proof. Since wo(dy,- -+, dq, f) is increasing and subadditive with respect to ¢;, we have
for any positive numbers A;: wa(A1d1, -+, Agda, ) < (A+1) - (Ag+1) wa(dy, -+, b, f)-

Using this inequality and (21), we obtain:

||JN1’ ’Nd*f f||2<f[—— —[d‘]Nl, 7Nd(7—17 )Hf( =T, 7-_7_d)_f||Lpd7'1"'de
S 2 f[oé[d ‘]Nl,...,Nd(Tl, s ) ( .. ’Td’f) d7-1 .. 'de
:2df01[dJN1’ 7Nd(7-17"',7—d) WQ(N]\llev'.'7N]<i[;—d7f)d7_1"'d7—d
< 2, ) S im0 o (Nama 4 1) T, (71, 7a) dy - dy

= 2dw2(NL17 ) NLda f i:1 foﬁ(NiTi + 1)<]N1(TZ) dTi S CdWQ(Nle ) NLda f)
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O
Proposition 2.13. There exists a positive constant Cy, such that, for every f € L*(T¢)
and N17 ceey Nd Z 1; we have ||f - SNI ----- Nd(f)||2 S CdWQ(A]\/%) ) NLda f)

Proof. For every d-dimensional trigonometric polynomial P of degree at most Ny X - - - X
Ny, we have: [|f — Sn,..~n,(f)ll2 < ||f = Pl|l2- The result follows then from Lemma
2.12. OJ

Notation 2.14. (Regular functions) We introduce below several regularity conditions
for real functions f in L*(T*):

(22) If = sn..n(F)ll2 < R(f) n N)~®, with o > 1,
(23) e (k)] = O([|k])™?, with 8> p,

1
(24) There are o > 1 and C(f) < 400 such that ws(4, ..., 0, f) < C(f) (In 5)’Q,V5 > 0.

One easily checks that (23) implies (22). By Proposition 2.13, Condition (24) on the
modulus of continuity implies (22).

In what follows in this subsection, n — A is a totally ergodic Z%action by automor-
phisms on T?. We denote simply by |.| the norm of an integral vector. Recall that we
do not write the transposition for the dual action of AZ.

Proposition 2.15. If f € L3(T?) satisfies (23), we have, for constants C,7 > 0.
(25) (Anf, £ < Cesmirlel vy e 72,

Proof. For L > 0, by (19) we have :
(AL DS A [ lep®)+ Y lep(A2ER)]] = (1) + (2).
|k|>L |k|<L

By estimating separately (1) and (2) and choosing L, we get a bound for the decorrela-
tion. Indeed, since, by Lemma 2.11

SR~ CLIE, ST AR~ QeI [o04),
Likgs kI<L
With PP = 6757\n|LP(1+5)’ ie.,, L = eﬁ@’ we obtain: (1) + (2) = O(G%THHH), O

The proof of the following proposition is like that of the analogous result in [18].

Proposition 2.16. Let N be a subset of Z°. Let f € Li(T?) satisfying (22) and
fi(@) =3 e ca(f)e¥™ ) Then there is a finite constant B(f) depending only on
R(f) such that

(26) [(A%f1, f ] < BUOI fillalll ™, Vo # 0.
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Proof. It suffices to prove the result for f, since, by setting cf(n) = 0 outside Ny, we
obtain (26) with the same constant B(f) as shown by the proof. Let A, b, d such that

l<h<e, 1<b<Ar, \b? =d > 1. We have for n € Z%

(27) =Y alaw = 3 + 3

kezr kl<blnl  [k[>bln

From Inequality (20) of Lemma 2.11, we deduce that, if [k| < b2 then |A%k| >
D2 |k|=r > DAl p=rlzl = Dl p 7& 0. It follows, for the first sum:

> el easNI< Y lelHP)? X leae(DP2 < UIflle D lem(N

|| <bln! || <blnl |k|<bln] |m|>Ddln!

By Parseval inequality and (22), there is a finite constant Bl( such that, for |n| # 0:

1 —a
(28) ( Z (NP2 <If = Sppamy,...(paz ll2 < W < Bi(f)|n|™
|m|>Ddlz! ( [ _])
From the previous inequalities, it follows:
(29) | D el Cans(£) < Bi(H)If llaln| ™, VIn| # 0.
|k|<blz!

Now we bound the second sum in (27)'

Y )OI < (O el HPE O lease(HDPE < (D 1l HPECY. lem(HIPD)E.

|k|>blzl |k|>blzl kezr |k|>blzl mezr

Analogous to (28), we have: (3 ;5 e (F)|2)2 < R(f) (Inbl2h== < By(f) |n|~*; hence:

(30) | D el Cans()] < Bol NI fllolnl ™, |n] # 0.
> bl
Taking B(f) = Bi(f) + Ba(f), (26) follows from (27), (29), (30). O

The following theorem allows polynomial approximations in the proof of the CLT.

Theorem 2.17. If f satisfies (22), (in particular if [ satisfies the regularity condition
(24)), then EQEZd [(AZf )| < oo, the variance o*(f) exists, o?(f) = Eﬂezd@é&ﬂf, ),

the density ¢y of the spectral measure of f is continuous.

