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NON-LOCAL IMAGE SMOOTHING BY APPLYING
ANISOTROPIC DIFFUSION PDE’S IN THE SPACE OF PATCHES

D. Tschumperlé L. Brun

GREYC (CNRS UMR 6072), 6 Bd du Maréchal Juin, 14050 Caen Cedex, France.

ABSTRACT

We design a family of non-local image smoothing algorithms which

approximate the application of diffusion PDE’s on a specific Eu-

clidean space of image patches. We first map a noisy image onto

this high-dimensional space and estimate its geometric structure

thanks to a straightforward extension of the structure tensor field.

The tensors spectral elements allows us to design an oriented high-

dimensional smoothing process by the means of anisotropic regular-

ization PDE’s which have both local and non-local properties and

whose solutions are estimated by locally oriented high-dimensional

convolutions. We show that the Bilateral Filtering and Non-Local

Means methods are the isotropic cases of our denoising framework.

Index Terms— Edge-preserving denoising, non-local smoothing,

anisotropic diffusion, regularization PDE’s.

1. INTRODUCTION

Over recent years, there has been a high raise of interest for meth-

ods based on patch analysis in the image processing and computer

vision communities. A patch, basically defined as a (usually square)

local neighborhood of an image region, is a very basic model to work

with. But, it has the intrinsic ability to catch large-scale structures

in images. For instance, using patches provides one simple way to

compare texture informations at different locations, as soon as the

patch sizes are higher than the maximal texel size (smallest signifi-

cant unit of a texture). Moreover, patch-based algorithms are some-

how intuitive : They mostly reproduce the way humans would man-

age image processing tasks by analyzing, comparing and manipu-

lating semi-local image neighborhoods together. Surprisingly, these

algorithms are often simple to implement but generally perform very

well. Patch-based methods have been known to give interesting solu-

tions when it comes to estimate the displacement field between two

images (Block Matching algorithm) [10], synthetize textures from

input models [1, 9, 22], transfer textures from one image to another

one [2, 12] or perform texture-preserving inpainting [6, 11].

Impressive results have been recently obtained by patch-based

methods in the field of image denoising, originated by the Non Lo-

cal Means framework [5] and continued with various derivatives

[4, 7, 13]. Mostly, these methods proceed by iteratively computing a

weighted average of patches at different locations. The outstanding

quality of the denoising results outputed by such algorithms made

them rapidly enter the hall of fame of image smoothing techniques.

Clearly, patch-based denoising methods have become very seri-

ous competitors to other well established regularization techniques,

such as the ones based on diffusion PDE’s. One of the major ad-

vantage of the formers are their intrinsic non-locality : they are able

to integrate large spatial informations and catch local image areas

with auto-similarities. As noise is a random stochastic process, hav-

ing several samples of similar image structures definitely helps in

reconstructing artefacts-free versions of degraded images [13]. On

the contrary, PDE regularization methods act on a more local scale

since they mimic physical processes by locally diffusing pixel val-

ues along the image structures [15, 18, 20, 23]. But this locality

goes along a very precise control on how the smoothing is achieved.

The anisotropic behavior of these PDE’s is perfectly adjustable and

is able to fit specific constraints related to any targeted application.

This certainely explains part of the success they met until this time.

Combining the best of these two worlds is a very exciting and chal-

lenging purpose. We propose to move toward this direction by con-

sidering an alternate high-dimensional patch space on which the de-

graded image is mapped. In this space, each existing image patch is

associated to a single point. The mapping is done continuously such

that the geometry of the obtained patch surface reflects both the local

and non-local structural informations of the image data (section 2).

The geometric features of this patch-projected dataset are then re-

trieved by computing a high-dimensional extension of the structure

tensor field [8, 23] (section 3). This naturally leads to the design of

a diffusion tensor-directed smoothing process, expressed as the evo-

lution of a high-dimensional multi-valued anisotropic diffusion PDE

on the Euclidean patch space.

From a practical point of view, we show that this evolution can

be approximated by several local convolutions that can be computed

in the initial image domain, so that storing the entire patch space

is never required. We also exhibit the particular isotropic cases of

our framework which are found to be in fact variants of the well

known Non-Local Means and Bilateral Filtering schemes [5, 19]

(section 4). Some application results and comparisons for the prob-

lem of color image denoising conclude this paper (section 5).

