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Abstract

This study deals with asymptotic models for the propagation of one-dimensional internal
waves at the interface between two layers of immiscible fluids of different densities, under the
rigid lid assumption and with a flat bottom. We present a new Green-Naghdi type model in
the Camassa-Holm (or medium amplitude) regime. This model is fully justified, in the sense
that it is consistent, well-posed, and that its solutions remain close to exact solutions of the full
Euler system with corresponding initial data. Moreover, our system allows to fully justify any
well-posed and consistent lower order model; and in particular the so-called Constantin-Lannes
approximation, which extends the classical Korteweg-de Vries equation in the Camassa-Holm
regime.

1 Introduction

1.1 Presentation of the problem

In the present paper, we study the propagation of internal waves in a two-fluid system, which
consists in two layers of immiscible fluids of different densities, under the only influence of gravity.
The domain of the two layers is infinite in the horizontal space variable (assumed to be of dimension
d = 1) and delimited above by a flat, rigid lid, a below by a flat bottom. Moreover, we assume that
the fluids are homogeneous, ideal, incompressible and irrotational. We let the reader refer to [23],
and references therein, for a good overview of the ins and outs concerning density-stratified fluids
in oceanography, and the relevance of our setup as a model for such system.

The governing equations describing the evolution of the flow under the aforementioned configu-
ration may be reduced to a system of two evolution equations located at the interface between the
two layers (following a strategy initiated in the water-wave configuration in [15,40], and achieved in
the bi-fluidic case in [7]), named full Euler system. However, the study of this system is extremely
challenging. In particular, the well-posedness of the Cauchy problem has been answered satisfac-
torily (that is, with an existence of solutions on a time scale consistent with physical observations)
only recently; see [29].

Under these circumstances, a great deal of interests has been drawn to asymptotic models, in
order to predict accurately the main behavior of the system, provided some parameters describing
the domain and nature of the flow are small. Parameters of interests include
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where a is the maximal vertical deformation of the interface with respect to its rest position; λ is a
characteristic horizontal length; d1 (resp. d2) is the depth of the upper (resp. lower) layer; and ρ1

(resp. ρ2) is the density of the upper (resp. lower) layer, g the gravitational acceleration and σ the
interfacial tension coefficient. Mathematically speaking, µ and ε measure respectively the amount
of dispersion and nonlinearity which will contribute to the evolution of internal waves, and Bo−1

(the Bond number) expresses the ratio of surface tension forces to gravitational forces. It would be
quite tedious to make an attempt at acknowledging every work on this aspect, but let us introduce
some earlier results directly related to the present paper.

Shallow water (µ � 1) asymptotic models for uni-dimensional internal waves have been de-
rived and studied in the pioneer works of [31, 32, 34]. More recently, Choi and Camassa developed
models with weakly (ε = O(µ)) and strongly (ε ∼ 1) nonlinear terms, respectively in [10, 11] with
horizontal dimension d = 2. They obtain bi-fluidic extensions of the classical shallow water (or
Saint-Venant [16]), Boussinesq [8, 9] and Green-Naghdi [21, 37] models. Similar systems have been
derived in [35] (with the additional assumption of γ ≈ 1) and in [14] (using a different approach, i.e.
making use of the Hamiltonian structure of the full Euler equations). However, the aforementioned
results are limited to the formal level. Let us mention now the work of Bona, Lannes and Saut [7]
who, following a strategy initiated in [4, 5] in the water-wave setting (one layer of fluid, with free
surface), derived a large class of models for different regimes, under the rigid-lid assumption, ne-
glecting surface tension effects and with flat bottom (see also [2] where a topography and surface
tension is added to the system, and [17] where the rigid-lid assumption is removed). The models
derived in these papers are systematically justified by a consistency result: roughly speaking, suffi-
ciently smooth solutions of the full Euler system satisfy the equations of the asymptotic model, up
to a small remainder.

Yet the consistency is only one of the properties that an asymptotic model shall satisfy, for its
validity to be ascertained. Indeed, it leaves two important questions unanswered: for a large class
of initial data (typically bounded in suitable Sobolev spaces)

1. (well-posedness) do the full Euler system, as well as the asymptotic model, define a unique
solution on a relevant time scale?

2. (convergence) is the difference between these two solutions small over the relevant time scale?

As mentioned earlier, Lannes has recently proved [29] that the Cauchy problem for bi-fluidic full
Euler system is well-posed in Sobolev spaces, in the presence of a small amount of surface tension.
Thus the full justification of a consistent system of equation as an asymptotic model, in the sense
described above, follows from its well-posedness and a stability result; see [27, Appendix C] for a
detailed discussion and state of the art in the water-wave setting.

A striking discrepancy between the water-wave and the bi-fluidic setting is that in the latter,
large amplitude internal waves are known to generate Kelvin-Helmholtz instabilities, so that sur-
face tension is necessary in order to regularize the flow. A crucial contribution of [29] consists
in asserting that “the Kelvin-Helmholtz instabilities appear above a frequency threshold for which
surface tension is relevant, while the main (observable) part of the wave involves low frequencies
located below this frequency threshold”. It is therefore expected that the surface tension does not
play an essential role in the dominant evolution of the flow, especially in the shallow water regime.
This intuition is confirmed by the fact that well-posedness and stability results have been proved
for the bi-fluidic shallow-water system [22], and a class of Boussinesq-type systems [18], without
surface tension and under reasonable assumptions on the flow (typically, the shear velocity must
be sufficiently small). However, the original bi-fluidic Green-Naghdi model is known to be uncon-
ditionally ill-posed [30], which has led to various propositions in order to overcome this difficulty;
see [3, 13] and references therein. Let us recall here that Green-Naghdi models consist in higher
order extensions of the shallow water equation, thus are consistent with precision O(µ2) instead
of O(µ), and allow strong nonlinearities (whereas Boussinesq models are limited to the long wave
regime: ε = O(µ)). Finally, we mention the work of Xu [39], which studies and rigorously justifies
the so-called intermediate long wave system, obtained in a regime similar to ours: ε ∼ √µ, but
δ ∼ √µ.
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In this work, we present a new Green-Naghdi type model in the Camassa-Holm (or medium
amplitude) regime, ε = O(

√
µ), for the propagation of internal waves. More precisely, the regime

of validity of our model is, with fixed µmax,M, δ−1
min, δmax <∞:

0 < µ ≤ µmax, 0 ≤ ε ≤ min(M
√
µ, 1), δmin ≤ δ ≤ δmax, 0 ≤ γ < 1.

Our model is fully justified: we prove that the full Euler system is consistent with our model, and
that our system is well-posed (in the sense of Hadamard) in Sobolev spaces, and stable with respect
to perturbations of the equations. These results hold identically without or with (small) surface
tension.

