
HAL Id: hal-00814058
https://hal.science/hal-00814058

Submitted on 16 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A new color filter array with optimal sensing properties
Laurent Condat

To cite this version:
Laurent Condat. A new color filter array with optimal sensing properties. Actes de IEEE ICIP, Nov
2009, Le Caire, Egypt. pp.457 - 460, �10.1109/ICIP.2009.5414383�. �hal-00814058�

https://hal.science/hal-00814058
https://hal.archives-ouvertes.fr


A NEW COLOR FILTER ARRAY WITH OPTIMAL SENSING PROPERTIES

Laurent Condat∗

GREYC
6 Bd du Maréchal Juin

14050 CAEN Cedex, France

ABSTRACT

We propose a new color filter array (CFA) with optimal charac-
teristics for the acquisition of color scenes, since the luminance and
chrominance information is encoded in the mosaicked image with
the best achievable robustness to aliasing and noise. Our 2 × 3 pat-
tern is based on the paradigm recently introduced by Hirakawa et
al. [1], which focuses on the spectral properties of CFAs. Moreover,
these superior properties are fully exploited by a simple, linear and
efficient demosaicking method.

Index Terms— Color filter array (CFA), demosaicking, spatio-
spectral sampling, noise sensitivity.

1. INTRODUCTION

In digital still and video cameras, a color filter array (CFA) is over-
laid on the sensor, in order to encode the color information as high
frequency content in the mosaicked image [2, 1]. Hence, the demo-
saicking task, which consists in reconstructing a color image with
its three R,G,B channels, essentially amounts to appropriately as-
signing the frequency content of the mosaicked image to these three
channels [2, 3]. Based on this observation, Hirakawa et al. re-
cently reformulated the problem of CFA design as the minimization
of aliasing between the baseband luminance and the chrominance
modulated at high frequencies in the Fourier domain [1]. A similar
methodology was proposed in [4]. In fact, most of the demosaick-
ing artifacts which occur with the popular Bayer CFA originate from
aliasing between the luminance and the R/B chrominance bands of
the color scene, since the latter is modulated on the vertical and hor-
izontal axes of the frequency plane, where most luminance energy is
present [2]. Therefore, the CFA has to be designed so that its chromi-
nance is modulated farther away from the origin of the frequency
plane, to maximize the robustness to aliasing. However, many pa-
rameters are left free with this framework and the problem of noise
sensitivity is not adressed. In this article, we exhibit the admissible
pattern having maximum chrominance energy for a given luminance
sensitivity. This provides the best achievable signal-to-noise ratio
when the mosaicked image is contaminated by sensor noise.

The paper is organized as follows. In Section 2, we express the
design problem in the Fourier domain. In Section 3, we enforce some
constraints to ensure optimal sensitivity properties for the CFA. A
new 2× 3 pattern shows up as the unique solution. In Section 4, we
present a simple and efficient linear demosaicking method, which
fully exploits the spectral characteristics of our CFA.
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Curie Excellence Team Grant MEXT-CT-2004-013477, Acronym
MAMEBIA, funded by the European Commission. Contact:
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2. SPECTRAL CHARACTERIZATION OF CFAS

In this article, boldface quantities denote vectors, e.g. k =
[k1, k2]

T ∈ Z
2 and 0 = [0, 0]T. We define a CFA

as a color image cfa = (cfa[k])k∈Z2 , where cfa[k] =ˆ
cfaR[k], cfaG[k], cfaB[k]

˜
T ∈ [0, 1]3 is the color value in the

R,G,B basis of the filter centered at the location k. The color val-
ues, constrained to lie in [0, 1] for physical realizability, correspond
to opacity rates: the white color [1, 1, 1]T stands for a transparent
filter. We only consider periodic CFAs defined on the square lattice,
and we denote by N1 ×N2 the size of its smallest repeating pattern.

We define the color image im = (im[k])k∈Z2 as the ground
truth to be estimated by the demosaicking process. The mosaicked
image v = (v[k])k∈Z2 is such that v[k] = im[k]Tcfa[k], ∀k ∈ Z

2.
In practice, a random term modeling the effect of noise has to be
added to this model [5].

It is well known that in natural images, the R,G,B compo-
nents are not independent [6, 7]. Thus, we define the orthonor-
mal basis corresponding to luminance, red/blue and green/magenta
chrominances, as L = 1√

3
[1, 1, 1]T,C1 = 1√

2
[1, 0,−1]T,C2 =

1√
6
[−1, 2,−1]T. We denote by uL, uC1 , and uC2 the components

of a color signal u in this basis. They can be considered statistically
independent for natural images [6].

