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Abstract  

In order to introduce thin electromagnetic shell into quasi-static PEEC method, a 

coupling with an Integro-Differential Method (IDM) is proposed. This coupling allows 

us to benefit from both methods. The complex conductor geometry is modelled with 

the PEEC method while thin shell is taken into account thanks to the IDM. 

1 Introduction 

In order to analyse eddy-current in electromagnetic devices, an original formulation is 

developed. It is particularly well-adapted to model devices that include thin 

electromagnetic shells (electromagnetic shieldings) and complicated conductor 

systems.  

For this kind of application, the direct use of differential methods, such as the finite 

element method (FEM), is often difficult and may be sometimes inefficient because of 

the mesh generation difficulty. Indeed, in this method, mesh refinement around 

conductors is needed in order to take into account the large variation of the magnetic 

field close to conductors. To generate this mesh can be a hard task. Moreover, even if 
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this mesh is satisfactorily achieved, such modelling lead to an huge numbers of 

degrees of freedom and so is limited by memory needs and CPU time requirements if 

modelling of 3D problems with a large number of conductors is required [1], [2], [3], 

[4]. 

The PEEC method (Partial Element Equivalent Circuit) is mainly used for the 

modelling of complex electrical interconnections and can be applied to a large range of 

devices where the air region is dominant [5], [6], [7], [8]. In this method, only 

conductors are described and meshed, so it generally requires less memory and CPU 

time than the FEM method. However, the classical PEEC method does not enable the 

3D modelling of thin electromagnetic regions.  

On the other hand, some integral formulations (usually called integro-differential one) 

have been developed in order to analyze eddy current in conducting shells [9], [10], 

[11]. Like the PEEC method, it does not require the meshing of the air region.  

In this paper, an original IDM/PEEC coupling is presented. The modelling of thin 

electromagnetic shells will be achieved thanks to the integro-differential method (Part 

II). The PEEC method allows us to model the contributions of inductors fed (Part III).  

The coupling of those formulations, in order to compute the interactions between 

conductors and electromagnetic shells, will be developed in part IV. Finally, a 

numerical example will be presented in part V. Results obtained with this formulation 

and the Finite Element Method (FEM) will be compared in this last part.  
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2 Integro-differential approach for modelling thin 

electromagnetic shells 

Low frequency problems are focused (i.e. the skin depth is high in comparison with the 

thickness of the shell) so the assumption of a uniform current distribution across the 

thickness of the shell is made. Moreover, eddy currents CJ  are assumed to flow 

tangentially to the shell. 

Let us now consider a thin electromagnetic shell placed in an inductor field H0. 

Equations governing the problem in shells are: 

BE  jCurl  (1) 

CCurl JH  (2) 

EJ C  (3) 

)(00 MHHB  r  (4) 

where   is the conductivity, CJ  is the eddy current distribution in the shell, r is the 

relative permeability of the material and M is the magnetization. In our application, we 

are mainly interested in shielding effects, so the shell will be placed in a quite low 

magnetic field. So, the permeability will be considered as uniform and the problem as 

linear. 

The Ampere-Maxwell equation (2) implies the existence of an electric vector potential 

T as: 

CCurl JT   (5) 

As the current is tangential and uniform across the thickness, T is normal to the shell 

and can be consider as scalar (i.e. its normal component). 
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Equation (1) can be rewritten as follows [10]: 

nrjCurlCurl HT 


0))(
1

(  (6) 

where nH  is the normal magnetic field. Considering the relation linear between the 

magnetization M and the magnetic field intensity H, equation (6) can be rewritten as:  

n
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These equations have to be discretized. The easiest way is to mesh the thin shell into n 

triangular prisms elements associated with a constant magnetization (0-order shape 

functions for M). The unknown current potential variables T is approximated with 

linear functions (1-order shape functions so uniform value of current J per element). 

Let p denote the number of node. A Galerkine projection method of (7) is then applied 

in order to get the following matrix system: 

0MBTA   (8) 

where unknowns are T a ( 1p ) vector and M a ( 13 n ) vector. Matrix A is a ( pp  ) 

matrix and B is a ( np 3 ) matrix.  

The total magnetic field H is the sum of H0, the source field, Hm the reaction of the 

magnetization and Hc the reaction of the eddy current flowing in the thin plate. Let Vm 

and   denote the volume of magnetic material and its middle surface respectively. An 

integral equation linking the local field to the magnetization and the electric vector 

potential can be written [9]: 
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where P  is a point located in the domain region, r is the vector linking the integration 

point to P  and e  is thickness of shell. Thanks to a point matching approach of this 

material law at the centre of each element, we get a linear matrix system: 
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  0)1/( hTCMFI rd  (10) 

where dI  represents the identity matrix; h0 is the source fields at each barycentre, F is a 

(3n×3n) matrix and C is a (3n×p) matrix.  

Equations (8) and (10) are solved together to obtain the magnetization M of each 

element and the current potential T of each node. This method is a hybridisation 

between a differential equation and an integral one; this is why it is usually called an 

integro-differential method.  

3 Inductive PEEC method 

Let us consider m volume conductors fed with voltage sources placed in a surrounding 

air region without any magnetic materials. The well-known PEEC method is 

particularly reliable to solve this kind of problem. It is based on the determination of 

partial voltage generated on each conductor by electromagnetic sources. To compute 

these voltages, volume integration on the conductor of the magnetic vector potential 

created by all the others conductor is provided. Let us assume that the current density 

in each conductor is uniform. The expression of the magnetic vector potential jA  

created by conductor j  is [5], [6]: 
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where r  is the distance between the integration point and the point P ; jI  is the 

current in the conductor j ; jS  is the cross-section of the current flow; jV  is the volume 

and ju  is the unit vector whose direction is that of conventional current jI .   