Let us emphasize that in addition to its relevance as an asymptotic model, our system offers
an important tool for the justification of other models. Indeed, it suffices to check that a given
approximate solution solves our system up to a small remainder, to ensure that it is truly close to
the solution of our new model, and therefore to the corresponding solution of the full Euler system.

Such strategy has been used in particular in [6] in order to rigorously justify the historical
Korteweg-de Vries equation as a model for the propagation of surface wave in the long wave regime
(with a Boussinesq model as the intermediary system); and this result has been extended to the
bi-fluidic case in [18]. Higher order models in the Camassa-Holm regime have been introduced and
justified in the sense of consistency in [12] in the water-wave case, and in [19] in the bi-fluidic case.
We are therefore able to fully justify the latter model, in the sense described above.

1.2 Organization of the paper

The paper is organized as follows.

Section 2: The full Euler system.

Section 3: Main results.

Section 4: Construction of our model.

Section 5: Preliminary results.

Section 6: Linear analysis.

Section 7: Proof of existence, stability and convergence.

Section 8: Full justification of asymptotic models.

Appendix A: Product and commutator estimates in Sobolev spaces.

We start by introducing in Section 2 the non-dimensionalized full Euler system, describing the
evolution of the two-fluid system we consider.
In Section 3, we present our new model, and we announce the main results of this paper.
This asymptotic model is precisely derived and motivated in Section 4.
Sections 5 and 6 contain the necessary ingredients for the proof of our results, which are completed
in Section 7.
In Section 8, we explain how our system allows us to justify any well-posed and consistent lower
order model.
Finally the title of Appendix A is self-explanatory.

We conclude this section with an inventory of the notations used throughout the present paper.

Notations In the following, C0 denotes any nonnegative constant whose exact expression is of no
importance. The notation a . b means that a ≤ C0 b.
We denote by C(λ1, λ2, . . . ) a nonnegative constant depending on the parameters λ1, λ2,. . . and
whose dependence on the λj is always assumed to be nondecreasing.
We use the condensed notation

As = Bs + 〈Cs〉s>s ,
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to express that As = Bs if s ≤ s and As = Bs + Cs if s > s.
Let p be any constant with 1 ≤ p <∞ and denote Lp = Lp(R) the space of all Lebesgue-measurable
functions f with the standard norm

|f |Lp =
( ∫

R
|f(x)|pdx

)1/p
<∞.

The real inner product of any functions f1 and f2 in the Hilbert space L2(R) is denoted by

(f1, f2) =

∫
R
f1(x)f2(x)dx.

The space L∞ = L∞(R) consists of all essentially bounded, Lebesgue-measurable functions f with
the norm

|f |L∞ = ess sup |f(x)| <∞.

We denote by W 1,∞(R) = {f, s.t. f, ∂xf ∈ L∞(R)} endowed with its canonical norm.
For any real constant s ≥ 0, Hs = Hs(R) denotes the Sobolev space of all tempered distributions
f with the norm |f |Hs = |Λsf |L2 <∞, where Λ is the pseudo-differential operator Λ = (1−∂2

x)1/2.
For a given µ > 0, we denote by Hs+1

µ (R) the space Hs+1(R) endowed with the norm∣∣ · ∣∣2
Hs+1
µ
≡
∣∣ · ∣∣2

Hs
+ µ

∣∣ · ∣∣2
Hs+1 .

For any functions u = u(t, x) and v(t, x) defined on [0, T ) × R with T > 0, we denote the inner
product, the Lp-norm and especially the L2-norm, as well as the Sobolev norm, with respect to the
spatial variable x, by (u, v) = (u(t, ·), v(t, ·)), |u|Lp = |u(t, ·)|Lp , |u|L2 = |u(t, ·)|L2 , and |u|Hs =
|u(t, ·)|Hs , respectively.
We denote L∞([0, T );Hs(R)) the space of functions such that u(t, ·) is controlled in Hs, uniformly
for t ∈ [0, T ): ∥∥u∥∥

L∞([0,T );Hs(R))
= ess sup

t∈[0,T )

|u(t, ·)|Hs < ∞.

Finally, Ck(R) denote the space of k-times continuously differentiable functions.
For any closed operator T defined on a Banach space X of functions, the commutator [T, f ] is
defined by [T, f ]g = T (fg) − fT (g) with f , g and fg belonging to the domain of T . The same
notation is used for f an operator mapping the domain of T into itself.

2 The full Euler system

We recall that the system we study consists in two layers of immiscible, homogeneous, ideal, in-
compressible fluids only under the influence of gravity (see Figure 1). We restrict ourselves to
the two-dimensional case, i.e. the horizontal dimension d = 1. The derivation of the governing
equations of such a system is not new. We briefly recall it below, and refer to [2, 7, 19] for more
details.

We assume that the interface is given as the graph of a function ζ(t, x) which expresses the
deviation from its rest position (x, 0) at the spatial coordinate x and at time t. The bottom and
surface are assumed to be rigid and flat. Therefore, at each time t ≥ 0, the domains of the upper
and lower fluid (denoted, respectively, Ωt1 and Ωt2), are given by

Ωt1 = { (x, z) ∈ R× R, ζ(t, x) ≤ z ≤ d1 },
Ωt2 = { (x, z) ∈ R× R, −d2 ≤ z ≤ ζ(t, x) }.

We assume that the two domains are strictly connected, that is there exists h > 0 such that

d1 − ζ(t, x) ≥ h > 0, and d2 + ζ(t, x) ≥ h > 0.

We denote by (ρ1,v1) and (ρ2,v2) the mass density and velocity fields of, respectively, the upper
and the lower fluid. The two fluids are assumed to be homogeneous and incompressible, so that the
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Figure 1: Sketch of the domain and governing equations

mass densities ρ1, ρ2 are constant, and the velocity fields v1, v2 are divergence free. As we assume
the flows to be irrotational, one can express the velocity field as gradients of a potential: vi = ∇φi
(i = 1, 2), and the velocity potentials satisfy Laplace’s equation

∂2
xφi + ∂2

zφi = 0.