2. DEFINITION OF THE PATCH SPACE

Let us consider a 2D noisy image I : Ω ⊂ R
2 → R

n (here n = 3,
for color images). The ith component of a vector or image X will be

denoted asXi. We define a patchPI
(x,y) as the set of all image values

belonging to a spatially discretized local p × p neighborhood of I,

centered at (x, y). For simplification sakes, the spatial discretization

step of a patch is assumed to be 1. The dimension p is considered

as odd, i.e. p = 2q + 1 (q ∈ N). Actually, a patch PI
(x,y) can be

ordered as a np2-dimensional vector as :

PI
(x,y) =

`

I1(x−q,y−q), . . . , I1(x+q,y+q), I2(x−q,y−q),

. . . , In(x+q,y+q)

´

A multi-valued patch PI
(x,y) is thus the concatenation of the scalar

patches PIi

(x,y) for all image channels i = 1...n. The mathemati-

cal study of the whole manifold geometry formed by these image

patches has been initiated in [16]. Here we will rather consider this

patch-based geometry of the image at a more local scale.



Mapping in the patch space : We define the (np2 + 2)-

dimensional patch space Γ = Ω × R
np2

. Each point p of Γ is a

high-dimensional vector which contains both informations of any

(x, y) coordinates in Ω and of all values of any p × p patch P in

R
np2

. Obviously, we want to highlight the points p = (x, y,PI
(x,y))

in Γ, i.e. the locations which precisely correspond to existing patches
in I (a.k.a. the located patches of I). We define the function Ĩ

in Γ such that Ĩ(p) is non zero only for these located patches :

Ĩ : Γ → R
np2+1, s.a. ∀p ∈ Γ,

Ĩ(p) =



(I(x,y), 1) if p = (x, y,PI
(x,y))

~0 elsewhere
(1)

The application F such that Ĩ = F(I) computes a patch-based rep-

resentation of I. Note that the value space of Ĩ has an extra compo-

nent set to 1 at the located patches of I. This is comparable to what is

usually done when dealing with projective spaces : This value plays

a role of weighting action when inverting F , i.e. retrieving back I

from Ĩ. Intuitively, it defines how much a patch in Γ is meaning-

ful, and by default all located patches of the initial image have the

same importance. Note that Ĩ is a discontinuous multi-valued func-

tion. To avoid further derivation problems, we will in fact consider

Ĩǫ = I ∗ Gǫ, a continuous version of Ĩ, where each patch PI
(x,y) of

I is mapped as a normalized Gaussian function Gǫ with a variance ǫ
close to 0, instead of a single Dirac point in Γ.

Back-projection on the image domain : Due to the high dimen-

sionality of Γ, there are of course no unique ways to invert the patch
transform Ĩ = F(I). We define a back-projection method based on

two steps : First, we retrieve the most significant patch P Ĩ
sig(x,y) in

Γ for every location (x, y) in Ω.

This is the one with the maximum projective weight, i.e.

P Ĩ
sig(x,y) = argmax

q∈Rnp2 Ĩnp2+1(x, y,q) (2)

Note that if one perturbs only slightly the patch representation Ĩ of

I, one will likely find that the significant patches P Ĩ
sig(x,y) stays at

the same locations PI
(x,y) as the original ones, even though the pixel

values of these most significant patches may have been modified.

In a second step, the back-projected image Î is reconstructed by

combining the most significant patches together. Here, we use the

simplest possible strategy, i.e. copy the normalized center pixel of

each P Ĩ
sig(x,y) at its corresponding location (x, y) :

∀(x, y) ∈ Ω, Îi(x,y) =
Ĩ
ip2+

p2+1
2

(x,y,P Ĩ
sig(x,y))

Ĩ
np2+1

(x,y,P Ĩ
sig(x,y)

)
(3)

We could also have copied an entire sub-patch of P Ĩ
sig(x,y)

while overlapping neighborhood patches according to their relative

weights. These patch copying/averaging considerations frequently

appear in the patch-based algorithm literature. The best pick proba-

bly depends on the targeted application.

This simple patch transform allows to project at the same time the

local and non-local structural informations of an image I onto an

Euclidean space Γ where nearby and non-zero points correspond to

patches that are similar in values (with respect to the L2 norm) or are

spatially grouped. Therefore, applying a local process (by nature) on

Γ followed by a back-projection procedure is a quite elegant way of

embedding it with non-local properties. This is what we aim to do

in the followings, with the proposal of an edge-preserving filtering

based on the evolution of diffusion PDE’s on Γ.

3. PATCH-BASED GEOMETRY IN Γ

Smoothing Ĩ anisotropically requires a preliminary analysis of its

local geometry in Γ, by finding the directions and the contrast of

the discontinuities in Ĩ. For classical multi-valued images, this step

is usually done by retrieving the spectral elements of the (possibly

smoothed) structure tensor field Jσ, as suggested in [8, 23]. But, as

the expression of Jσ is dimension-independent, we can easily con-

sider its high-dimensional extension J̃σ =
Pn

i=1 ∇Ĩiσ∇ĨT
iσ for our

patch transform dataset Ĩ, where Ĩiσ = Ĩi ∗ Gσ is a filtered version

of Ĩi by a normalized (np2 + 2)-dimensional Gaussian kernel Gσ .