Moreover, there is a constant C' such that, if N is any subset of Z° and fi(x) =
Dken k()X 8D then o(f — f1) < C|f = filla.

Proof. The Fourier coefficients of ¢y are (A™f, f). The previous proposition implies [(22)
= D neze [(A2f, )| < +oc] and the second statement. O
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The same conclusion holds if f satisfies || f|lc := D _cz, |7 (£)| < 400, with the inequality
o(f =) <ClIf = fille

Indeed, by total ergodicity, for every £ € Z° the map n € Z¢ — A%{ € 7Z° is injective,
and therefore Y ;a4 [cp(A)| < 374z lcp(k)]. Using (19), we have:

Z@ezd |<Aﬂf’ f>| < Z@ezd (dezp |Cf(An£)| |Cf(£)|)
= Yz (Cueze ler(A0)) 1es O] < (Sgezn les O = 1£]12

Coboundary characterization

Using the previous result on the decay of correlation, let us give a sufficient condition
on the Fourier series of f for the coboundary characterization. Recall that J denotes a
section of the Z%action by automorphisms on Z* (cf. Remark 2.9).

The sufficient condition (15) given in Lemma 1.9 for the coboundary representation in
the framework of automorphisms reads

(31) DD IR [es(A5))] < oo

J€J kezd

Theorem 2.18. If |cs(k)| = O(||k|) =7, with B > p, we have o*(f) = 0 if and only if f
is a mized coboundary: there are continuous functions u;, i = 1, ..., d such that

(32) =Y (I-A)u.

i=1

Proof. Let € €10, 8—pland ¢ := (B—p—e)/(B(1+p)), we have 68p—5(1—39) = —(p+¢).
There is a constant C; such that ||&|| e %7kl < Cy, VE € Z4.

According to (20), we have |c;(A%))| < C||ALj||% < Ce=ArlIEI|||%; hence

(33) eTIE ey (AR < Clj]1°%.

Recall for every ¢ € Z°\{0} there is a unique pair (k,j) € Z¢ x (Z°\{0}) such that
AEj = (. Therefore we have, using Inequality (18) (see Remark 2.9):

DD ke (AEDI = > Nkl lep (A5 Plep (A

Jj€J kezd Jj€J kezd
<0 30T I e (AP lep (A < Gy ST ST 197 e (AE))
Jje€J kezd J€J kezd
<Oy ) > NIAE[P7 ep(A%))[*° by (33) and (18)
J€J kezd

=Co Y U le (O P<Cy Y PP <y Y (17 < oo

£€7°\{0} £e7,\{0} £eZ,\{0}
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This implies that (31) is satisfied. Moreover, since here the functions involved in the
proof of Lemmas 1.8 and 1.9 are characters, hence continuous and bounded, we get also
continuity of the functions w; in the representation (17). O

Approximation by M,

In the algebraic setting of endomorphisms of tori, the family (¢;) of the general theory
(Subsection 1.2) is (e;) where, for £ € Z°, e, denotes the exponential e,(x) = i),
For automorphisms (up to a not written transposition) we have

aln = <f7 Tﬂej> = Cf(TEi)7
%(0) = D ep (T2 emef Myf =3 ;(0) e
nezd J
Hence, My f is defined for every 0, if >, (Enezd e (T™ §)]?) < 0.

Let us assume that f has an absolutely convergent Fourier series. Since every k € Z° can
be written in an unique way as k = T" j, with j € Jand n € 74, we have the inequality:

Dolerm NI D e (TP =D les(®)] = |1 flle:
nezd J€J nezd kezr

Then, for every j € J, the series defining ~; is uniformly converging, 7; is continuous
and > [Villoo <20 jes 2oneza ler (T ) = [l We have also:

ZI% ) <||f||ZI% W<l Y D lep(T™ )]

Jj€J nezd

= [/l Z ler(B)] = [I£1le-

kezr
. 2 . . . . .
The function ) jes |7;]% is continuous, as a sum of a uniformly converging series of
continuous functions.

The functions ¢y and ZZEJ [;|? are equal a.e. Moreover ZZGJ |75* and ¢ by Theorem
2.17 are both continuous, hence they are equal and one easily proves:

Proposition 2.19. The following approximation holds for every @, if f has an absolutely
convergent Fourier series:

1 4
(34) Y eI = My f)]3 — 0.

0</ly,....Ly<n—1

2.3. Mixing, moments and cumulants, application to the CLT.

Before we continue studying actions by automorphisms, we recall in this subsection some
needed general results on mixing of all orders, moments and cumulants.
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Let (Q, A, 1) be a probability space and let T : n — T™ be a measure preserving N%- or
Z%-action on (Q, A, ).

Definition 2.20. The action by T is r-mizing, v > 1, if for all sets By, ..., B, € A
lim p(YT72 Be) = [ [ (B).-
=1 =1

min ||n,—n||—oco
1<e<t/<r

Mixing of order r > 2 implies mixing of order " for 2 <1’ <r.

Reminders on moments and cumulants

For the sake of completeness we gather some facts about moments and cumulants. They
are essentially classical. A large part can be found in [18] and in the references given
therein. Implicitly we assume existence of moments of all orders when they are used.