The fluids being ideal, they satisfy the Euler equations. Integrating the momentum equation
yields the so-called Bernoulli equation, written in terms of the velocity potentials:

∂tφi +
1

2
|∇x,zφi|2 = −P

ρi
− gz in Ωti (i = 1, 2),

where P denotes the pressure inside the fluids.
From the assumption that no fluid particle crosses the surface, the bottom or the interface, one

deduces kinematic boundary conditions, and the set of equations is closed by the continuity of the
stress tensor at the interface, which reads

JP (t, x)K ≡ lim
ε→0

(
P (t, x, ζ(t, x) + ε) − P (t, x, ζ(t, x)− ε)

)
= σk

(
ζ(t, x)

)
,

where k(ζ) = −∂x
(

1√
1+|∂xζ|2

∂xζ
)

denotes the mean curvature of the interface and σ the surface

(or interfacial) tension coefficient.
Altogether, the governing equations of our problem are given by the following

(2.1)



∂2
xφi + ∂2

zφi = 0 in Ωti, i = 1, 2,
∂tφi + 1

2 |∇x,zφi|
2 = − P

ρi
− gz in Ωti, i = 1, 2,

∂zφ1 = 0 on Γt ≡ {(x, z), z = d1},
∂tζ =

√
1 + |∂xζ|2∂nφ1 =

√
1 + |∂xζ|2∂nφ2 on Γ ≡ {(x, z), z = ζ(t, x)},

∂zφ2 = 0 on Γb ≡ {(x, z), z = −d2},
JP (t, x)K = σk(ζ) on Γ,

where n denotes the unit upward normal vector at the interface.

The next step consists in nondimensionalizing the system. Thanks to an appropriate scaling, the
two-layer full Euler system (2.1) can be written in dimensionless form. The study of the linearized
system (see [29] for example), which can be solved explicitly, leads to a well-adapted rescaling.

Let a be the maximum amplitude of the deformation of the interface. We denote by λ a
characteristic horizontal length, say the wavelength of the interface. Then the typical velocity of
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small propagating internal waves (or wave celerity) is given by

c0 =

√
g

(ρ2 − ρ1)d1d2

ρ2d1 + ρ1d2
.

Consequently, we introduce the dimensionless variables1

z̃ ≡ z

d1
, x̃ ≡ x

λ
, t̃ ≡ c0

λ
t,

the dimensionless unknowns

ζ̃(t̃, x̃) ≡ ζ(t, x)

a
, φ̃i(t̃, x̃, z̃) ≡

d1

aλc0
φi(t, x, z) (i = 1, 2),

as well as five dimensionless parameters

γ =
ρ1

ρ2
, ε ≡ a

d1
, µ ≡ d2

1

λ2
, δ ≡ d1

d2
, bo =

g(ρ2 − ρ1)d2
1

σ
.

Remark 2.1. We use here bo = µBo instead of the classical Bond number, Bo, which measures
the ratio of gravity forces over capillary forces. As we assume later on that bo is bounded from
below, this amounts to the assumption Bo−1 = O(µ). 2

We conclude by remarking that the system can be reduced into two evolution equations coupling
Zakharov’s canonical variables [15, 40], namely (withdrawing the tildes for the sake of readability)
the deformation of the free interface from its rest position, ζ, and the trace of the dimensionless
upper potential at the interface, ψ, defined as follows:

ψ ≡ φ1(t, x, ζ(t, x)).

Indeed, φ1 and φ2 are uniquely deduced from (ζ, ψ) as solutions of the following Laplace’s problems:
(
µ∂2

x + ∂2
z

)
φ1 = 0 in Ω1 ≡ {(x, z) ∈ R2, εζ(x) < z < 1},

∂zφ1 = 0 on Γt ≡ {(x, z) ∈ R2, z = 1},
φ1 = ψ on Γ ≡ {(x, z) ∈ R2, z = εζ},

(2.2)


(
µ∂2

x + ∂2
z

)
φ2 = 0 in Ω2 ≡ {(x, z) ∈ R2, − 1

δ < z < εζ},
∂nφ2 = ∂nφ1 on Γ,
∂zφ2 = 0 on Γb ≡ {(x, z) ∈ R2, z = − 1

δ }.
(2.3)

More precisely, we define the so-called Dirichlet-Neumann operators.

Definition 2.2 (Dirichlet-Neumann operators). Let ζ ∈ Ht0+1(R), t0 > 1/2, such that there exists
h > 0 with h1 ≡ 1− εζ ≥ h > 0 and h2 ≡ 1

δ + εζ ≥ h > 0, and let ψ ∈ L2
loc(R), ∂xψ ∈ H1/2(R).

Then we define

Gµψ ≡ Gµ[εζ]ψ ≡
√

1 + µ|ε∂xζ|2
(
∂nφ1

)
|z=εζ = −µε(∂xζ)(∂xφ1) |z=εζ + (∂zφ1) |z=εζ ,

Hµ,δψ ≡ Hµ,δ[εζ]ψ ≡ ∂x
(
φ2 |z=εζ

)
= (∂xφ2) |z=εζ + ε(∂xζ)(∂zφ2) |z=εζ ,

where φ1 and φ2 are uniquely defined (up to a constant for φ2) as the solutions in H2(R) of the
Laplace’s problems (2.2)–(2.3).

1We choose d1 as the reference vertical length. This choice is harmless as we assume in the following that the two
layers of fluid have comparable depth: the depth ratio δ do not approach zero or infinity.

2Such assumption is very natural in the context of internal gravity waves in the ocean. For example, using the
values of the experiment of Koop and Butler [26] and a typical surface tension coefficient σ = 0.005N.m−1 as in [29],
one has

bo−1 =
σ

g(ρ2 − ρ1)d21
≈

0.005

9.81(1 563− 998)× 0.069482
≈ 1.87× 10−4.
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The existence and uniqueness of a solution to (2.2)–(2.3), and therefore the well-posedness of
the Dirichlet-Neumann operators follow from classical arguments detailed, for example, in [27].

Using the above definition, and after straightforward computations, one can rewrite the nondi-
mensionalized version of (2.1) as a simple system of two coupled evolution equations, namely

(2.4)



∂tζ −
1

µ
Gµψ = 0,

∂t

(
Hµ,δψ − γ∂xψ

)
+ (γ + δ)∂xζ +

ε

2
∂x

(
|Hµ,δψ|2 − γ|∂xψ|2

)
= µε∂xN µ,δ − µγ + δ

bo

∂x
(
k(ε
√
µζ)
)

ε
√
µ

,

where we denote

N µ,δ ≡
(

1
µG

µψ + ε(∂xζ)Hµ,δψ
)2 − γ

(
1
µG

µψ + ε(∂xζ)(∂xψ)
)2

2(1 + µ|ε∂xζ|2)
.

We will refer to (2.4) as the full Euler system, and solutions of this system will be exact solutions
of our problem.

3 Main results

We now present our new Green-Naghdi type model, that we fully justify as an asymptotic model for
the full Euler system (2.4), for a set of dimensionless parameters limited to the so-called Camassa-
Holm regime, that we describe precisely below.