In order to analyse the properties of the Bayer CFA, Alleysson
et al. showed that the mosaicked image v can be interpreted, in the
Fourier domain, as the sum of the luminance and chrominance com-
ponents of the color image im, moved at different locations of the
frequency plane [2]. This characterization can be extended to every
CFA, by simply writing cfa as the sum of its Fourier components:

cfaX [k] =
P� N1

2
�
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for every X ∈ {L, C1, C2} and k ∈ Z
2. So, designing cfa

amounts to choosing its 3N1N2 Fourier coefficients αX
n and βX

n

appropriately. For this, we express the Fourier transform v̂(ω) =P
k∈Z2 v[k]e−jω

T
k in function of the Fourier transforms of the

components of im:
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for every ω ∈ R
2. Hence, whatever the CFA, v̂ is the sum of the lu-

minance and chrominance components dimX , replicated at the sites
of the dual lattice induced by the periodicity of the pattern. This is
essentially the task of demosaicking to separate these components
back. Given this observation, Hirakawa et al. had the ingenious idea
to directly design the CFA in the Fourier domain, so that the com-

ponents dimX are well separated in v̂ [1]. In their framework, the
baseband luminance is at the origin (cfaL[k] = αL

0 , in (1) ) and the
chrominance is modulated far away from it, on the boundaries of
the Nyquist band (for this, we assume N1 = 2) and far away from
the axes of the frequency plane [1]. This constrains the coefficients
αX

n , βX
n to some extent, but the question of further defining the re-

maining degrees of freedom is left open. This is the aim of this work
to show how to tune these parameters to obtain a CFA with optimal
sensitivity characteristics.

3. A NEW CFA WITH OPTIMAL SENSITIVITY
CHARACTERISTICS

We now construct our new CFA step by step, by enforcing several
design criteria in the frequency domain.

First, in order to maximally reduce the overlaps between the
channels, we impose the chrominance to be shifted at only one fre-
quency ±ω0, with ω0 = [π, ω0]

T and ω0 = 2πn2/N2 for some
integer n2 ∈ (1, �(N2 − 1)/2�) relatively prime with N2. Hence,
the luminance information is concentrated around 0 in v̂, while
the chrominance information is around ±ω0. Moreover, the two
chrominance bands should be orthogonal, so that they can be op-
timally separated during demosaicking. In comparison with the de-
signs in [1], whith the chrominance spread at several frequencies, the
risk of inter-chrominance aliasing is drastically reduced. We also im-
pose that the carrier waves of the two chrominance channels have the
same magnitude, so that the color discrimination of the CFA is the
same for every color, without privileged chrominance axis. Hence,
the two carrier waves are sines in quadrature and we obtain the form
of the CFA as

cfaL[k] = γL, (2)

cfaC1 [k] = γC(−1)k1

√
2 sin(ω0k2 − ϕ), (3)

cfaC2 [k] = γC(−1)k1

√
2 cos(ω0k2 − ϕ), (4)

for every k ∈ Z
2, where we introduced the luminance gain γL, the

chrominance gain γC and the phase ϕ which are, at this point, free
degrees of freedom. Note that ω0 must be different from 0 and π.
Therefore, N2 ≥ 3.

We now remark that replacing each value cfaX [k] by 1 −
cfaX [k] for every X ∈ {R, G, B} does not change the spec-
tral properties of the CFA, apart from γL which is changed into√

3 − γL. Therefore, this operation can be done to ensure that
γL ≥ √

3/2, since the light sensitivity of a CFA is one of its most
crucial characteristics and should be maximal. However, we have to
fix γL =

√
3/2, since increasing this parameter also reduces γC ,

which is already small for this value of γL. A higher value of γL

would yield a much higher amplification of the noise in the chromi-
nance bands than in the luminance band of the demosaicked image.

The cornerstone of the design is now the maximization of γC ,
so that the CFA has the best color discrimination capabilities, for
reduced luminance/chrominance aliasing and lower sensitivity to
noise. After some calculations omitted by lack of space, we obtain

Bayer Hirakawa et al. [1] Proposed

Fig. 1. The thee CFAs considered in this work (top) and the respec-
tive results of our demosaicking method on a grayscale synthetic
zoneplate pattern (bottom), to illustrate their spectral properties.

that, for fixed N2 and n2, the desired values in (3)-(4) are

γC =

√
3

4 cos(ϕ)
, ϕ =

π

lcm(6, N2)
, (5)

where lcm denotes the least common multiple. Consequently, the
value N2 = 3 (therefore, n2 = 1) maximizes the chrominance gain
γC (the other solution N2 = 6, n2 = 1 is not interesting, since its
modulating frequency [π, π/3]T is closer to 0).

