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Abstract

The question of the effective response of two-phase hybrid “fibrous-laminate”
piezoelectric composites, with periodic microstructure, is adressed with two
homogenization approaches: a full-field numerical scheme based on Fourier
transform and a simplifying approach relying on a decoupled two-step ho-
mogenisation process. In the case of a two-phase epoxy/PZT composite,
this latter is shown to overestimate out-of-plane effective piezoelectric coef-
ficients.
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1. Introduction

The microstructural design of heterogeneous smart materials is a topic

of current interest in order to improve the figure of merit (i.e the coupling

factor) of composite materials. Besides theoretical approaches relying on the

use of bounds in the context of (micro)structural optimization [1], there is

a need for efficient numerical homogenization tools, in particular to be able

to consider arbitrarily complex microstructures. In the context of multifield
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coupling behaviours, the possibility of using Fourier transform based nume-

rical schemes, initially proposed by Moulinec and Suquet [2] for mechanical

problems, has been recently demonstrated [3, 4, 5]. A very good agreement

has been obtained with exact analytical results, derived in the context of

asymptotic homogenization method (AHM), for periodic smart composites

with simple microstructural configurations [see, for instance, 6, 7]. This

analytical approach can also be used to derive approximate results for the

effective response of composites with “complex” microstructures. Along

this line, the present study is focused on the derivation of estimates for the

effective piezoelectric response of 2-1-2 two-phase piezoelectric composites

for which no exact results exist. The analytical approach is compared to full-

field computations performed with a fast Fourier transform (FFT)-based

numerical procedure.

The homogenization problem with which we are concerned is briefly

stated in section 2 and its resolution by analytical and numerical approaches

is described in sections 3 and 4. An application is then given in section 5

for a two-phase composite material made of epoxy resin (elastic phase) and

PZT ceramic (piezoelectric phase).

2. Studied problem

2.1. Formulation

Our study is concerned by the description of effective electroelastic prop-

erties (i.e elastic C̃, permittivity ε̃ and piezoelectric ẽ moduli) of a periodic
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heterogeneous medium. Its microstructure is thus entirely defined by a unit-

cell, with volume Ω and outer surface ∂Ω, and periodicity vectors. The field

variables involved in this problem are the elastic strain ε, the stress σ, the

electric induction D and the electric field E. Besides, no assumptions are

made on the fluctuation of the local properties tensor fields (C, ε and e)

within the unit-cell.

The local problem for the displacement field u(x) and the electric po-

tential φ(x) can be expressed as





Constitutive law : σ(x) = C(x) : ε(x)− te(x).E(x), ∀x ∈ Ω

D(x) = e(x) : ε(x) + ε(x).E(x), ∀x ∈ Ω

Curl-free fields : ε = 1
2
(grad u + tgrad u), E = −grad φ

Static equilibrium: div σ = 0, div D = 0

Boundary conditions : u(x) = ε.x + u?(x), φ(x) = −E.x + φ?(x), ∀x ∈ ∂Ω

(u?, φ?) periodic, (σ.n, D.n) anti-periodic

(1)

with n the outer normal of ∂Ω. ε and E are the average values of the

strain and electric fields over the unit-cell. For simple microstructural con-

figurations (e.g laminate or 2D fibrous composites), this local problem can

be solved analytically [6, 7, 8, 9]. However, the periodic composite mate-

rials which present a more complex microstructure call for some approx-

imations or a full numerical resolution. In the sequel, we shall consider
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both approaches in the context of hybrid “fibrous–laminate” piezoelectric

composites.

2.2. Unit-cell description

The composites considered in the present study are laminate periodic

materials made of successive layers either homogeneous or presenting a

“matrix-fiber” microstructure with a square distribution of unidirectional

fibers with circular cross-section and aligned with the lamination direction

e3. The fibers and the homogeneous layer are made with the same material.

The unit-cell of such composite is represented on Figure 1. By adopting the

Figure 1: Unit-cell of 2-1-2 periodic composites with homogeneous layers L1 (blue) and
heterogeneous layers L0 (green) made of a matrix phase (m) and aligned fibers (f) with a
regular square distribution in the cross-section. The fibers (f) and the layers L1 are made
with the same material (hatched area). Left: longitudinal cut of the unit cell. Right:
bottom-view of the unit-cell.

classification according to their connectivity, defined as the number of di-

mensions through which each constitutive material is continuous, this type
4



of heterogeneous structure is classically referred as 2-1-2 composites. With

this terminology, 2-2 composite stands for a laminate material and 1-3 com-

posite corresponds to a fiber-matrix microstructure (with parallel fibers).