Let us introduce first the so-called shallow water regime for two layers of comparable depths:

(3.1) PSW ≡
{

(µ, ε, δ, γ,bo) : 0 < µ ≤ µmax, 0 ≤ ε ≤ 1, δ ∈ (δmin, δmax),

0 ≤ γ < 1, bomin ≤ bo ≤ ∞
}
,

with given 0 ≤ µmax, δ
−1
min, δmax,bo−1

min <∞. The two additional key restrictions for the validity of
our model define the Camassa-Holm regime:

(3.2) PCH ≡
{

(µ, ε, δ, γ,bo) ∈ PSW : ε ≤ M
√
µ and ν ≡ 1 + γδ

3δ(γ + δ)
− 1

bo
≥ ν0

}
,

with given 0 ≤M,ν−1
0 <∞. We denote for convenience

MSW ≡ max
{
µmax, δ

−1
min, δmax,bo−1

min

}
, MCH ≡ max

{
MSW,M, ν−1

0

}
.

Our new system is:

(3.3)


∂tζ + ∂x

(
h1h2

h1 + γh2
v̄

)
= 0,

T[εζ] (∂tv̄ + εςv̄∂xv̄) + (γ + δ)q1(εζ)∂xζ

+ ε
2q1(εζ)∂x

(
h2

1−γh
2
2

(h1+γh2)2 |v̄|2 − ς|v̄|2
)

= −µε 2
3

1−γ
(γ+δ)2 ∂x

(
(∂xv̄)2

)
,

where h1 ≡ 1− εζ (resp. h2 ≡ 1
δ + εζ) denotes the depth of the upper (resp. lower) fluid, and v̄ is

the shear mean velocity3 defined by

(3.4)
1

µ
Gµ[εζ]ψ = −∂x

( h1h2

h1 + γh2
v̄
)
.

3v̄ is equivalently defined as v̄ ≡ ū2−γū1 where ū1, ū2 are the mean velocities integrated across the vertical layer

in each fluid: ū1(t, x) = 1
h1(t,x)

∫ 1
εζ(t,x) ∂xφ1(t, x, z) dz and ū2(t, x) = 1

h2(t,x)

∫ εζ(t,x)
− 1
δ

∂xφ2(t, x, z) dz.
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The operator T is as follows:

(3.5) T[εζ]V = q1(εζ)V − µν∂x

(
q2(εζ)∂xV

)
,

with qi(X) ≡ 1 + κiX (i = 1, 2) and ν, κ1, κ2, ς are constants displayed in (4.8), (4.9) and (4.12),
later on.

This model is fully justified by the following results:

Theorem 3.1 (Consistency). For p = (µ, ε, δ, γ,bo) ∈ PSW, let Up ≡ (ζp, ψp) be a family of
solutions of the full Euler system (2.4) such that there exists C0, T > 0 with∥∥ζp∥∥

L∞([0,T );Hs+
9
2 )

+
∥∥∂tζp∥∥

L∞([0,T );Hs+
7
2 )

+
∥∥∂xψp

∥∥
L∞([0,T );Hs+

11
2 )

+
∥∥∂t∂xψp

∥∥
L∞([0,T );Hs+

9
2 )
≤ C0,

for any s ≥ s0 + 1/2, s0 > 1/2, and uniformly with respect to p ∈ PSW. Moreover, assume

(H1) ∃h01 > 0 such that h1 ≡ 1− εζp ≥ h01 > 0, h2 ≡
1

δ
+ εζp ≥ h01 > 0.

Define v̄p as in (3.4). Then (ζp, v̄p) satisfies (3.3), up to a remainder R, bounded by∥∥R∥∥
L∞([0,T );Hs)

≤ (µ2 + µε2) C1,

with C1 = C(MSW, h
−1
01 , C0), uniformly with respect to the parameters p ∈ PSW.

For parameters in the Camassa-Holm regime (3.2), our system is well-posed (in the sense of
Hadamard) in the energy space Xs = Hs(R)×Hs+1(R), endowed with the norm

∀ U = (ζ, v)> ∈ Xs, |U |2Xs ≡ |ζ|2Hs + |v|2Hs + µ|∂xv|2Hs ,

provided the following ellipticity condition (for the operator T) holds:

(H2) ∃h02 > 0 such that inf
x∈R

(1 + εκ2ζ) ≥ h02 > 0 ; inf
x∈R

(1 + εκ1ζ) ≥ h02 > 0.

Theorem 3.2 (Existence and uniqueness). Let p = (µ, ε, δ, γ,bo) ∈ PCH and s ≥ s0 + 1, s0 > 1/2,
and assume U0 = (ζ0, v0)> ∈ Xs satisfies (H1),(H2). Then there exists a maximal time Tmax > 0,
uniformly bounded from below with respect to p ∈ PCH, such that the system of equations (3.3)
admits a unique solution U = (ζ, v)> ∈ C0([0, Tmax);Xs) ∩ C1([0, Tmax);Xs−1) with the initial
value (ζ, v) |t=0 = (ζ0, v0) and preserving the conditions (H1),(H2) (with different lower bounds)
for any t ∈ [0, Tmax).

Moreover, there exists T−1, C0, λ = C(MCH, h
−1
01 , h

−1
02 ,
∣∣U0

∣∣
Xs

), independent of p ∈ PCH, such
that Tmax ≥ T/ε and one has the energy estimate

∀ 0 ≤ t ≤ T

ε
,

∣∣U(t, ·)
∣∣
Xs

+
∣∣∂tU(t, ·)

∣∣
Xs−1 ≤ C0e

ελt .

If Tmax <∞, one has
|U(t, ·)|Xs −→∞ as t −→ Tmax,

or one of the two conditions (H1),(H2) ceases to be true as t −→ Tmax.

Theorem 3.3 (Stability). Let (µ, ε, δ, γ,bo) ∈ PCH and s ≥ s0+1 with s0 > 1/2, and assume U0,1 =
(ζ0,1, v0,1)> ∈ Xs and U0,2 = (ζ0,2, v0,2)> ∈ Xs+1 satisfies (H1),(H2). Denote Uj the solution
to (3.3) with Uj |t=0 = U0,j.Then there exists T−1, λ, C0 = C(MCH, h

−1
01 , h

−1
02 ,
∣∣U0,1

∣∣
Xs
, |U0,2|Xs+1)

such that

∀t ∈ [0,
T

ε
],

∣∣(U1 − U2)(t, ·)
∣∣
Xs
≤ C0e

ελt
∣∣U1,0 − U2,0

∣∣
Xs
.

Finally, the following “convergence result” states that the solutions of our system approach the
solutions of the full Euler system, with the accuracy predicted by Theorem 3.1.
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Theorem 3.4 (Convergence). Let p ≡ (µ, ε, δ, γ,bo) ∈ PCH and s ≥ s0 + 1 with s0 > 1/2, and
U0 ≡ (ζ0, ψ0)> ∈ Hs+N , N sufficiently large, satisfy the hypotheses of Theorem 5 in [29]4, as well
as (H1),(H2). Then there exists C, T > 0, independent of p, such that

• There exists a unique solution U ≡ (ζ, ψ)> to the full Euler system (2.4), defined on [0, T ]
and with initial data (ζ0, ψ0)> (provided by Theorem 5 in [29]);

• There exists a unique solution Ua ≡ (ζa, va)> to our new model (3.3), defined on [0, T ] and
with initial data (ζ0, v0)> (provided by Theorem 3.2);

• With v̄ ≡ v̄[ζ, ψ], defined as in (3.4),one has

∀t ∈ [0, T ],
∣∣(ζ, v̄)− (ζa, va)

∣∣
L∞([0,t];Xs)

≤ C µ2 t.