The obtained 2 × 3 pattern, depicted in Fig. 1, has a small
number (six) of distinct filters, with the colors [1, 0, 1

2
], [1, 1

2
, 0],

[0, 1, 1

2
], [0, 1

2
, 1], [ 1

2
, 0, 1] and [ 1

2
, 1, 0]. Its modulation frequency

ω0 = [π, 2π/3]T is ideally located. It is far away from the origin
and the axes of the frequency plane, but not too close to [π, π]T,
in which case the risk of inter-chrominance aliasing would be in-
creased (because of the overlap with the replica at [π, 2π − ω0]

T).
The gains, which control the sensitivity to noise, are γL =

√
3/2

and γC = 1/2. Moreover, the pattern does not depend on the choice
of the chrominance basis C1, C2, only used for the calculations.
Our new CFA provides much better characteristics than the Bayer
CFA for photography: its higher light sensitivity (higher γL) allows
to reduce the exposure time (for less blur due to shake of the cam-
era), to increase the aperture (for increased depth-of-field, hence less
out-of-focus blur), or to use a lower ISO setting for a less destructive
subsequent denoising process. It offers a better robustness to both
luminance/chrominance aliasing and noise, as illustrated in Sect. 5.

4. DEMOSAICKING STRATEGY

A simple linear demosaicking algorithm naturally follows from the
characteristics of our CFA in the Fourier domain. It consists in sep-
arating the frequency content of the mosaicked image v into the lu-
minance and chrominance channels of the reconstructed image. For
this, we first estimate the chrominance and then subtract it to v to ob-
tain the luminance. The chrominance is obtained by re-modulating
v so that the chrominance is shifted in the low frequency area, and
then applying a low-pass filter. So, the complexity of the demosaick-
ing process is essentially limited to two convolutions! In addition,
they use the same filter and can be performed in parallel. The demo-
saicking method proposed consists in the following steps, where we
denote by dem the demosaicked image.
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Demosa. Non-linear methods Proposed linear method
method [3] [8] with 9 × 9 filters

CFA Bayer Bayer Bayer [1] Ours
1 10.12 11.45 12.93 6.53 7.12
2 6.80 5.75 7.92 6.01 7.07
3 10.56 10.14 13.14 12.58 13.38
4 6.47 10.15 10.26 4.80 5.32
5 4.00 5.02 3.34 4.59 4.53
6 19.31 19.26 29.25 10.92 11.90
7 3.96 3.38 5.16 3.88 4.00
8 3.91 3.56 4.42 3.57 3.58
9 6.80 7.49 8.74 5.76 6.14

10 3.20 3.39 4.17 2.93 2.92
11 19.98 27.03 20.39 16.87 17.90
12 7.35 7.08 7.82 7.06 7.36
13 2.77 4.92 5.26 2.10 2.15
14 4.42 4.66 4.69 4.14 4.54
15 12.05 13.01 12.42 11.15 11.81
16 5.92 6.30 10.06 4.48 4.87
17 5.92 5.04 6.11 4.64 5.05
18 8.51 8.72 9.34 5.59 6.04
19 9.86 9.00 10.78 8.48 8.81
20 18.94 21.42 19.29 14.24 15.44

Mean 8.54 9.25 10.36 7.02 7.50

Table 1. MSE for the linear demosaicking experiments using differ-
ent CFAs, in the noiseless case. Image numbers correspond to [9].

1. Compute the image v1 from v by modulation with
the carrier wave of the chrominance C1: v1[k] =

(−1)k1

√
2 sin(ω0k2 − ϕ)/γC v[k].

2. Apply the convolution with the appropriate low-pass filter h:
demC1 = v1 ∗ h.

3. Compute the image v2 from v by modulation with
the carrier wave of the chrominance C2: v2[k] =

(−1)k1

√
2 cos(ω0k2 − ϕ)/γC v[k].

4. Apply the convolution with the same low-pass filter h:
demC2 = v2 ∗ h.

5. Estimate the luminance by subtraction of
the remodulated chrominance: demL[k] =`
v[k] − γC(−1)k1

√
2 sin(ω0k2 − ϕ) demC1 [k] −

γC(−1)k1

√
2 cos(ω0k2 − ϕ) demC2 [k]

´
/γL.

6. Compute demR, demG, demB by change of basis from
demC1 , demC2 , demL.

In practice, the values of the carrier waves should be pre-
computed in a look-up table of size 6, to exploit the periodicity of
the pattern. The proposed algorithm can be easily adapted to handle
other CFAs, since it is an optimization of the generic approach given
in [1, 10] to our specific CFA. The adaptation to the Bayer pattern
reverts to the linear algorithm of Dubois [3]. Concerning the choice
of the filter(s) h, we computed for every CFA the non-separable 9×9
filter(s) optimal in the least-squares sense for the test set of 20 images
considered in Sect. 5, using the approach proposed by Dubois [11].

