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A GENERIC VARIATIONAL APPROACH FOR DEMOSAICKING
FROM AN ARBITRARY COLOR FILTER ARRAY

Laurent Condat∗

GREYC
6 Bd du Maréchal Juin

14050 CAEN Cedex, France

ABSTRACT
We propose a method to demosaick images acquired with a
completely arbitrary color filter array (CFA). We adopt a vari-
ational approach where the reconstructed image has maximal
smoothness under the constraint of consistency with the mea-
surements. This optimization problem boils down to a large,
sparse system of linear equations to solve, for which we pro-
pose an iterative algorithm. Although the approach is linear,
it yields visually pleasing demosaicked images and provides
a robust framework for comparing the performances of CFAs.

Index Terms— Demosaicking, color filter array, varia-
tional reconstruction

1. INTRODUCTION

Color images are acquired by digital cameras using a sen-
sor on which a color filter array (CFA) is overlaid [1]. The
most popular is the Bayer CFA [1], but the design of alter-
native CFAs currently knows a renewed interest [2, 3, 4].
There is an extensive literature dealing with demosaicking,
the problem of reconstructing a color image from the sensor
measurements—see e.g. [1, 5, 6] and references therein—but
almost always, acquisition with the Bayer CFA is assumed.
Although the design of new CFAs can be based on theoreti-
cal considerations, the need exists for a generic demosaicking
method, to compare the practical performances of CFAs. To
our knowledge, only the demosaicking approach of Lukac et
al. can be used for comparisons, under the limitation that
the CFAs consist of R,G, and B filters [7]; thus, new de-
signs like in [2, 3] are excluded. In this work, we present
a new demosaicking method which can be applied to arbi-
trary CFAs, without any constraint on the colors of their fil-
ters or their arrangement—periodic or random. For this, in
Sect. 2, we regularize the demosaicking problem by seeking
a maximally smooth solution, while consistent with the mea-
surements. This optimization problem boils down to a linear
system to solve. For this, we propose in Sect. 3 a simple iter-
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ative algorithm, which converges to a visually satisfying de-
mosaicked image after a few number of iterations. We give in
Sect. 4 experimental results with several CFAs.

First of all, we introduce our notations. ∗ denotes the
convolution and boldface letters denote vectors, e.g. k =
[k1, k2]

T ∈ Z
2. A color image is denoted by u = (u[k])k∈Z2 ,

where u[k] ∈ [0, 1]3 is the color of the pixel at location k.
We define the color image im as the ground truth to be

estimated by the demosaicking process, while cfa denotes the
CFA used for the acquisition. Then, the mosaicked image v
is such that v[k] = im[k]Tcfa[k], for every k ∈ Z

2.

2. VARIATIONAL FORMULATION

First, the demosaicked image dem should be consistent
with the available measurements; that is, we impose that
dem[k]Tcfa[k] = v[k], ∀k ∈ Z

2. To regularize this ill-
posed inverse problem, we use variational principles. So, we
look for the image minimizing some quadratic functional pe-
nalizing the lack of smoothness, subject to consistency.

It is well known that in natural images, the R,G,B com-
ponents are not independent [8, 1]. Thus, we consider the
orthonormal basis corresponding to luminance, red-green and
blue-yellow chrominances, defined in the R,G,B basis as L =
1√
3
[1, 1, 1]T,C1 = 1√

2
[−1, 1, 0]T,C2 = 1√

6
[−1,−1, 2], re-

spectively. uL, uC1 and uC2 are the components of a color
image u in this basis. They can be considered statistically
independent for natural images [8]. Therefore, we adopt
a regularization functional which is diagonal is the lumi-
nance/chrominance basis. Thus, our optimization problem
takes the form:

dem = argmin
u

μQ(uL) + Q(uC1) + Q(uC2), (1)

subject to u[k]Tcfa[k] = v[k], ∀k ∈ Z
2, (2)

where Q(u) = ‖∇u‖2 = 〈u, u ∗ r〉 is the simplest semi-norm
using the discrete laplacian