Remark 3.5. The above proposition is valid for time interval t ∈ [0, T/ε] with T bounded from
below, independently of p ∈ PCH, provided that a stronger criterion is satisfied by the initial data;
see criterion (5.5) and Theorem 6 in [29].

Remark 3.6. We would like to emphasize here that, contrarily to the full Euler system, our model is
well-posed even in the absence of surface tension (the only modification consists in setting bo−1 = 0
in the constants ν, κ1, κ2, ς). Thus the subtle regularizing effect of surface tension highlighted by
Lannes in [29] does not play a role in our model.

We conclude this section by asserting that our new model allows to fully justify any well-posed
asymptotic model, consistent with our model (3.3) in the Camassa-Holm regime.

Proposition 3.7. Consider (S) a system of equations such that

• The Cauchy problem for (S) is well-posed in Xr, r sufficiently large.

• For U0 ≡ (ζ0, v0)> ∈ Hs+N , N sufficiently large, the solutions of (S) satisfy our model (3.3),
up to a remainder R of size O(ι) in L∞([0, T ];Hs ×Hs).

Then under the assumptions of Theorem 3.4, the difference between the solution of the full Euler
system (2.4), U ≡ (ζ, ψ)>, and the solution of the asymptotic model (S) with corresponding initial
data, Ua ≡ (ζa, va)>, is estimated as follows:∣∣(ζ, v̄[ζ, ψ])− (ζa, va)

∣∣
L∞([0,t];Xs)

≤ C(ι+ µ2)t.

This procedure of full justification is precisely described in section 8, and applied to the so-called
Constantin-Lannes decoupled approximation model.

4 Construction of the model

This section is dedicated to the construction of the model we study. The key ingredient for construct-
ing shallow water asymptotic models lies in the expansion of the Dirichlet-to-Neumann operators,
with respect to the shallowness parameter, µ; see Proposition 4.1, below. Thanks to such an expan-
sion, one is able to obtain the so-called Green-Naghdi model (for internal waves), displayed in (4.6).
This model has been introduced by one of the author in [19], and generalized in [20]. It is justified
by a consistency result recalled in Proposition 4.2: roughly speaking, any solution of the full Euler
system satisfies the Green-Naghdi asymptotic model up to a small remainder, of size O(µ2).

In a second step, we use the additional assumption of the Camassa-Holm regime, ε = O(
√
µ).

Simplified models, with the same order of precision may then be deduced. We use several trans-
formations which allow to obtain a well-prepared model: system (4.13), presented in the previous
section (3.3). The justification of this model, in the sense of consistency, is stated in Theorem 4.4.
The stronger results (well-posedness, stability, convergence) described in Section 3 are proved in
subsequent sections.

4in particular, it satisfies a stability criterion, which in the shallow water configuration (µ � 1), can be roughly

expressed as Υ ≡ ε4

4
bo

γ2(δ+γ)2

(1+γ)6
is sufficiently small ; see section 5.1.3 of [29].
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4.1 The Green-Naghdi model

The following Proposition is given in [19] (see also [20]), extending the result of [7].

Proposition 4.1 (Expansion of the Dirichlet-Neumann operators). Let s ≥ s0 + 1/2, s0 > 1/2.
Let ψ be such that ∂xψ ∈ Hs+11/2(R), and ζ ∈ Hs+9/2(R). Let h1 = 1− εζ and h2 = 1/δ+ εζ such
that there exists h > 0 with h1, h2 ≥ h > 0. Then∣∣ 1

µ
Gµψ − ∂x(h1∂xψ)

∣∣
Hs
≤ µ C1,(4.1) ∣∣ 1

µ
Gµψ − ∂x(h1∂xψ) − µ

1

3
∂2
x(h3

1∂
2
xψ)
∣∣
Hs
≤ µ2 C3,(4.2) ∣∣Hµ,δψ +

h1

h2
∂xψ

∣∣
Hs
≤ µ C0,(4.3) ∣∣Hµ,δψ +

h1

h2
∂xψ −

µ

3h2
∂x

(
h3

2∂x
(h1

h2
∂xψ

)
− h3

1∂
2
xψ
)∣∣
Hs
≤ µ2 C2,(4.4)

with Cj = C( 1
h , µmax,

1
δmin

, δmax,
∣∣ζ∣∣

Hs+3/2+j ,
∣∣∂xψ∣∣Hs+5/2+j ). The estimates are uniform with respect

to the parameters ε ∈ [0, 1], µ ∈ [0, µmax], δ ∈ (δmin, δmax).

Plugging these expansions into the full Euler system (2.4), and withdrawing O(µ2) terms, imme-
diately yields an asymptotic Green-Naghdi model. This model is presented in [19] and justified in
the sense of consistency. However, such a Green-Naghdi model is only one of the variety of models
which satisfy such a property. In the following, we decide to introduce an equivalent model, using
as unknown (instead of ψ, the trace of the upper velocity potential at the interface) the shear mean
velocity, defined by

(4.5) v̄ ≡ ū2 − γū1,

where ū1, ū2 are the mean velocities integrated across the vertical layer in each fluid:

ū1(t, x) =
1

h1(t, x)

∫ 1

εζ(t,x)

∂xφ1(t, x, z) dz, and ū2(t, x) =
1

h2(t, x)

∫ εζ(t,x)

− 1
δ

∂xφ2(t, x, z) dz.

Equivalently (as shown in [19]), one has

1

µ
Gµ,εψ = −∂x

( h1h2

h1 + γh2
v̄
)
.

Such a choice has been used in [10,11] for example, and present at least two benefits. First, the
equation describing the evolution of the deformation of the interface is an exact equation, and not
a O(µ2) approximation. Indeed, one has immediately from the full Euler system (2.4):

∂tζ =
1

µ
Gµ,εψ = −∂x

( h1h2

h1 + γh2
v̄
)
.

What is more, the system obtained using mean velocities have a nicer behavior with respect to its
linear well-posedness, thus one can expect nonlinear well-posedness only for the latter.