For a real random variable Y (or for a probability distribution on R), the cumulants
(or semi-invariants) can be formally defined as the coefficients ¢ (Y) of the cumulant
generating function ¢t — InE(e™) = Y227 (V) &, ie.,

(Y = 57 InE(e™) o
Similarly the joint cumulant of a random vector (Xj, ..., X,) is defined by
o e
o(Xy,.., X;) = ot,..0L InE(eXi=1 %)), _ .

This definition can be given as well for a finite measure on R".
One easily checks that the joint cumulant of (Y, ...,Y) (r copies of Y) is ¢ (Y).
For any subset I = {iy,...,4,} C J, :=={1,...,r}, we put

m(I) = m(iy,....ip) == E(X;,..X,,), s(I) = s(i1, ..., 75) := c(Xip, ..., Xi).

The cumulants of a process (Xj);cs, where J is a set of indexes, is the family
{C(Xi17 couy Xu), (’il, couy Zr) € jr7 r Z 1}

The following formulas link moments and cumulants and vice-versa:

(35) (X1, Xo) = s(J) =) (=P p— D m(y)..m(I,),
P

(36) E(X1..X,) = m(J,)=> s(h)..s(I).
P

where in both formulas, P = {I[y, I5, ..., I,} runs through the set of partitions of J, =
{1,...,r} into p < r non empty intervals.?

3About cumulants and for (35) and (36), see references quoted in [18] or [12].
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Now, let be given a random process (Xj)gezd, where for k € Z% X is a real random
variable, and a summation kernel R with finite support in Z¢ and values in R*. (For
examples of summation kernels, see Section 1, in particular Proposition 1.7). Let us
consider the process defined for k € Z¢ by

Yi=)Y_ R(+E)X, keZ"

Lezd

By permuting summation and integral, we easily obtain:

c(Vig, i Y ) = > o(Xe,, ooy Xo ) R(G + Ky) . R(L, + k).

(Lyeoily) €2
In particular, we have for Y = 3, v R(£) Xy

(37) V) =cY,Y) = Y e(Xy, . X)) R(G).R(L,).

Limiting distribution and cumulants

For our purpose, we state in terms of cumulants a particular case of a theorem of M.
Fréchet and J. Shohat, generalizing classical results of A. Markov. Using the formulas
linking moments and cumulants, the content of “a generalized statement of the second
limit-theorem” given in [9] can be expressed in the particular case of convergence toward
a normal distribution in the following way:

Theorem 2.21. Let (Z",n > 1) be a sequence of centered r.r.v. such that
(38) hmc @(z") = o? hm A(Z™) = 0,Vr > 3,

then (Z™) tends in distribution to N'(0,0%). (If o = 0, then the limit is &).

It implies the following result, a slight extension of Theorem 7 in [17]:

Theorem 2.22. Let (X)peza be a random process and (R,)n>1 @ summation sequence
on Z%. Let (Y")n>1 be the process defined by Y™ = 3, Ru(£) Xg,n > 1. Under the
assumptions lim, ||Y"||2 = +oo and

(39) e(Xpys o X0,) Rully)- (L) = o{|[Y"][5), ¥ > 3,
(lys8,) €(Z)T

||Yn|| tends in distribution to N'(0,1) when n tends to oo.

Proof. Let 5, := ||Y"]|s = || Zz R, (0) Xy||2 and Z, = 3, 1Y™.

We have using (37), c"(Z") = 35 "Dy ety S Xeys s X ) R(4)..R(L,). The the-
orem follows then from the assumption (39) by Theorem 2.21 applied to (Z,). O
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For f € L, the space of measurable essentially bounded functions on (€2, x) with
[ fdp =0, we apply the definition of moment and cumulant to (7% f, ..., T% f) and put

(40) mf(ﬂl,...,@r):/T"If...T"deu, sp(ng,...,n,) =c(T™f, .., T" f).

In order to show that the cumulants of a mixing system of all orders is asymptotically
null, we need the following lemma.

Lemma 2.23. For every sequence (n,...,n¥) in (Z?)", there are a subsequence with
possibly a permutation of indices (still written (n¥,...,n*)), an integer x(r) € [1,7] and
a subdivision 1 =11 <719 < ... <Tyy—1 < Tey <7 of {1,...,7}, such that
(1) lmmin [t - | = oo,

k 1<s#s'<k(r) s s

(42) ﬂf = Qfs +a;, forrs <j<rega, s=1,.,k(r) =1, and for ry,) <j <,

where a; 1s a constant integral vector.

If the sequence (nf, ..., ny) satisfy limy max,; [|nf — nf|| = oo, then the construction can

be done in such a way that k(r) > 1.

Remark that if sup, max;; ||nf — n%|| < oo, then x(r) = 1 so that (41) is void and that
(42) is void for the indexes such that o1 =75 + 1.

Proof. The proof is by induction. The result is clear for r = 2. Suppose we have construct

the subsequence for the sequence of r — 1-tuples (nf¥,...,n* ).

Let 1 < r; <my < .. <rge—1) <7 — 1 be the corresponding subdivision of {1,...,7—
1}, as stated above for the sequence (nf,...,n* |). If the sequence (n¥,...,n* ) satisfy
limy, max; <;<j<r—1 ||} — nf|| = oo, then x(r — 1) > 1 by construction in the induction
process.