One of the motivation to devote this study to 2-1-2 smart composites is

the recent experimental report of enhanced magneotelectric properties of

such microstructure with respect to customary laminate ones [10]. Before

envisaging the case of multiferroic composites, the focus of our study is on

the 2-1-2 microstructural configuration. With this aim in view, we have

chosen to consider smart composites with a single field coupling, namely

the piezoelectric effect.

3. Approximate resolution based on ”double asymptotic homog-

enization” method

The asymptotic homogenization method (AHM) is a rigorous mathemat-

ical technique which has been used to investigate the macroscopic behavior

of different kinds of periodic heterogeneous media [11, 12, 13]. A crucial step

in the implementation of the AHM is the fact that the calculation of effec-

tive coefficients depends on the solution a number of local problems defined

on regular cells. These are the so-called local problems which involve sys-

tems of partial differential equations. For the considered 2-1-2 composite,

an approximate model is built by making use of existing analytical results

for 2-2 laminated piezoelectric composites [6] and 1-3 unidirectional fibrous

composites with square distribution of the fibers in the transverse plane

[7]. This “double asymptotic homogenization” (DAH) process is a two-step
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procedure which approximates the initial problem by two successive simpler

problems:

(i). the effective properties of the heterogeneous fibrous layers are esti-

mated with the AHM analytical result for 1-3 piezoelectric composites

[7];

(ii). the effective properties of the overall 2-1-2 composite are obtained

by considering a two-phase laminate material made of homogenized

fibrous layers (L0) and homogeneous piezoelectric layers (L1) [6, see

also Appendix A].

It is worth noting that the DAH procedure has been previously used to inves-

tigate 1-3 piezoelectric composites reinforced by unidirectional fibers with

square cross-section. The original problem was decomposed into two succes-

sive 2-2 laminate problems and a good agreement has been obtained with

experimental data [14]. In the sequel, the out-of-plane overall piezoelec-

tric properties are considered. Since the constituents present a transversely

isotropic behaviour whose symmetry axis is parallel to the lamination direc-

tion, the non-null out-of-plane effective piezoelectric coefficients are ẽ311 and

ẽ333. The DAH provides the following approximate analytical expressions

ẽ311 = te2 〈M−1〉−1 〈M−1 tC〉 and ẽ333 = te2 〈M−1〉−1 e1. (2)

6



(ei, i ∈ [1, 3]) is the orthonormal basis for the Euclidian space, C and M

are defined by

C = (C1133 e311) and M =



C3333 e333

e333 −ε33


 . (3)

and the angular brackets denote the average over the two-phase laminated

unit-cell, that is,

〈M〉 = (1− λ)M(L0) + λM(L1) (4)

with λ the volume fraction of homogeneous piezoelectric layers (phase L1).

The effective coefficients of the phase L0 resulting from the AHM read [7]





C
(L0)
3333 = 〈C3333〉L0 − λf

(
C

(m)
1133 − C(f)

1133

)2
K/C

(m)
1212;

C
(L0)
1133 = 〈C1133〉L0 +

(
k(m) − k(f)

) (
C

(L0)
3333 − 〈C3333〉L0

)
/
(
C

(m)
1133 − C(f)

1133

)
;

e
(L0)
311 = 〈e311〉L0 +

(
k(m) − k(f)

) (
e
(m)
311 − e(f)311

)(
C

(L0)
3333 − 〈C3333〉L0

)
/
(
C

(m)
1133 − C(f)

1133

)2
;

e
(L0)
333 = 〈e333〉L0 +

(
e
(m)
311 − e(f)311

)(
C

(L0)
3333 − 〈C1133〉L0

)
/
(
C

(m)
3333 − C(f)

1133

)
;

ε
(L0)
33 = 〈ε33〉L0 −

(
e
(m)
311 − e(f)311

)2 (
C

(L0)
3333 − 〈C3333〉L0

)
/
(
C

(m)
1133 − C(f)

1133

)2

(5)

where 〈.〉L0 denotes an average in the plane (e1, e2) over the two-dimensional

square unit-cell, for instance

〈C3333〉L0 = (1− λf )C(m)
3333 + λf C

(f)
3333 (6)
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with λf = πΦ2/4 the fibre volume fraction within the layer L0; (m) and (f)

indicates respectively a matrix and a fibre property. k = (C1111 + C1122)/2

is the plane-strain bulk modulus for lateral dilatation without longitudinal

extension and the parameter K can be expressed as follows

K = C[1−λf+(3(1+κ(m))CR8(S4)
2)/(B−1+R6(AB−1φ+ψ+3DR2(S4)