Altogether, several technical but straightforward computations yield the following Green-Naghdi
model

(4.6)



∂tζ + ∂x

( h1h2

h1 + γh2
v̄
)

= 0,

∂t

(
v̄ + µQ[h1, h2]v̄

)
+ (γ + δ)∂xζ +

ε

2
∂x

( h2
1 − γh2

2

(h1 + γh2)2
|v̄|2
)

= µε∂x
(
R[h1, h2]v̄

)
+µ

γ + δ

bo
∂3
xζ ,
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where we define:

Q[h1, h2]V ≡ −1

3h1h2

(
h1∂x

(
h3

2∂x
( h1 V

h1 + γh2

))
+ γh2∂x

(
h3

1∂x
( h2 V

h1 + γh2

)))
,

R[h1, h2]V ≡ 1

2

((
h2∂x

( h1 V

h1 + γh2

))2

− γ
(
h1∂x

( h2 V

h1 + γh2

))2
)

+
1

3

V

h1 + γh2

(
h1

h2
∂x

(
h3

2∂x
( h1 V

h1 + γh2

))
− γ

h2

h1
∂x

(
h3

1∂x
( h2 V

h1 + γh2

)))
.

This model has been derived in [19] and justified in the sense of consistency, as follows.

Proposition 4.2. For p = (µ, ε, δ, γ,bo) ∈ PSW, let Up ≡ (ζp, ψp) be a family of solutions of the
full Euler system (2.4) such that such that there exists C0, T > 0 with∥∥ζp∥∥

L∞([0,T );Hs+
9
2 )

+
∥∥∂tζp∥∥

L∞([0,T );Hs+
7
2 )

+
∥∥∂xψp

∥∥
L∞([0,T );Hs+

11
2 )

+
∥∥∂t∂xψp

∥∥
L∞([0,T );Hs+

9
2 )
≤ C0,

for given s ≥ s0 + 1/2, s0 > 1/2, uniformly with respect to p ∈ PSW. Moreover, assume that there
exists h01 > 0 such that

h1 ≡ 1− εζp ≥ h01 > 0, h2 ≡
1

δ
+ εζp ≥ h01 > 0.

Define v̄p as in (4.5) or, equivalently, by

1

µ
Gµ[εζp]ψp = −∂x

( h1h2

h1 + γh2
v̄p
)
.

Then (ζ, v̄) satisfies (4.6), up to a remainder R, bounded by∥∥R∥∥
L∞([0,T );Hs)

≤ C1µ
2

with C1 = C(MSW, h
−1
01 , C0), uniformly with respect to the parameters p ∈ PSW.

Remark 4.3. In [19], the author works with bo−1 = 0. However, it is clear that the results are
still valid with the surface tension term, using∣∣∣∣∣−µbo

∂x
(
k(ε
√
µζ)
)

ε
√
µ

− µ

bo
∂3
xζ

∣∣∣∣∣
Hs

≤ µ2ε2

bo
C(µε2,

∣∣ζ∣∣
Hs+2),

where we used Lemma A.4. Of course, one could have simply kept the surface tension term un-
changed at this point, as in [20]. The smallness of surface tension, expressed by bo−1 ≤ bo−1

min, is
useful in the derivation of our new model, in the following subsection.

4.2 Our new model

As announced in the introduction, the present work is limited to the so-called Camassa-Holm regime,
that is using additional assumption ε = O(

√
µ). In this section, we manipulate the Green-Naghdi

system (4.6), systematically withdrawing O(µ2, µε2) terms, in order to recover our model presented
in (3.3). In particular, one can check that the following approximations formally hold:

Q[h1, h2]v̄ = −ν∂2
xv̄ − ε

γ + δ

3

(
(β − α)v̄∂2

xζ + (α+ 2β)∂x(ζ∂xv̄)− βζ∂2
xv̄
)

+ O(ε2),

R[h1, h2]v̄ = α

(
1

2
(∂xv̄)2 +

1

3
v̄∂2
xv̄

)
+ O(ε).

with

(4.7) ν =
1 + γδ

3δ(γ + δ)
, α =

1− γ
(γ + δ)2

and β =
(1 + γδ)(δ2 − γ)

δ(γ + δ)3
.
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Plugging these expansions into system (4.6) yields a simplified model, with the same order of
precision of the original model (that is O(µ2)) in the Camassa-Holm regime. However, we will use
several additional transformations, in order to produce an equivalent model (again, in the sense of
consistency), which possess a structure similar to symmetrizable quasilinear systems, and allows
the study of the subsequent sections.

The first step is to introduce the following symmetric operator,

T[εζ]V = q1(εζ)V − µν∂x

(
q2(εζ)∂xV

)
,

where qi(εζ) ≡ 1 + κiεζ (i = 1, 2) and ν, κ1, κ2 are constants to be determined, so as to write

q1(εζ)∂t

(
v̄ + µQ[h1, h2]v̄

)
− q1(εζ)µ

γ + δ

bo
∂3
xζ = T[εζ]∂tv̄ + higher order terms.

More precisely, one can check

T[εζ]∂tv̄ − q1(εζ)∂t

(
v̄ + µQ[h1, h2]v̄

)
+ q1(εζ)µ

γ + δ

bo
∂3
xζ

= −µν∂2
x∂tv̄ + µν∂2

x∂tv̄ + µ
γ + δ

bo
∂3
xζ − µενκ2∂x

(
ζ∂x∂tv̄

)
+ µενκ1ζ∂

2
x∂tv̄

+ µεq1(εζ)
γ + δ

3
∂t

(
(β − α)v̄∂2

xζ + (α+ 2β)∂x(ζ∂xv̄)− βζ∂2
xv̄
)

+ µεκ1ζ
γ + δ

bo
∂3
xζ.

The first order (O(µ)) terms may be canceled with a proper choice of ν, making use of the fact that
the second equation of system (4.6) yields

∂tv̄ = −(γ + δ)∂xζ −
ε

2
∂x

( δ2 − γ
(δ + γ)2

|v̄|2
)

+O(ε2, µ).

Indeed, it follows that

γ + δ

bo
∂3
xζ =

−1

bo
∂2
x∂tv̄ −

ε

2 bo

δ2 − γ
(δ + γ)2

∂3
x

(
|v̄|2
)

+O(ε2, µ),

thus one defines

(4.8) ν = ν − 1

bo
=

1 + γδ

3δ(γ + δ)
− 1

bo
,

and one has

T[εζ]∂tv̄ − q1(εζ)∂t

(
v̄ + µQ[h1, h2]v̄

)
+ q1(εζ)µ

γ + δ

bo
∂3
xζ

= −µ ε

2 bo

δ2 − γ
(δ + γ)2

∂3
x

(
|v̄|2
)
− µενκ2∂x

(
ζ∂x∂tv̄

)
+ µενκ1ζ∂

2
x∂tv̄ + µεκ1ζ

γ + δ

bo
∂3
xζ

+ µε
γ + δ

3
∂t

(
(β − α)v̄∂2

xζ + (α+ 2β)∂x(ζ∂xv̄)− βζ∂2
xv̄
)

+ O(µ2, µε2).