Now we consider (n¥,...,nF). If limy ||[nF — n¥|| = +o0, for all i = 1,...,r — 1, then we

have just to take 1 <7y <ry < ... <ryp_1) < Tkp) = r as new subdivision of {1,...,7}.

If lim infy, [|[nf — nf || < +o0, for some s < k(r — 1), then along a new subsequence (still
denoted with the same notation) we have n¥ = nf + a,, where g, is a constant integral
vector. After changing the labels, we insert n, in the subdivision for {1,...,r — 1} and

obtain the new subdivision for {1,...,r}.

For the last condition on , suppose that limy, max;<;<j<, [|nf — nj| = oc.

Then if lim infj, max; << j<,—1 |2 —@fH < 400, necessarily, k(r) > 1. If, on the contrary,
the sequence (nf,...,n} ;) satisfy lim, maxi<;<j<,—1 [|nf — nf|| = oo, then x(r —1) > 1
so that x(r) > k(r — 1) > 1. O

Lemma 2.24. If a Z¢-dynamical system is mizing of order r > 2, then, for any f € L,
(43) lim s¢(ny,...,n,) =0.

max;x; |[n;—n;||—oo
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Proof. We give a sketch of the proof. The notation s; was introduced in (40). Suppose
that (43) does not hold. Then there is € > 0 and a sequence of r-tuples (n¥ = 0, ..., n%)
such that [sy(nf, ..., nk)| > ¢ and max;; |nf — n%|| — oo (we use stationarity).

By taking a subsequence (but keeping the same notation), we can assume that, for two
fixed indexes i, 7, limy, [|nf — n}|| =

From Lemma 2.23, it follows that there is a subdivision 1 = r < 79 < ... < T)—1 <
Tw(ry < r and constant integer vectors a; such that

(44) lim min ||jnf —

k 1<s#s'<k(r) —r ! ||

(45) Qf = Qlﬁs +a;, forrg <j<re, s=1,..,k(r) =1, and for re,) <j <7

Let duy(xq, ..., z,) denote the probability measure on R” defined by the distribution of
the random vector (T2 f(.), ..., T f(.)). We can extract a converging subsequence from
the sequence (uy), as well as for the moments of order < r.

Let us denote v(zy,...,x,) (vesp. v(x;,...,x;,)) the limit of yy(z1,...,x,) (vesp. of its
marginal measures fi(;,, ..., x;,) for {i1,...,3,} C {1,...,7}).

Let ¢;,i = 1,...,7, be continuous functions with compact support on R. Mixing of order
r and condition (44) imply

V(1 ® pa ® ... @ 1) =li,gn/ P1® P2 ® ... ® pr du zli,gn/H%(f( ™)) dp(z)
Re i=1

/ H [[ ev@e] [ e(@=oe) du)
= re<j<rsti k(r)<j<r
k(r)—1
/ H o;i(f(T%x)) / H @i (f(T%x)) du(z)].
s=1 rs<Jj<rs+1 r)<j<r

Therefore v is the product of marginal measures corresponding to disjoint subsets: at

least there are Iy = {iy,...,4p}, [ = {i, ..., i, } C Jp = {1,...,r}, two non empty subsets

such that (1, I5) is a partition of J, and dv(zy, ..., x,) = dl/(:L‘il, oy gy ) XAV (T 5 oy Ty ).
P

Putting ®(t1, ..., t,) = In [ e24% du(zy, ..., ) and the analogous formulas for v(z;, , ..., z;,)
and v(zy, ..., xiy ), we obtain: ®(ty,...,t,) = ®(t;,, ..., t;,) + P(tiy, ..., tir ). It implies that

Latrq)(tl’ oo t)|ty=.. = t,—0 1s 0. Hence c(v(xy,...,2,)) = 0.

the derivative 5
Leen

But this contradicts liminfy, |s;(n}, ..., n%)| > 0. O

Application to d-dimensional actions by endomorphisms

For an action of N¢ by commuting endomorphisms, on (G, ), a compact abelian group
with its Haar measure, the method of moments as in [17] can be used for the CLT
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when mixing of all orders is satisfied. It gives immediately the CLT for trigonometric
polynomials.

Theorem 2.25. Let n : (ny,..,ng) — T2 = T{"*.. T3 be a Ne-action by commut-
ing endomorphisms on a compact abelian group G which is mixing of all orders. Let

(R,)n>1 be a summation sequence on N¢ and let f be a trigonometric polynomial. If
limy, | Y, Ru(£) T f||2 = oo, then the CLT is satisfied by the sequence

Y RO TS
132 Ra() TEF]2 """

Proof. For an action by endomorphisms of compact abelian groups, the moments of the
process (f(1™.))neze for a trigonometric polynomial f(z) = >, s cx(f) xx(7) are:

mf<ﬂl7 "'727") = /f(Tﬂlx)f< n?“l‘) dﬂj = Z Ckl"'Ckr]‘Tnlxﬁl---TETXﬁT:1'

Ky ek, €A

For r fixed, the function (ki,...,k,) — ms(k,,....k,) takes a finite number of values,
since by the above formula my is a sum with coefficients 0 or 1 of the products ¢y, ...cy,
which belong to a finite set. The cumulants of a given order according to (35) take also

a finite number of values.
Therefore, since mixing of all orders implies by Lemma 2.24

lim sf(ly, ..., 2,.) =0,
a5 iyt oo 7 S )
there is M, such that sy({,,...,£,) = 0 for max; ; [|{; — £;]| > M,..