5. PERFORMANCE ANALYSIS

The combination of the generic linear demosaicking framework of
Sect. 4 by spectral selection with the LS-optimal filters provides a
fair and robust way for comparing the performances of CFAs. In
this section, we compare our new CFA with the Bayer CFA and the
2 × 4 CFA of Hirakawa et al. [1], depicted in Fig. 1. To visually

Bayer Proposed

Fig. 2. Results of our demosaicking method on a part of the Light-
house image, with the Bayer and the proposed CFA.

illustrate the modulation of the chrominance in the Fourier domain
by the CFAs, we give in Fig. 1 the images obtained when a syn-
thetic grayscale zoneplate is mosaicked and demosaicked with the
proposed method. This shows how the demosaicking method assigns
the frequency content of v to the luminance and chrominance bands
of the demosaicked image. We can see that the CFA of Hirakawa et
al. is prone to aliasing between the two chrominance bands. This
may be visible in demosaicked images around sharp color edges of
horizontal objects.

5.1. Evaluation in Noiseless Situations

To validate our design, we consider the data set of 20 color im-
ages of size 768 × 512 used by many authors to test their meth-
ods (e.g. [9, 1]). These images were mosaicked using the consid-
ered CFAs and demosaicked using spectral selection, as discussed
in Sect. 4. Note that to simulate an acquisition with a real camera,
all images were put in landscape mode. The mean squared errors
(MSE)1 obtained are reported in Tab. 1. We also provide the results
obtained for the Bayer CFA with two state-of-the-art non-linear de-
mosaicking methods [3, 8]. We observe that the MSE improvement
of at most 18%, obtained with the non-linear methods over our lin-
ear approach, is not so high, especially when taking into account the
much higher computation cost. Moreover, the non-linear methods
distort the characteristics of noise, which makes subsequent denois-
ing a much more difficult task.

As a result, The CFA of Hirakawa et al. and ours clearly outper-
form the Bayer CFA. They provide visually pleasant demosaicked
images without noticeable artifacts. In particular, they are free of the
typical fringes effect that affects the Bayer CFA, see Fig. 2. The CFA
of Hirakawa et al. slightly outperforms our new CFA in this noise-
less scenario. In fact, with their CFA, the modulating frequency for
the G/M chrominance ω0 = [π, π/2]T is closer to zero, but with two
times less energy around ω0, since the second chrominance band is
modulated at [π, π]T. Therefore, their CFA is slightly less prone to
luminance/chrominance aliasing.

5.2. Evaluation in Noisy Situations

In real acquisition conditions, the mosaicked image is corrupted by
sensor noise, amplified by the analog gain applied (ISO setting of

1In this article, like in [1], we do not take into account the first and last
five rows and columns of the demosaicked images for the computation of the
MSE, to get rid of issues at the boundaries.
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Original Bayer Hirakawa et al. Proposed

Fig. 3. Results of our demosaicking method used with the three CFAs depicted in Fig. 1, on a part of the Lighthouse image. The mosaicked
image is corrupted by additive white Gaussian noise of standard dev. σ = 20 and no denoising process is applied.

the camera) [5]. We give in Fig. 3 examples of demosaicked images,
when the mosaicked image is corrupted by additive white Gaussian
noise. The linearity of the demosaicking process makes the analyti-
cal description of its effects on noise rather simple, but we omit it by
lack of space. As can be visually observed, most of the demosaicked
noise is concentrated in the luminance (86% of the noise energy with
our CFA and our filter h). The level of luminance noise is lower with
the CFA of Hirakawa et al. and ours than with the Bayer CFA, since
γL is higher.

With the CFA of Hirakawa, the two chrominance gains are dif-
ferent (γC1 =

√
2/4, γC2 =

√
6/4). This means that the noise

is more amplified in the B/R band than in the G/M band after de-
mosaicking. Our CFA is free of this issue. The amplification factor
for the noise energy in the chrominance of the demosaicked image
is 1/(γC1)2 + 1/(γC1)2; that is, 32/3 vs. 8 for our CFA (in other
words, 33% more chrominance noise). This advantage of our CFA
over the one of Hirakawa should largely counterbalance the slightly
lower performances in the ideal noiseless scenario.

6. CONCLUSION

We redefined the problem of CFA design as the maximization of the
energy of the color scene captured in the mosaicked image, through
the choice of the luminance and chrominance gains of the CFA,
within the framework of spectral separation proposed by Hirakawa et
al. [1]. The proposed 2 × 3 CFA, solution to this problem, provides
optimal robustness to both aliasing and noise. Moreover, its spectral
properties are fully exploited by a simple, linear and fast demosaick-
ing strategy. The design of efficient joint demosaicking/denoising
strategies will be investigated in future works. Also, the design of
the spectral sensitivity functions of the six colors defining the new
CFA has to be addressed, for instance with the methodology in [12].
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