Use again that (4.6) yields ∂tv̄ = −(γ + δ)∂xζ +O(ε, µ) and ∂tζ = −1
γ+δ∂xv̄ +O(ε, µ), one obtains

T[εζ]∂tv̄ − q1(εζ)∂t

(
v̄ + µQ[h1, h2]v̄

)
+ q1(εζ)µ

γ + δ

bo
∂3
xζ

= µε(γ + δ)
(
νκ2∂x

(
ζ∂2
xζ
)
− νκ1ζ∂

3
xζ
)

+ µεκ1
γ + δ

bo
ζ∂3
xζ

− µε (γ + δ)2

3

(
(β − α)(∂xζ)(∂2

xζ) + (α+ 2β)∂x(ζ∂2
xζ)− βζ∂3

xζ
)

− µε1

3

(
(β − α)v̄∂3

xv̄ + (α+ 2β)∂x((∂xv̄)2)− β(∂xv̄)(∂2
xv)
)

− µε 1

2 bo

δ2 − γ
(δ + γ)2

∂3
x

(
|v̄|2
)

+ O(µ2, µε2).
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It becomes clear, now, that one can adjust κ1, κ2 ∈ R so that all terms involving ζ and its derivatives
are withdrawn. More specifically, we set5

(4.9) (ν − 1

bo
)κ1 =

γ + δ

3
(2β − α), (ν − 1

bo
)κ2 = (γ + δ)β,

and one obtains consequently

(4.10) T[εζ]∂tv̄ − q1(εζ)∂t

(
v̄ + µQ[h1, h2]v̄

)
+ q1(εζ)µ

γ + δ

bo
∂3
xζ

= µε
({−1

bo

δ2 − γ
(δ + γ)2

− 1

3
(β−α)

}
v̄∂3
xv̄ +

{ −3

2 bo

δ2 − γ
(δ + γ)2

− 1

3
(α+

3

2
β)
}
∂x((∂xv̄)2)

)
+O(µ2, µε2).

However, one of the remaining terms in (4.10), as well as in ∂x
(
R[h1, h2]v̄

)
, involves three

derivatives on v̄. In order to deal with these terms, we introduce T[εζ](εςv̄∂xv̄) where, again, ς ∈ R
is to be determined. More precisely, one has

T[εζ](εςv̄∂xv̄) + µεq1(εζ)∂x

(
R[h1, h2]v̄

)
= εςq1(εζ)v̄∂xv̄ − µενς∂x

(
q2(εζ)∂x(v̄∂xv̄)

)
+ µεq1(εζ)α∂x

(1

2
(∂xv̄)2 +

1

3
v̄∂2
xv̄
)
.

This yields

(4.11) T[εζ](εςv̄∂xv̄) + µεq1(εζ)∂x

(
R[h1, h2]v̄

)
= εςq1(εζ)v̄∂xv̄ + µε∂x

(
(
α

2
− νς)(∂xv̄)2 + (

α

3
− νς)v̄∂2

xv̄
)

+O(µ2, µε2).

Combining (4.10) with (4.11), one can check that if we set

(4.12) (ν − 1

bo
)ς =

2α− β
3

− 1

bo

δ2 − γ
(δ + γ)2

,

then the following approximation holds (withdrawing O(µ2, µε2) terms):

T[εζ](∂tv̄ + εςv̄∂xv̄)− q1(εζ)∂t

(
v̄ + µQ[h1, h2]v̄

)
+ q1(εζ)µ

γ + δ

bo
∂3
xζ + µεq1(εζ)∂x

(
R[h1, h2]v̄

)
= εςq1(εζ)v̄∂xv̄ − µε

2α

3
∂x
(
(∂xv̄)2

)
+O(µ2, µε2).

When plugging this estimate in (4.6), and after multiplying the second equation by q1(εζ), we
obtain the following system of equations:

(4.13)


∂tζ + ∂x

(
h1h2

h1 + γh2
v̄

)
= 0,

T[εζ] (∂tv̄ + εςv̄∂xv̄) + (γ + δ)q1(εζ)∂xζ

+ ε
2q1(εζ)∂x

(
h2

1−γh
2
2

(h1+γh2)2 |v̄|2 − ς|v̄|2
)

= −µε 2
3

1−γ
(γ+δ)2 ∂x

(
(∂xv̄)2

)
,

where we recall that

(4.14) T[εζ]V = q1(εζ)V − µν∂x

(
q2(εζ)∂xV

)
,

with qi(X) ≡ 1 + κiX (i = 1, 2) and ν, κ1, κ2, ς are defined by (4.8),(4.9) and (4.12).

System (4.13) has been introduced in Section 3, and is the system studied in the present work.
We reproduce and prove below Theorem 3.1, which asserts the validity of (4.13) as an asymptotic
model for the full Euler system in the sense of consistency.

5Of course, the definition of κ1, κ2 in (4.9) and ς in (4.12) forbids the particular value bo−1 = ν = 1+γδ
3δ(γ+δ)

.

Thus in order to be completely rigorous, one should exclude a small neighborhood around this value as for the
set parameters for which Theorem 4.4 (Theorem 3.1) holds true. This restriction is automatically satisfied in the
Camassa-Holm regime used thereafter; see (3.2)
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Theorem 4.4. For (µ, ε, δ, γ,bo) ≡ p ∈ PSW, let Up ≡ (ζp, ψp) be a family of solutions of the full
Euler system (2.4) such that such that there exists C0, T > 0 with∥∥ζp∥∥

L∞([0,T );Hs+
9
2 )

+
∥∥∂tζp∥∥

L∞([0,T );Hs+
7
2 )

+
∥∥∂xψp

∥∥
L∞([0,T );Hs+

11
2 )

+
∥∥∂t∂xψp

∥∥
L∞([0,T );Hs+

9
2 )
≤ C0,

for any s ≥ s0 + 1/2, s0 > 1/2, and uniformly with respect to p ∈ PSW. Moreover, assume that
there exists h01 > 0 such that

h1 ≡ 1− εζp ≥ h01 > 0, h2 ≡
1

δ
+ εζp ≥ h01 > 0.

Define v̄p as in (4.5) or, equivalently, by

1

µ
Gµ[εζp]ψp = −∂x

( h1h2

h1 + γh2
v̄p
)
.

Then (ζ, v̄) satisfies (4.13), up to a remainder R, bounded by∥∥R∥∥
L∞([0,T );Hs)

≤ (µ2 + µε2) C1,

with C1 = C(MSW, h
−1
01 , C0), uniformly with respect to the parameters p ∈ PSW.