We apply Theorem 2.26. Let us check (39). Using (37), we obtain that

1> 55l &) Rully) - Ra€)] =150, Ly = by, oy £y = £4) Ru(£y) - Ru(L,)]
< D 1sp(0 Gy )] sup | Rl
[APTAES "

Since the summation sequences are supposed to be bounded, »_ s¢({;, ..., £,) Ru(£y)...Rn(£,.)
is bounded and (39) is satisfied. O

2.4. CLT for abelian groups of toral automorphisms.

A method for a proof of the CLT is to use a martingale-type property when it holds.
Such a property is satisfied by the subclass of actions by automorphisms satisfying the K-
property and this is a way to prove the CLT in that case as shown in [4]. Let us mention
that, for Z%action by automorphisms on zero-dimensional compact abelian groups, the
K-property (or property of completely positive entropy) is equivalent to mixing of all
orders (cf. [23]). We will rather focus here on an extension of the method of r-mixing
used by Leonov for a single ergodic automorphism and use it for abelian groups of toral
automorphisms.
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The method of Leonov

The proof of the CLT given by Leonov in [17] for a single ergodic automorphism 7' of
a compact abelian group G is based on the computation of the moments, when f is
trigonometric polynomial. It uses the fact that 7T is mixing of all orders, a property
shown by Rohlin [20], consequence of the K-property for ergodic automorphisms.

For Z%actions by automorphisms on connected compact abelian groups, in particular
on tori, the method of moments can also be used, since the mixing property of all orders
holds (Theorem 2.26 below). First we prove a CLT for trigonometric polynomials using
the mixing property, then the result is extended to regular functions by approximation.

Mixing of Z%-actions by automorphisms on tori

For Z%-actions by automorphisms by automorphisms on compact abelian groups, d > 1,
mixing of all orders is not always satisfied (cf. [15], [24]). We restrict ourselves to toral
automorphisms.

In 1992, W. Philip [19] and K. Schmidt and T. Ward [23] used results about the number
of solutions of S-units equations in the study of semigroups of endomorphisms or auto-
morphisms on compact abelian groups. The method relies on results which appeared in
a series of papers since the years 80’s.

For Z®-actions by automorphisms, the mixing of all orders property is a consequence of
algebraic results on S-units. The following result based on a theorem on S-units (cf.
[21]) is shown in [23]:

Theorem 2.26. ([23]) Let n — T® be a mizing Z%-action on a compact, connected,
abelian group G. Then it is r-mixing for every r > 2.

In particular, if Ay, ..., Aq are commuting matrices in GL(p,Z) acting as automorphisms
of the torus T?, p > 1. If the Z-action on the torus n € Z¢ — (z — A"z mod1) is
mixing, then it is r-mizing for every r > 2.

With the notations of Lemma 2.2, we have:
Corollary 2.27. Let S be a semigroup of endomorphisms on TP generating a Z*-action

by automorphisms on /3 If this action is totally ergodic, it is mizing of all orders.

Proof. The group G in Lemma 2.2 is connected and Theorem 2.26 applies to the group
S of automorphisms of G in which § is embedded. The action of § is mixing of all
orders, hence also the action of S. O

CLT for Z%-action by automorphisms

In the sequel of this section, Ay, ..., Ay will be commuting matrices in SL(p, Z), A™ stands
for AT*...A%% n = (ni,...,ng), and we suppose that the corresponding Z?-action on the
torus T” is totally ergodic,
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By Theorem 2.17, if f satisfies (22), then » .. [(A™f, f)| < +oo, the Fourier series
ZnEZd<A f, ) e?m @t of the spectral density ¢ # is uniformly convergent, the variance

0®(f) is well defined and is equal to o*(f) = > za(A"f, f) = ¢7(0).

Theorem 2.28. Let n — AZ be a totally ergodic Z3-action by commuting matrices on
T?. Let (Dy)n>1 be a Folner sequence of 7.

1) If f satisfies (22), in particular if f satisfies the reqularity condition (24), we have*
o?(f) = ¢;(0) and
D72 D7 S(AR) T N(0,0%(f):
n—o0

LeDy

2) If f satisfies (23) (i.e., |cp(k)| = O(||k||)~?, with B > p), then o*(f) = 0 if and only
if there are continuous functions u; on TP, fort =1, ....d, such that f = Zfil(I—At)ut.

Proof. 1) Let (N;) be an increasing sequence of finite sets in Z? with union Z¢\ {0} and
let fs(z) == > pen, cr(k)e 2milkz) he the trigonometric polynomial obtained by restriction
of the Fourier series of f to N,. Let Z5, Z, denote respectively

=Dy, |"ZR VIs(AL), Zy = |Du) 72 Y Ry (0) f(A"
4

By Theorem 2.17 we have o(f — f,)*> < C||f — fs|l2, where the constant C' does not
depend on s. Tt follows o?(f) := lim,0?(f,) and o*(fs) # 0 for s big enough, since
o?(f) > 0 by hypothesis.