r =
1

4

⎡
⎣

0 −1 0
−1 4 −1

0 −1 0

⎤
⎦ . (3)
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The parameter μ in (1) plays a crucial role; it controls the
balance between the smoothness of the luminance and of the
chrominance in the reconstructed image. If μ is close to zero,
then dem will be close to a monochrome image, since all the
high frequency energy of v will be assigned to demL. On the
contrary, for μ = 1, the regularization functional is diago-
nal in the R,G,B basis and for a CFA with R,G,B filters, the
process amounts to reconstruct the R,G,B channels indepen-
dently by interpolation, a naive solution known to yield bad
results. Consequently, μ should be chosen relatively small in
order to get a hue which is varying smoothlier than the lu-
minance. This way, the inter-correlations between the color
channels in natural images are automatically taken into ac-
count. There is no mathematical rule for choosing μ and the
best value for a given CFA should be chosen empirically by
trial and error, to give the best performances on test images.

With the convex regularization functional in (1), the prob-
lem is well-posed: it is stable and has a unique solution. A
more complex filter r can be used instead of (3), but we found
empirically that this yields almost no quality improvement.
We remark that the regularization is independant of the choice
of the basis C1,C2; thus, the smoothness of the chrominance
is fairly penalized, without privileged color axis.

2.1. Derivation of the Solution

When minimizing a quadratic criterion under a linear con-
straint, it is well known that the solution can be derived by
expressing the associated Lagrangian criterion C(u) [9]:

C(u) =μQ(uL) + Q(uC1) + Q(uC2) (4)

+ 2
∑
k∈Z2

λ[k]
(
u[k]Tcfa[k] − v[k]

)
. (5)

Then, the desired solution dem is obtained by setting the par-
tial derivatives of C to zero, with respect to the unknowns
uL[k], uC1[k], uC2 [k] and the Lagrangian parameters λ[k].
Thus, the demosaicked image is the solution to the following
set of linear equations: for every k ∈ Z

2,⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

μ (demL ∗ r)[k] + λ[k]cfaL[k] = 0,

(demC1 ∗ r)[k] + λ[k]cfaC1 [k] = 0,

(demC2 ∗ r)[k] + λ[k]cfaC2 [k] = 0,

demL[k]cfaL[k] + demC1 [k]cfaC1 [k]

+ demC2 [k]cfaC2 [k] = v[k].

(6)

In the next section, we propose an iterative algorithm to
solve this system of linear equations.

3. PRACTICAL DEMOSAICKING METHOD

Since the linear system (6) does not have a simple sparse
form, which would provide us with a direct solution, we pro-
pose an iterative scheme that converges to the solution. For-
mally, the method is a so-called Jacobi iterator, which approx-
imates the inverse of the convolution matrix corresponding to

r by the inverse of its diagonal [10]. That is, each refinement
step updates the demosaicked image as follows:

demL

(n)[k] = demL

(n−1)[k] −(
(demL

(n−1) ∗ r)[k] + λ(n)[k]cfaL[k]/μ
)
, (7)

demC1

(n)[k] = demC1

(n−1)[k] −
(
(demC1

(n−1) ∗ r)[k] + λ(n)[k]cfaC1 [k]
)
, (8)

demC2

(n)[k] = demC2

(n−1)[k] −
(
(demC2

(n−1) ∗ r)[k] + λ(n)[k]cfaC2 [k]
)
, (9)

for every k ∈ Z
2, where X(n) denotes the value of the vari-

able X after the n-th iteration. With this scheme, the un-
knowns are spatially uncoupled. Then, our iterative algorithm
boils down to solving, during each iteration and for each k in
scanline order in the image, a 4 × 4 linear system in terms of
the unknowns demL