2))],

where

φ = c37c
5
7R

10(S8)
2,

ψ = −3(R2c48S8 − c36T7),

A = (κ(m)χ− κ(f))B/(κ(f) + χ),

B = (1− χ)/(1 + κ(m)χ),

C = [1 + (λfk
(m) + (1− λf )k(f))/C(m)

1212]
−1,

D = 2C(k(f)/k(m) − 1),

with κ(α) = 1 + 2C
(α)
1212/k

(α)(α = m, f), χ = C
(f)
1212/C

(m)
1212, c

s
r = r!/s!(r − s)!,

R = Φ/2 =
√
λf/π, S4 = 3.151212, S8 = 4.255731 and T7 = 4.5155155.

4. Numerical resolution based on Green’s functions method

4.1. Principle

Green’s functions method is customarily used in physics to solve inhomo-

geneous partial differential equations. The Green’s function corresponding

to a given problem represents its solution for an elementary “source”. For an
8



elastic body subjected to a distribution of volumic forces f(x′), the Green’s

function represents the solution of the problem (i.e the displacement field

u(x)) for an elementary applied force at point x′. By linearity,

u(x) = G(x,x′).fE(x′). (7)

and the displacement field resulting from the distribution of forces f(x′) is

deduced by integration.

In the case of an electroelastic problem, several Green’s functions occur

because of the coupling between electric and mechanical fields. It is thus

necessary to determine the solution (i.e the displacement field u(x) ant the

electric potential field φ(x)) for two elementary problems: an elementary

localized force fE(x′) and an elementary localized electric charge qE(x′). The

electroelastic Green’s functions are thus defined by





u(x) = N(x,x′).fE(x′)

φ(x) = H(x,x′).fE(x′)

and





u(x) = H(x,x′).qE(x′)

φ(x) = L(x,x′) qE(x′)

. (8)

It is worth emphasizing that the functions N(x,x′) and L(x,x′) do not cor-

respond to the ones of the purely elastic and electrostatic problems. Besides,

it can be noted that, because of the symmetry of the piezoelectric effect,

a sole function H describes the relation between a mechanical “source”

and the corresponding electric response as well as the relation between an

electrical “source” and the mechanical response. The studies concerning
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the determination of the electroelastic Green’s functions dates back to the

works of Deeg [15] who obtained their expression in the form of a contour

integral in the direct space. Since then, many authors have considered this

problem, with different approaches, for various anisotropic situations, see,

for instance, [16, 17, 18]. However, these expressions remain rather tedious.

By contradisctinction, the Fourier transforms of these Green’s operators

have simple analytic forms for general anisotropy.

4.2. Electroelastic Green’s operators in Fourier space

The Fourier transforms of the electroelastic Green’s operators, corre-

sponding to an homogeneous medium with properties C0, ε0 and e0, can be

obtained by considering two periodic polarisation fields τ (x) (mechanical)

and P(x) (electrical) taking place within the material. The displacement

field u(x) and the electric potential φ(x) are thus solutions of the following

problem





σ(x) = C0 : ε(x)− te0.E(x) + τ (x), ∀x ∈ Ω;

D(x) = e0 : ε(x) + ε0.E(x) + P(x), ∀x ∈ Ω;

div σ = 0, div D = 0, ∀x ∈ Ω;

ε = 1
2
(grad u+ tgrad u), E = −grad φ, ∀x ∈ Ω.

(9)
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In Fourier space, it becomes





σ̂ = i
(
C0 : (ξ ⊗ û) + te0.ξ φ̂

)
+ τ̂ ;

D̂ = i
(
e0 : (ξ ⊗ û)− ε0.ξ φ̂

)
+ P̂;

i ξ.σ̂ = 0, i ξ.D̂ = 0;

ε̂ = i
2

(ξ ⊗ û + û⊗ ξ) , Ê = −i φ̂ ξ.

(10)

ξ denotes the frequency vector. The equilibrium relations together with the

coupled constitutive law yields the system



κ α

α −λ







û

φ̂


 = i ξ.