For the kernel K, associated to D, by the Fglner property and (8), we have, if g satisfies
(22):

D IS Bl Al = [ Kyt =5 0,0) = o%(0)

From Theorem 2.26 (mixing of all orders) and Theorem 2.25 applied to the trigonometric
polynomial fy, it follows: 72 BN (0,0%(fs)) for every s. Moreover, since
n—oo

limsup/ |Z8 — Zp|3dp = limsup/ K, op_g, dt
n n Td

—tin [ Koprpdt =0/ = 1) < CIf -
we have, for every ¢ > 0,
limsup p[|Z;, — Z,| > ¢] < 2hmsup/|Zs Znl3 dP e 0
and the condition lim lim sup,, P[|Z2 — Z,,| > ] = 0 is satisfied.

4with the convention that the limiting distribution is 8y if o2 (f) = 0. The second statement gives a
criterion for the non degeneracy of the limiting law
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By using Theorem 3.2 in [2], we conclude Z, 2% N(0, o2(f)).

77/—)00

2) The second assertion follows from Theorem 2.18. O

The previous result is valid for the rotated sums: if f satisfies (24), then, for every 0,
_1 - distr
(16) o3 = es(6), [D.TE Y D (ALY B A0, 03(f)).
LeDn
If f satisfies the regularity condition (23), then oZ(f) = 0 if and only if there are

continuous functions w9 on T?, for t = 1,...,d, such that f = Zle([ — 20 A ) ug .

This applies in particular when (D,,) is a sequence of d-dimensional cubes in Z<.

A CLT for the rotated sums for a.e. 6 without regularity assumptions

For the summation sequence given by squares (d = 2) or cubes, a CLT for the rotated
sums can be shown for a.e. # without regularity assumptions on f. The proof relies on
an extension of (34) which can be shown, for any given f € L*(T*), for # in a set of full
measure. This extends results of [4].

Theorem 2.29. Let n — AZ be a totally ergodic Z%-action by commuting matrices on
T?. Let (D,)n>1 be a sequence of cubes in Z2. Let f € L*(T?). For a.e. § € T?, we have
oa(f) = ¢s(0). If the variance a3 (f) is > 0, then

[Dal™2 Y7 7N f(AL) T N(0,05(1)).

LeDn

Let us mention that, if we take for D,, triangles instead of squares, a CLT for the rotated
sums is also valid for a.e. 0, provided f satisfies 3, |cy(k)[*log k{...log k> < 4-00. More
details will be given in a sequel to the present article.

Other examples of kernels

Let (R,),>1 be a summation sequence on Z¢ (cf. notations of Definition 1.1). Summation
on Folner sets corresponds by Fourier transform to kernels converging to the Dirac
distribution dp. The CLT extends easily to a more general class of summation sequences.

TheorNem 2.30. Let (Ry)n>1 be a summation sequence on 724 which is reqular and such
that (R, (t)) weakly converges to a measure ¢ on the circle. Let f be a function on T?
satisfying (24) with spectral densz’ty wr. If ((py) # 0, then we have

D RUOFAL/ RO Z5 N(0,C()))
4

Lezd

Proof. The proof is the same as that of Theorem 2.28 and uses the convergence:

i |3 R A1/ 3 1RO =Tim [ 0) es(t)dt = ).

{e74 le74d
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Barycenter operators
The barycenter operators satisfy the condition of the previous theorem.

let Ay, ..., Ay be to commuting matrices in GL(p,Z) generating a totally ergodic action
on T?, p > 3. Let P be the barycenter operator defined as in Formula (3) by:

(47) fvmw=§:mfuvw

By Proposition 1.7 and Theorem 2.30 we obtain:

Theorem 2.31. Let f be a function on TP satisfying (24) with spectral density py.
Assume that op(f) = [ ¢s(u,u,...,u)du# 0, then we have

T PU() ZEN(O,0R(S)

n—oo

d—1

(47) T (pr-pa)?

Ezample: let A1, A be to commuting matrices in GL(p,Z) generating a totally ergodic
action on T, p > 3. Let P be the barycenter operator: Pf(z) := 3(f(Aiz) + f(Asx)).

If ¢ is continuous, then we have seen that lim, o /70 ||P"f||5 = [} ¢s(u, u) du. As-
sume that o%(f) := [ ¢r(u,u)du # 0. It follows from Theorem 2.30, for f satisfying
(24) on T*:
(Tn)T P"f ©5 N(0,05(1)).

We have op(f) = 0 if and only if p¢(u,u) = 0, for every u € T'. In particular, if f is not
a coboundary in the sense of the first section (cf. (17)), op(f) # 0. Nevertheless, the
condition for op(f) = 0 is stronger than the coboundary condition and it can be shown
that op(f) = 0 if and only if f can be written f = A;g — Asg.

Remark. The case of commutative or amenable actions strongly differs from the case
of non amenable actions for which a “spectral gap property” is often available ([11]).
For action by algebraic automorphisms A;,j = 1,...,d, on the torus, the existence of
a spectral gap for an operator of the form (47) when A,’s are no more supposed to
commute is related to a property of the generated group G, namely that there is no
factor torus on which G is virtually abelian ([1]).