(n)[k], demC1

(n)[k], demC2

(n)[k], λ(n)[k]:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

demL

(n)[k] + λ(n)[k]cfaL[k]/μ = (demL

(n−1) ∗ r′)[k],

demC1

(n)[k] + λ(n)[k]cfaC1 [k] = (demC1

(n−1) ∗ r′)[k],

demC2

(n)[k] + λ(n)[k]cfaC2 [k] = (demC2

(n−1) ∗ r′)[k],

demL

(n)[k]cfaL[k] + demC1

(n)[k]cfaC1 [k]+

demC2

(n)[k]cfaC2 [k] = v[k].
(10)

where r′ = δ0−r and δ0 is the identity filter. For given n and
k, this linear system is solved by first calculating λ(n)[k] and
then updating the pixel values of dem using the first three
equations of the system (10). λ(n)[k] is computed using the
following equality, derived by substitutions in the system:

λ(n)[k]
(
cfaL[k]2/μ + cfaC1 [k]2 + cfaC2 [k]2

)
=

cfaL[k](demL

(n−1) ∗ r′)[k] + cfaC1 [k](demC1

(n−1) ∗ r′)[k]+

cfaC2 [k](demC2

(n−1) ∗ r′)[k] − v[k]. (11)

The proposed formalism is versatile, in the sense that it
can handle dead pixels; that is, when the value v[k] is irrele-
vant for some k. In that case, just set λ(n)[k] = 0 during the
computation of dem(n)[k]. This way, this value is computed
so as to maximize the smoothness in the neighborhood of k.

We also remark that the consistency is satisfied exactly
by the image dem(n) after each iteration. Thus, even only
one iteration could be used as post-processing to improve the
result of another demosaicking algorithm, which would yield
visually pleasing but not consistent demosaicked images.

Since the solution of the problem is unique, the initial
estimate dem(0) only influences the speed of convergence.
A choice that turns out to work well in practice consists in
starting with a uniform grey image ũ(0)[k] = 127.5 and in
performing a few (we used 10) iterations with the parameter
μ = 1. Thus, the spatial distribution of the color information
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is roughly but quickly recovered and the repartition of the
high frequency content between the luminance and chromi-
nance channels is then refined by the subsequent iterations
with the correct value of μ.

The algorithm is simple to implement and quite fast, since
the complexity is about three convolutions with r at each it-
eration. However, we use a very simple iterative strategy, so
that the convergence speed is relatively slow; that is, several
hundreds of iterations are necessary to converge to the solu-
tion up to machine precision. But we found experimentally
that the MSE with respect to the ground-truth im is generally
minimized after a much smaller number of iterations, which
depends on the CFA. Thus, for the tests in Sect. 4, we ran only
20 iterations for the CFAs (I)–(II) and 100 iterations for the
CFAs (III)–(VI), including the 10 first iterations with μ = 1.

4. EXPERIMENTAL VALIDATION

For our tests, we considered the data set of 20 color im-
ages of size 768 × 512 used by many authors to test their
methods (e.g. [11, 2]). These images were mosaicked us-
ing several CFAs and demosaicked using our method. The
CFAs considered, depicted in Fig. 1 are: (I) the Bayer CFA,
(II) the random pattern proposed in [4], (III) the new Kodak
CFA [12], (IV) the CMY CFA, (V) the CFA of Hirakawa
et al. [2] and (VI) our recently designed CFA [3]. By lack
of space, we only report in Tab. 1 the mean squared error
(MSE)1 averaged over the 20 images. We used the values
μ = 0.04, 0.04, 0.07, 0.12, 0.12, 0.10 for the CFAs (I) to
(VI), respectively. These values were roughly determined em-
pirically to minimize the average MSE.

We compared our method to two other demosaicking
techniques, usable only for CFAs with R,G,B filters: 1) The
simple linear scheme, which consists in computing a miss-
ing value for the color C ∈ {R,G,B} at location k, by av-
eraging the pixel values v[l] for l in a 3 × 3 neighborhood
surrounding k such that h[l] = C. This reverts to bilinear
interpolation for the Bayer pattern. 2) The non-linear univer-
sal demosaicking algorithm of Lukac et al. [13] which is, to
our knowledge, the only advanced demosaicking algorithm
which can be used for every R,G,B CFA. The MSE results
are summarized in Tab. 1. We observe that the simple bi-
linear method, which does not exploit the cross-correlations
between the color bands in natural images, provides poor re-
sults. We found out that our linear approach generally outper-
forms the non-linear method of Lukac et al. [13], except for
the Bayer CFA. This may indicate that their method has been
designed to perform well with the Bayer CFA in particular.
We also report in Tab. 1 the MSE obtained with demosaicking
methods specifically tuned for the CFAs (I), (V),(VI), to show
the lower bound achievable when fully exploiting the charac-
teristics proper to a given CFA. When comparing the results

1We do not take into account the first and last five rows and columns of
the demosaicked images for the computation of the MSE.