τ̂

P̂


 (11)

with κ = ξ.C0.ξ, α = ξ.e0.ξ and λ = ξ.ε0.ξ. From (11), the Fourier

transforms of the gradient fields can be expressed as

ε̂ = −Γ̂0 : τ̂ − tΦ̂0.P̂ and Ê = Φ̂0 : τ̂ + ∆̂0.P̂. (12)

Γ̂0, Φ̂0 and ∆̂0 are the Fourier transforms of the electroelastic Green’s oper-

ators. The tensors Γ0, ∆0 and Φ0 are respectively the second derivatives of

the Green’s functions N0, L0 and H0 previously introduced. The tensorial
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components of these operators read

Γ̂0
ijkl (ξ) = 1

4

(
G−1ik ξjξl +G−1jk ξiξl +G−1il ξjξk +G−1jl ξiξk

)
,

Φ̂0
nij (ξ) =

1

2λ
ξn
(
G−1iq ξj +G−1jq ξi

)
αq, ∆̂0

ij (ξ) =
1

λ2
(
α.G−1.α− λ

)
ξiξj,

(13)

with G = κ + (1/λ)α⊗ α. In the case of vanishing piezoelectric coupling

(i.e e0 = 0), the tensor G reduces to the elastic acoustic tensor, the op-

erator Φ̂0 is null while the operators Γ̂0 and ∆̂0 reduce to the ones of the

elastic and electrostatic problems as it should. Equivalent expressions of

the electroelastic Green’s operators can be found in the literature [see, for

instance, 19, 20].

4.3. FFT numerical scheme

The FFT numerical scheme proposed by Moulinec and Suquet [2] rely

on the Green’s functions method. It consists in the use of a homogeneous

reference medium. This approach, widely used for different problems in

micromechanics, allows to replace the original heterogeneous problem by

an homogeneous problem with fictitious polarisation fields which depend on

the fields which are solutions of the problem. The computational method

takes advantage of the fact that the Green’s operators, whose analytical

expressions are available, act locally on the polarisation fields in the Fourier

space.

The method can be implemented by introducing an electroelastic homo-

geneous medium with elasticity C0, permittivity ε0 and piezoelectricity e0.
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This leads to the following coupled Lippman-Schwinger equations for the

solution fields ε and E





ε(x) = ε− Γ0 ∗ τ (x)− tΦ0 ∗P(x)

E(x) = E + Φ0 ∗ τ (x) + ∆0 ∗P(x)

, ∀x ∈ Ω. (14)

τ and P are fictitious polarisation fields respectively mechanical and elec-

tric. They read

τ = δC : ε− tδe.E and P = δe : ε+ δε.E (15)

with the notation δ · = · (x) − · 0. The resolution of these equations by

using the so-called “basic scheme”, described in [2], has been assessed by

comparison with available analytical and finite-elements (FE) results for

simple microstructural situations (1-3 and 2-2 composites) [3].

5. Application to elastic-piezoelectric mixture

The two homogenisation procedures previously introduced are now ap-

plied to the case of a mixture of an elastic phase (epoxy resin) and a piezo-

electric phase (PZT ceramic) with the elastic constituent as matrix (Figure

1). The data properties, taken from [21], are reported in Table 1. This case

is challenging because of the different nature of the two phases. Results,

with a fixed fiber volume fraction λf = 0.5 in the heterogeneous layer L0, are

reported on Figure 2 for the out-of-plane effective coefficients ẽ31 and ẽ33.

In the limit λ → 0, the FFT and AHM results agree very well. This case
13



C11 C12 C13 C33 C44 C66

Epoxy 8. 4.4 4.4 8. 1.8 1.8

PZT 154.837 83.237 82.712 131.39 25.696 35.8

e31 e33 e15 ε11 ε33

Epoxy 0. 0. 0. 3.72e-02 3.72e-02

PZT -2.120582 9.52183 9.34959 4.065 2.079

Table 1: Material properties of the constituents (data taken from [21]). Elastic moduli
are in GPa, dielectric moduli are in nC/Vm and piezoelectric moduli are in C/m2.

corresponds to 1-3 composites with a square array of unidirectional fibers.