Estimation of ∇Ĩσ : Practically, the high dimensionality (np2 + 2)
of Γ is a major obstacle for the estimation of J̃σ since it is not pos-

sible to store all values of Ĩ in computer memory. Fortunately, these

gradients can be estimated directly on the original image domain

Ω thanks to the derivation property of the convolution ∂(Ĩ ∗ K) =

Ĩ ∗ ∂K, and to the fact that Ĩ vanishes almost everywhere except at

(x, y,PI
(x,y)). So, we get :

∀p ∈ Γ, ∇Ĩiσ(p) =
R

(k,l)∈Ω
Ii(k,l) ∇Gσ(p−q(k,l))

dkdl

where q(k,l) = (k, l,PI
(k,l)). Once the smoothed gradient ∇Ĩiσ is

estimated, the computation of the symmetric (np2 +2)× (np2 +2)

structure tensor J̃σ becomes a straightforward operation.

Geometry analysis : As demonstrated in [8], the spectral elements

of the structure tensor J̃σ are closely related to the local varia-

tions of the studied multi-valued function. In our case, N(p) =
q

trace(J̃(p)) gives precious informations about the local variation

amplitudes considering at the same time both the spatial and patch-

valued distributions of the neighboring points (i.e. the patch discon-

tinuities). A high value for N(p) means that the pixel is located on

an edge of I, but also that the patch to which it belongs is probably

dissimilar to the other patches within its neighborhood.

The principal eigenvector ũ of J̃σ is another valuable feature : it

gives the orientation normal to the isophotes of Ĩ, and here, is closely

related to the normal vector to the manifold formed by the located

patches of I in Γ. Clearly, smoothing Ĩ along ũ should be avoided as

much as possible in order to preserve the significant discontinuities

and patch structures of I. This is the usual edge-preserving heuris-

tic which consists in favoring smoothing along the edge directions

instead of across them. Here, the “edges” are simply considered as

patch-based features. The variance σ used for the gaussian smooth-

ing of J̃σ tells about the regularity of the estimated spatial-patch

geometry of Ĩ. It ideally depends on the level of noise in I. Note

that the importance of the patch component versus the spatial part is

directly proportional to the value range of the image values : In this

setting, multiplying the values of Iwith a factor λ > 0 allows to give

more importance to the spatial part (λ → 0) or to the patch-based

part (λ >> 0) of the analyzed image geometry.

4. PATCH-BASED DIFFUSION PDE’S

Now, we have a continuous patch-based representation Ĩ of I as well

as local geometric indicators N(p) and ũ(p). We propose then to

apply the following generic diffusion PDE on Γ :

∀p ∈ Γ,
∂Ĩ(p)

∂t
= trace

“

D̃(p)H̃i(p)

”

(4)

This is a high-dimensional version of the equation proposed in [20]

in the context of classical 2D image regularization. H̃i(p) is the



Hessian matrix of Ĩi at p. D̃ : Γ → P(np2+2) is a field of diffusion

tensors which direct the regularization process by defining the orien-

tations (tensors eigenvectors) and amplitudes (tensors eigenvalues)

of the pixel diffusion at each point p in Γ. The way D̃ is chosen is

discussed later, but it must obviously depend on N(p) and ũ(p).

Approximation by local convolutions : [20] shows that for a

constant tensor field, the PDE (4) is a tensor-deformed heat flow

whose solution Ĩ[t] at time t is found to be the convolution of

the initial data by a tensor-oriented Gaussian kernel. This result

also holds in our patch space : Ĩ[t] = Ĩ[t=0] ∗ GD̃
t , where

∀p ∈ Γ, GD̃
t(p) = 1

(4πt)
np2+2

2

e−
pT D̃−1p

4t .

When D̃ is not constant (usual case), (4) becomes nonlinear and

getting one explicit solution is no longer possible. To avoid the tra-

ditional resolution of (4) using a finite difference scheme, [20] pro-

posed an alternative iterative approximation based on local convo-

lutions by differently oriented Gaussian kernels. In our case, this

approximation scheme can be transposed in Γ as :

∀p ∈ Γ, Ĩ
[dt]

(p) ≈
R

q∈Γ
Ĩ
[t=0]

(q) G
D̃(p)

dt(p−q) dq (5)

where dt is the discretized time step of the PDE evolution. Note

that as (5) is a local averaging process, the approximation remains

stable even for large dt. The approximation is also better when D̃

does not depend on the time t (i.e. is estimated from Ĩ[t=0]) and

is not locally varying too much (it has smoothness properties). It

is finally worth noting that (5) will not modify the locations of the

most significant patches in Ĩ. As a consequence, the back-projection

procedure (3) is simplified since P Ĩ
sig(x,y) and PI

(x,y) stay in place.