The flux created by jI  through the conductor k is: 
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The mutual inductance between two conductors is defined as: 
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Thus, the voltage appearing on the conductor k  is given by: 





m

j
kjjkkcondk mIjRIU

1
_

 (14) 

where   is the angular frequency, kR  is the resistance of k-th conductor. By applying 

equation (14) to all conductors, we get a matrix system known as impedance matrix 

system: 

UIZ   (15) 

where Z is a (m×m) matrix, I is a (m×1) vector and U is a (m×1) vector.  

4 Coupling principle  

Let us now consider a system composed of m conductors with unknown flowing 

currents I  and thin magnetic conductive shell. The thin shell is still meshed into n 

triangular prism elements associated with a constant magnetization and a constant 

value of current per element. As in part two, the interactions between each element in 

the thin shell are calculated thanks the integro-differential method. The PEEC method 

is used to model interconnection between conductors. It remains to write explicitly the 

couplings matrix between both methods.  

4.1 Influence of current conductor in thin electromagnetic shell 

The term h0 of equation (10) can be computed by using Biot and Savart law. The 

magnetic field created by m conductors is given by: 
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with same notations as in (11). We write equation (16) at barycentre of each thin shell 

element to obtain the following matrix block: 

IBSh 0  (17) 

where BS is a (3n×m) matrix, I is a (m×1) vector. We substitute (17) into (10) and obtain: 

0IBSTCMFI  ))1/(( rd  (18) 

4.2 Influence of magnetization and eddy currents of thin shell on 

conductors 

Like in the standard PEEC method, we have to integrate the magnetic vector potential 

iA  created by each thin shell elements i on the conductor k. The expression of this 

magnetic vector potential is:  
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with same notations as in (9). The magnetic vector potentials of n shell elements create 

a new voltage on the conductor k: 
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Thus, the total voltage appearing on the conductor k is given by: 
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where kimf  is defined as the mutual inductance between the magnetization Mi of shell 

element and the conductor k; kimc  is the mutual inductance between the current 

potential Ti of the shell node and the conductor k.  

If we write this equation for all conductors, we get a new impedance matrix system: 
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 TLMLIZU  Cf  (22) 

where fL is a (m×3n) matrix and CL is a (n×p) mutual inductance matrix between thin 

shell elements and conductors.  

Finally, equations (8), (18) and (22) are brought together in the global (3n+p+m) × 

(3n+p+m) following matrix systems: 
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where MM is the matrix ( FI  )1/( rd )( see equation (10)). 

In (23), I and U are the current and voltage values of each branch of the conductors 

system. In order to solve this equation system with a reduced number of degrees of 

freedom, we use the Kirchhoff’s mesh rule. Consequently, current and voltage values 

become associated to each of independent circuit mesh. We get then a lighter system 

and after solving it with a direct linear solver (LU decomposition), we obtain 

magnetizations, current potentials in thin shell and currents in conductors.  

5 Numerical Example 

Let us consider a conducting ferromagnetic plate with the conductivity  =9.6E+6 S/m 

and relative permeability r =50 (reversible linear permeability representative of a 

classical shielding effect). The thickness of the plate e=1.5mm and the dimensions are 

200x200 mm. This plate is placed close to a conductor coil which is fed with a voltage 

source (1V, 50Hz) (Figure 1). 

 

FIGURE 1 HERE 
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Our coupling is compared with results given by FEM in Flux software [12]. We focus 

on the computed eddy current distribution and Joule losses in the plate (Figure 2, 3). 

Whereas the convergence is quickly reached with our coupling, the problem needs a 

very fine mesh to be accurately solved with FEM because of the large variation of the 

field close to the conductor [13].  

We can notice small differences between Joule losses computed values. If we consider 

that FEM method as our reference, the IDM/PEEC coupling leads to an error of 0.8% 

for the Joule losses in plate (Figure 3). Results provided by our coupling are very 

encouraging, the convergence being reached with a very few number of elements 

(around 2000). Of course, the obtained matrix is fully dense, but the computation time 

is divided per ten in comparison with FEM. Let us notice that this problem of fully 

dense matrix and associated memory need could be fixed with the use of a 

compression technique like « Fast Multipole Method » (FMM) [14] for instance.  

 

FIGURE 2 HERE 

 

FIGURE 3 HERE 

 

6 Conclusions  

In this paper, we have presented a coupling between PEEC and an integro-differential 

method in order to introduce the thin electromagnetic shell in PEEC method. Through 

a simple example, we have validated this formulation. The result shows that the 

coupling is much faster and more accurate than the FEM method on this simple 
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geometry. However, our formulation can only be applied for problem where the skin 

depth is high in comparison with the thickness of the shell ( e ). In further work, 

formulations enabling smaller skin depth will be investigated.  
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Figure 1: Geometry of the numerical example  
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Figure 2: Eddy current in thin plate computed: a) Calculation by our coupling method, 

b) Calculation by FEM method 
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Figure 3: Joule losses in thin plate (W) calculated by IDM/PEEC and FEM method in 

function of different meshes  

 