2.5. Semigroups of endomorphims.

Part of the previous results extend to actions by endomorphisms, since the key point,
mixing of all orders, follows from Corollary 2.27. For instance, we have

Proposition 2.32. Let n — A% be a totally ergodic N%-action by commuting matrices
on T?. Let (Dy)n>1 be a Félner sequence of N and let f be a trigonometric polynomial.
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We have o*(f) = ¢;(0). If a*(f) # 0, then

Dal72 Y F(AL) =5 N(0,0%(f)).

n—00
LeDy

Nevertheless, a difficulty appears when the spectral density and the rate of decorrela-
tion are involved. More precisely, let us give the expression of the decorrelation for a
semigroup of measure preserving endomorphisms giving a N¢-action T : n — T™ on a
probability space.

Using an embedding T of T in a Z%action of measure preserving automorphisms, as
in Subsection 2.1, we can suppose that T acts on a probability space (€2, A, u) and T
leaves invariant a sub o-algebra B of A: for f a real function in L*(B,pu), fo T is
B-measurable for every n € N?. The Fourier coefficients of the spectral measure vy of
f for the Z%action given by T are given, for n = (n1,...,nq) € Z4, with positive and
negative parts n and n; respectively, by

d d
vi(w) = ([[7 £, T 7 1),

Consider the case of a semigroup n € N¢ — A2 of endomorphisms of T?. Then the
previous formula reads:

d d
(48) 1 EXFA | ER R D5 (O RN
i=1 1=1 -

kk'ezr -

There is a difficulty in the needed extension of Propositions 2.15 or 2.16. Considering,
for instance, the case of an N2-action on T” by endomorphisms, (ny,ny) — AJ*A5?, we
see that Formula (19) for the decorrelation for n = (n;, —nsy) such that ny, ny > 0 should
be modified. In this case we have vy(n) = (T™ f,T" f) and we have to estimate the
decay when ny +ng — 00 of 37, 1cpn cr(k) cr(k) Lym g qn2py -

For the following class of semigroup of endomorphisms the extension is easy:

We assume that the generators A; of the semigroup S have the form A; = p;B;, where
the matrices B; in GL(p,7Z) are commuting automorphisms and p; are pairwise coprime
integers.

This condition implies that the semigroup § is totally ergodic by Corollary 2.7.

Lemma 2.33. If the semigroup S satisfies the previous condition, there is T > 0 such
that A" k = A™ k' implies

(49) sup([|k|, [|k])") > eI,
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Proof. For an integer vector k, let g(k) be the g.c.d. of the components k; of k. If D is
an automorphism, then g(Dk) = g(k). If A% k = A™ K, then

+ - _
hence:

17 o) =2} o).

- +
Since p; are pairwise coprime integers, this implies that [ p;* divides g(k) and []p;"
divides g(k'); hence (49), with 7 = $ min; Inp;. O
Using the lemma, we can extend Propositions 2.15 or 2.16. Therefore part 1) of Theorem
2.28 and Theorem 2.30 are valid for a semigroup S satisfying the condition introduced
above.

This result extends to a larger class of semigroups the CLT proved by T. Fukuyama and
B. Petit ([10]) for semigroups generated by coprime integers on the circle. A study, using
the previous techniques as well as the transfer operators, is possible for the general case
of semigroups of endomorphisms and will be presented in a sequel to this paper.

3. Appendix: examples of Z%actions by automorphisms

The aim of this section is to give explicit examples of commuting matrices generating
totally ergodic Z%-actions on tori for d > 1. We mainly recall some known facts. (See in
particular [13] and [6] for the construction of Z%-action by automorphisms on the torus.)

The construction of Z?-action by automorphisms on T? is linked to the groups of units
in number fields. Following [13], let us recall some facts.

Let M € GL(p,Z) be a matrix with an irreducible characteristic polynomial P = P(M)
and hence distinct eigenvalues. The centralizer of M in M(n, Q) can be identified with
the ring of all polynomials in M with rational coefficients modulo the principal ideal
generated by the polynomial P(M), and hence with the field K = Q()\), where A is an
eigenvalue of M, by the map v : p(A) — p(v) with p € Q[z].

By Dirichlet’s theorem, if P has d; real roots and dy pairs of complex conjugate roots,
then there are dy + dy — 1 fundamental units in the group of units in the ring of integers
in K(P). This provides a totally ergodic Z% %=1 action by automorphisms on T?.

Explicit computation of examples relies on an algorithm (see [5]). The first computed ex-
amples appeared with the development of the computers. Even nowadays computations
are limited to low dimensional examples.

Examples for the torus T3

To give a concrete example for T?, we explicit a pair A, B of matrices in SL(3,Z) such
that {A, B} generates a free action in Z2.
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We start with a integer polynomial P(X) = —X3 + ¢X + n which is irreducible over Q
and its companion matrix:

M=

S oo
QO -
o RO

Let K (P) denote the number field associated to P. Suppose that K (P) belongs to any of
the tables where the characteristics of the first cubic real fields K (P) are listed. Let 6 be
a root of P. The table gives a pair of fundamental units for the group of units in the ring
of integers in K (P) of the form P;(0), Py(0), where P;, P, are two integer polynomials.
Then the matrices Ay = P;(M) and Ay = P(M) give a system of generators of the group
of matrices in GL(3,Z) commuting with M, generating a totally ergodic Z?-action on
T3 by automorphisms.