All this means that the solution of (4) can be actually estimated us-

ing a single (large) iteration, only at the original patches locations

(x, y,PI
(x,y)), and as Ĩ[t=0] is sparse, this can be directly expressed

in the original image domain Ω : ∀(x, y) ∈ Ω,

Ĩ
[t]
(p(x,y))

≈
R

(k,l)∈Ω
I
[t=0]
(k,l) G

D̃(p(x,y))

dt(p(x,y)−q(k,l))
dkdl (6)

where p(x,y) = (x, y,PI
(x,y)) and q(k,l) = (k, l,PI

(k,l)).

The isotropic case : The isotropic case of (4) corresponds to the

(np2 +2)-dimensional heat-flow, i.e. when the diffusion tensor field

is chosen to be everywhere D̃(p) = Id (identity matrix). In this

setting, GD̃
dt is an isotropic Gaussian kernel. Estimating the heat flow

solution in Γ with (6) and back-projecting it on the original image

domain Ω with (3) gives then :

∀(x, y) ∈ Ω, Î
[t]

(p)
=

R

(k,l)∈Ω I
[t=0]

(k,l)
w(x,y,k,l)dkdl

R

(k,l)∈Ω w(x,y,k,l)dkdl
(7)

where w(x,y,k,l) = e−
(x−k)2+(y−l)2

4t e−
‖PI

(x,y)
−PI

(k,l)
‖2

4t .

Here, we find the same expression as the Non-Local Means al-

gorithm [5] except that our averaging weights w(x,y,k,l) also take

care of the spatial distance between all compared pixels. In ad-

dition, if we set q = 0 (i.e. considering that patches have a

size of 1 × 1), then the weights simply reduces to w(x,y,k,l) =

e−
(x−k)2+(y−l)2

4t e−
‖I(x,y)−I(k,l)‖

2

4t . This defines the natural multi-

valued extension (e.g. for color images) of the well known Bilateral

Filtering technique, initially proposed in [19] for the smoothing of

gray-valued images.

The anisotropic case : Actually, isotropic diffusion tensors do not

take care of the local geometry of the patch-projected dataset Ĩ. The

diffusion is done in all patch-space orientations, including ũ(p), the

principal eigenvector of J̃σ(p). In order to smooth the image while

preserving the local spatial and patch structures of Ĩ, we rather pro-

pose to consider the following field of anisotropic diffusion tensors :

∀p ∈ Γ, D̃(p) = 1
N(p)

`

Id − ũ(p)ũ
T
(p)

´

(8)

Our choice is inspired by the classical Total Variation frame-

work for scalar images [17], corresponding to the anisotropic

diffusion ∂I
∂t

= div (∇I/‖∇I‖) which can be also ex-

pressed as ∂I
∂t

= trace (DH) with D = 1
‖∇I‖

`

Id − ηηT
´

and

η = ∇I/‖∇I‖. Intuitively, this choice of diffusion tensors (8)

reduce the amplitude of the patch-based diffusion process on

locations having high patch-gradients and smoothes the patch

structures always along the hyperplane locally tangent to the

discontinuities in Ĩ. Consequently, the anisotropic diffusion (4) is

a non-local patch-preserving smoothing procedure. Note that for

1 × 1 patches (q = 0), our method also defines an anisotropic

variant of the Bilateral Filtering method. Note that actually, any

kind of anisotropic diffusion tensor field D can be considered in our

patch-based smoothing framework (4). The best choice is ideally

application-dependent and D may be designed from any other

image features or external datasets if necessary.

5. RESULTS AND CONCLUSIONS

We applied our non-local anisotropic diffusion PDE (4) with the

tensor field (8), to the problem of color image denoising. The usual

(R,G, B) color basis has been considered here. Fig.1 and 2 show

how taking care of the image geometry on the patch space Γ al-

lows in turn to better preserve the structures in the original image

domain Ω, compared to the corresponding isotropic version of the

patch-based filtering process (i.e. the Non-local means variant and

the color Bilateral Filtering). More generally, the framework we

proposed is potentially able to add non-locality to many image pro-

cessing techniques, applying them on a patch representation Ĩ of an

image I before doing a back-projection step. It is worth noting that

introducing this non-locality does not explicitely require semi-local

spatial integrations (as needed in [14]). Of course, this idea is not

limited to image smoothing or diffusion PDE’s, and therefore opens

an interesting and original way to unify local and non-local (patch-

based) processing into a common formalism.
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