(I) (II) (III)

(IV) (V) (VI)

Fig. 1. The six CFAs used in the experiments of Sect. 4.

of these methods with the ones of bilinear interpolation, we
see that our method performs well. It does not compete with
the state-of-the-art methods (see in Tab. 1 the result obtained
for the Bayer CFA with the non-linear method in [6]), but this
is the price to pay for having a generic method. We note that,
to our knowledge, no advanced method has been proposed to
date for the CFAs (III) and (IV), so that our approach is the
only one available to evaluate their performances.

Our generic approach provides a convenient way to fairly
compare the performances of CFAs. Since the goal of demo-
saicking is more to obtain visually pleasant images without
artifacts that to estimate the ground-truth image optimally in
the least-squares sense, the MSE results have to be balanced
by a visual inspection of the demosaicked images. It is well-
known that the Bayer CFA and its CMY counterpart exhibit
a particularly high sensitivity to aliasing on horizontal or ver-
tical patterns with high frequency content, like the fence in
Fig. 2. The CFA (III) has the same problem, even more prob-
lematic because it occurs on patterns oscillating with a fre-
quency two times lower than the Nyquist frequency. This is
due to the 2 × 2 sparser distribution of the R,G,B filters than
with the Bayer CFA. With the random CFA (II), the aliasing
artifacts take the form of a colored high frequency noise ran-
domly spread over the fence. Due to its low magnitude and
the low sensitivity of the human visual system to such pat-
terns, these artifacts are far less disturbing than the coherent
fringes that appear with periodic CFAs. So, the superiority of
random patterns with blue-noise properties over periodic ar-
rangements with R,G,B filters is confirmed. More generally,
this works shows that there is a significant margin of possible
improvement over the Bayer CFA. The new designs of [2, 3]
are very attractive; they are more robust to noise, due to their
better light sensitivity, and significantly less sensitive to alias-
ing. Like in the example of Fig. 2, artifacts are virtually never
visible with these CFAs. The even higher light sensitivity of
the CFAs (III) and (IV) is obtained at the expense of a signif-
icantly degraded image quality.
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CFA Bayer (I) random (II) (III) (IV) (V) (VI)
method bilin. [13] [6] ∗ bilin. [13] ∗ ∗ ∗ [2] ∗ [3] ∗
av. MSE 91.37 11.88 8.54 12.49 89.16 17.86 12.13 18.76 13.26 8.07 11.30 7.50 10.01

Table 1. Average MSE over the test set of 20 images for several combinations of CFAs and demosaicking methods. ∗ denotes
the proposed demosaicking method.

CFA (I) CFA (II) CFA (III) CFA (VI)

Fig. 2. Results of our demosaicking method on a part of the Lighthouse image, for some of the CFAs considered.

5. CONCLUSION

We proposed a new framework for image demosaicking,
which is based on the minimization of a variational func-
tional under the constraint of consistency with the available
raw data. This formalism is linear, hence robust, and generic,
since the CFA can be completely arbitrary. We proposed a
simple and stable algorithm to implement our method. Al-
though it is iterative, good results are obtained after a few iter-
ations only. The method can be extended to the more realistic
situation where the data are corrupted by additive noise, by re-
laxing the consistency using Lagrangian regularization. It can
also be extended to demosaick multi-spectral images having
more than three bands, e.g. for remote sensing applications.
Moreover, it is worth mentioning that our formalism is an ex-
tension of the reconstruction framework in [14] to color im-
ages. Future works will investigate the possible extensions to
non-quadratic smoothness penalties and the links with other
regularization approaches of the literature like [15, 16].
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