Explicit examples

1) (from the table in [25]) Let us consider the polynomial P(X) = X3 — 12X — 10 and
its companion matrix

0 1
M=10 0
0 12

—_
—_
O = O

Let 6 be a root of P. The table gives the pair of fundamental units for the algebraic
group associated to P:

Pi(0) =6*—30 —3, Py(0) = —0> + 6 + 11.
The matrices A; = Pi(M) and Ay = P»(M) give a system of generators of the group of

matrices in GL(3,Z) commuting with M. They generate a totally ergodic action of Z>
by automorphisms on T?. They have 3 real eigenvalues and det(A4;) = 1, det(4;) = —1.

3 -3 1 11 -1
Ai=110 9 =3], Ay=[-10 -1 1
—30 —26 9 0 2 -1

2) (from tables in [25] and in [5]) Let us consider now the polynomial P(X) = X?—9X —2
and its companion matrix

M =

OO

1
0
9

O = O

Let 6 be a root of P. The table gives the pair of fundamental units for the algebraic
group associated to P:

Pi(0) =30 —90 — 1, Py(0) = 20> — 40 — 1.
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The matrices A; = Pi(M) and Ay = P»(M) give a system of generators of the group of
matrices in GL(3,7Z) commuting with M. They generate a totally ergodic action of Z>
by automorphisms on T2. They have 3 real eigenvalues and det(A4;) = 1, det(4;) = —1.

3 -3 1 11 -1
Ai=110 9 =3], Ay=[-10 -1 1
—30 —26 9 0 2 -1

Remark that in [25] a different set of generators is given. The polynomials are

P/(0) = 850% — 2450 — 59, Pj(0) = —186% 4 46 + 161.

The matrices A} = P/(M) and A, = Pj(M) give another pair of generators of the group
of matrices in GL(3,Z) commuting with M. The relations between the two pairs are:

All - AlAQ, AIQ - Al_l

A simple example on T*

If P(X) = X*+aX?+bX?+aX +1, the polynomial P has two real roots: Ao, Ay ', two
complex conjugate roots of modulus 1: A, A\;. Let o; = A\j + A;, j = 0,1. They are roots
of 72 —aZ +b—2=0.

Under the conditions: a*—4b+8 > 0,a > 4,0 > 2, 2a > b+2, i.e., (since 2a—2 < ia2+2)
1
2<b<1a2+2, a >4,

Ao, Ap T are solution of A2 — opA + 1 = 0, and A, \; are solutions of A2 — oy A + 1 = 0,

where
1

70 = 0 %m o) = _%H %m
The polynomial P is not factorizable over Q. Suppose that P = P P, with P, P, with
rational coefficients and degree > 1. Since the roots of P are irrational, the degrees of
P, and P, are 2. Necessarily their roots are, say, A, Ay for Pp, Ao, Ao ! for P,. The sum
A + A\, oot of Z2 —aZ +b— 2 = 0, is not rational and the coefficients of P, are not
rational. Let

0 1 0 0
0 0 1 0
A=1y o o 1 l:B=4+1L

-1 —a —-b —a

From the irreducibility over Q, it follows that, if there is a non zero fixed integral vector
for A*B*, where k, ¢ are in Z, then we have A*B® = Id. This implies: A} (\; — 1)F = 1,
hence, since we have |A;| = 1, it follows |A; — 1| = 1 which is not true.
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Ezample: P(X) = X*+5X34+7X?+5X + 1. If A is the companion matrix, then A and
A+ 1, with characteristic polynomials P(X) and X* + X3 — 2X?2 + 2X — 1 respectively,
generate a Z>-totally ergodic action on T*.

0O 1 0 0 1 1 0 0
0 0 1 0 0 1 1 0
A=y o o 1 |B=4F =g o 1 1
1 -5 -7 -5 1 -5 -7 —4

This elementary example gives only a ZZ?-action on T?. A question is to produce an
example with full dimension 3.

3) (construction by blocks)

Let M, My be two ergodic matrices respectively of dimension d; and dy. Let p;,q;,
i = 1,2 be two pairs of integers such that p;gs — paqi # 0. On the torus T? 92 we obtain
a Z2-totally ergodic action by taking A;, Ay of the following form:

Mpl O Mp2 O
= (0 )= (7 )

Indeed, if there exists v = (Zl) € Z4+d\ {0} invariant by A7AS, then M P2y, —
2

nq1+£q2
1)1 5 M2

V9 = vy, which implies np; + fps = 0, ng; + £go = 0; hence n = £ = 0.
This is a method to obtain explicit free Z2-actions on T*. The same method gives explicit
free Z3-actions on T® (by using a Z-action on T? and a Z2-action on T3).

We do not know explicit examples of full dimension, i.e., with 3 independent generators
on T*, or with 4 independent generators on T°.
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