This result is consistent with previously published works [4]. The other limit

λ → 1 corresponds to an homogeneous piezoelectric material. Within this

range, it is shown that the FFT and DAH homogenization procedure lead

to different estimations of the coefficients. However, it is worth noting that

their curvature presents the same sign. The overestimation of the piezo-

electric coefficients by the DAH can be explained as follows: by using the

approximate two-step procedure, the overall effective response results from

the homogenization of a fictitious laminate composite made of two piezo-

electric phases; indeed, the presence of the purely elastic phase is erased by

the homogenization of the heterogeneous layer in contradistinction to the

numerical scheme which takes it explicitly into account; as a consequence,

the FFT procedure predicts a lower piezoelectric coupling. This observa-

tion emphasizes a difficulty, in the framework of functional materials, to

evaluate certain effective coupling coefficients because of the nature of the

phases involved. In the present case, it is expected that the DAH leads to a

14



better agreement with reference FFT results for overall elastic and permit-

tivity moduli. This is currently under investigation as well as the influence

of the fiber volume fraction on the accuracy of the DAH. The investigation

of 2-1-2 multifield coupling heterogeneous material (e.g multiferroic [10]),

which is left for future works, shall benefit from these preliminary results.

0.0 0.2 0.4 0.6 0.8 1.0
L1 volume fraction (λ)

−2.0

−1.5
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0.0
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2
)

FFT
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0.0 0.2 0.4 0.6 0.8 1.0
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ẽ 3
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Figure 2: Overall piezoelectric coefficients ẽ31 and ẽ33 for 2-1-2 epoxy/PZT composite as
a function of the piezoelectric layer volume fraction (λ). FFT computations have been
performed for λ = 0, 0.25, 0.5 and 0.75.
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Appendix A. Overall behaviour of piezoelectric laminates with

arbitrary direction of lamination

We consider the case of a two-phase laminate composite which presents

an arbitrary direction of lamination and anisotropic local constitutive be-

haviour. The main steps to derive its effective behaviour are given and the

reader is referred to [1, chap. 9] which provides comprehensive insights into

lamination formulas.

Let a laminate composite material constituted of two phases (i = 1, 2)

with elastic moduli Ci, dielectric permittivity εi, piezoelectric moduli ei

and volumic fraction ci. Ω denotes the volume occupied by the material

and Ωi the volume occupied by phase (i). The interface between the phases

is noted Σ. The phases are successive layers of possibly variable thickness

along the lamination direction n. Consequently, the fields involved in the

problem only vary in the direction n. Thus, for any field a,

a(x) = a(η) with η = n.x (A.1)
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The problem to solve can be stated as follows:





u(x) = ε.x, φ(x) = −E.x, ∀x ∈ ∂Ω (Boundary conditions)

σ(x) = Ci : ε(x)− tei.E(x), ∀x ∈ Ωi (Local law)

D(x) = ei : ε(x) + εi.E(x)

div σ = 0, div D = 0, ∀x ∈ ∂Ω\Σ (Equilibrium)

ε =
1

2
(grad u + gradt u), E = −gradφ (Compatibility)

[u(x)] = 0, [φ(x)] = 0 ∀x ∈ Σ (Perfect interfaces)

(A.2)

A solution with per-phase uniform fields is sought. The first step is to

link the strain ε and electric field E within each phase (i) to the overall

strain ε and electric field E . With Hadamard’s lemma, the continuity of

the displacement field at the interface Σ ([u] = 0) imply [ε] = ε2 − ε1 =

(1/2) (n⊗α+α⊗ n) and the continuity of the electric potential ([φ] = 0)

gives [E] = E2 − E1 = βn with α and β which are left undetermined. By

using the average theorems on the strain and electric fields (〈ε〉 = ε and
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〈E〉 = E), the fields within each phase read





ε1 = ε− c2
2

(n⊗α+α⊗ n), E1 = E− c2βn,

ε2 = ε+
c1
2

(n⊗α+α⊗ n), E2 = E + c1βn.

(A.3)

α and β can be determined by using the equilibrium conditions on the stress

σ and electric induction D which imply the uniformity of σ.n and D.n

within the composite. By choosing, for instance, the equalities σ1.n = σ.n

and D1.n = D.n, the following system is obtained for α and β





αm =
1

2c2

[
K−1minj +K−1mjni

] [
C1
ijklεkl − te1ijpEp − σij + c2

te1ijpnpβ
]
,

β =
1

c2(npε1pqnq)

[
e1kijεij + ε1kpEp −Dk −

c2
2
e1kij (niαj + njαi)

]
.nk

(A.4)

with K = n.C1.n. Then, the coupled constitutive law allows to obtain the

stress tensor σi and electric induction vector Di within each phase

σi = Ci : εi − tei.Ei and Di = ei : εi + εi.Ei. (A.5)

Eventually, the effective constitutive relation

σ = C̃ : ε− tẽ.E and D = ẽ : ε+ ε̃.E (A.6)

together with the average theorems 〈σ〉 = σ and 〈D〉 = D leads to the

analytical expressions of C̃, ẽ and ε̃.
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