Proof. Let U ≡ (ζ, ψ) satisfy the hypotheses of the Proposition (withdrawing the explicit depen-
dence with respect to parameters p for the sake of readability). As a consequence of Proposition 4.2,
we know that (ζ, v̄) satisfies (4.6), up to a remainder R0, bounded by∥∥R0

∥∥
L∞([0,T );Hs)

≤ µ2 C1,

with C1 = C(MCH, h
−1
01 , C0), uniformly with respect to (µ, ε, δ, γ,bo) ∈ PSW. The proof now

consists in checking that all terms neglected in the above calculations can be rigorously estimated
in the same way.

The formal expansions can easily be checked. When turning to control the remainder terms
in Hs norm we make great use of classical product estimates in Hs(R), s ≥ s0 + 1/2, recalled
in Lemma A.1. A technical issue appears when such products involve terms as 1

h1
, since 1

h1
is

controlled in L∞ (thanks to the non-vanishing depth condition), but not in Hs (as it does not
decay at infinity). We detail in Lemmata A.3 and A.4 how such difficulty can be treated.

For the sake of brevity, we do not develop each estimate, but rather provide the precise bound
on the various remainder terms. One has∣∣∂t(Q[h1, h2]V

)
v̄ −

[
− ν∂2

x∂tv̄ − ε
γ + δ

3
∂t
(
(β − α)v̄∂2

xζ + (α+ 2β)∂x(ζ∂xv̄)− βζ∂2
xv̄
) ]∣∣

Hs

≤ ε2C(s+ 3),

with C(s+ 3) ≡ C
(
MCH, h

−1
01 ,
∣∣ζ∣∣

Hs+3 ,
∣∣∂tζ∣∣Hs+2 ,

∣∣v̄∣∣
Hs+3 ,

∣∣v̄∣∣
Hs+2

)
, and∣∣∂x(R[h1, h2]v̄

)
− ∂x

[
α
(1

2
(∂xv̄)2 +

1

3
v̄∂2
xv̄
)]∣∣

Hs
≤ εC(s+ 3).

Then, since (ζ, v̄) satisfies (4.6), up to the remainder R0, one has∣∣∂tv̄ + (γ + δ)∂xζ
∣∣
Hs

+
∣∣∂tζ +

1

γ + δ
∂xv̄
∣∣
Hs
≤ εC(s+ 3) +

∣∣R0

∣∣
Hs
.

It follows that (4.11) is valid up to a remainder R1, bounded by∣∣R1

∣∣
Hs
≤ (µ2 + µε2)C(s+ 3) + µ(ε+ µ)

∣∣R0

∣∣
Hs
.

Finally, (ζ, v̄) satisfies (4.6), up to the remainder R0 +R1, and∣∣R0 +R1

∣∣
Hs
≤ µ2C(MCH, h

−1
01 , C0),

where we use that ∣∣v̄∣∣
Hs+3 +

∣∣∂tv̄∣∣Hs+2 ≤ C(MCH, h
−1
01 , C0).

The estimate on v̄ follows directly from the identity ∂x

(
h1h2

h1+γh2
v̄
)

= − 1
µG

µ,εψ = ∂tζ. The esti-

mate on ∂tv̄ can be proved, for example, following [17, Prop. 2.12]. This concludes the proof of
Theorem 4.4.
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5 Preliminary results

In this section, we study the operator T[εζ], defined in (4.14) and recalled below:

(5.1) T[εζ]V = (1 + εκ1ζ)V − µν∂x ((1 + εκ2ζ)∂xV ) .

with ν, κ1, κ2 are constants. In our setting, ν, κ1, κ2 depend on the parameters γ, δ,bo; but in what
follows, we use only that the restrictions of the Camassa-Holm regime ensures that ν > 0 is bounded
from below (by hypothesis):

ν ≡ 1 + γδ

3δ(γ + δ)
− 1

bo
≥ ν0 > 0,

and ν+ |κ1|+ |κ2| is bounded from above, uniformly with respect to (µ, ε, δ, γ,bo) ∈ PCH (see (3.2)).

When no confusion is possible, we write simply T ≡ T[εζ]. In the following, we seek sufficient
conditions to ensure the strong ellipticity of the operator T which will yield to the well-posedness
and continuity of the inverse T−1.

As a matter of fact, this condition, namely (H2) (and similarly the classical non-zero depth con-
dition, (H1)) simply consists in assuming that the deformation of the interface is not too large. For
fixed ζ ∈ L∞, the restriction reduces to an estimate on εmax

∣∣ζ∣∣
L∞

, with εmax = min(M
√
µmax, 1),

and (H1)-(H2) hold uniformly with respect to (µ, ε, δ, γ,bo) ∈ PCH; see Lemma 5.1, below.
Let us shortly detail the argument. Recall the non-zero depth condition

(H1) ∃ h01 > 0, such that min ( inf
x∈R

h1, inf
x∈R

h2) ≥ h01 ,

where h1 ≡ 1− εζ and h2 ≡ 1
δ + εζ are the depth of, respectively, the upper and the lower layer of

fluid. It is straightforward to check that, since for all (µ, ε, δ, γ,bo) ∈ PCH, the following condition

εmax

∣∣ζ∣∣
L∞

< min(1,
1

δmax
)

is sufficient to define h01 > 0 such that (H1) is valid, independently of (µ, ε, δ, γ,bo) ∈ PCH. Briefly,
since ε ≤ εmax, infx∈R h1 ≥ 1− ε

∣∣ζ∣∣
L∞
≥ 1− εmax

∣∣ζ∣∣
L∞

, infx∈R h2 ≥ 1
δ − ε

∣∣ζ∣∣
L∞
≥ 1

δ − εmax

∣∣ζ∣∣
L∞

.
Note that conversely, for (H1) to be satisfied for any (ε, µ, δ, γ,bo) ∈ PCH, then one needs

εmax

∣∣ζ∣∣
L∞
≤ max(1,

1

δmin
).

Indeed, one has for ε = εmax, εmaxζ = 1− h1 ≤ 1− h01 and −εmaxζ = 1
δ − h2 ≤ 1

δ − h01.
In the same way, we introduce the condition

(H2) ∃ h02 > 0, such that inf
x∈R

(1 + εκ2ζ) ≥ h02 > 0 ; inf
x∈R

(1 + εκ1ζ) ≥ h02 > 0.

As above, such a condition is a consequence of a simple smallness assumption on ε
∣∣ζ∣∣

L∞
. More

precisely, one has the following result.

Lemma 5.1. Let ζ ∈ L∞ and εmax = min(M
√
µmax, 1) be such that there exists h0 > 0 with

max(|κ1|, |κ2|, 1, δmax)εmax

∣∣ζ∣∣
L∞
≤ 1− h0 < 1.

Then there exists h01, h02 > 0 such that (H1)-(H2) hold for any (µ, ε, δ, γ,bo) ∈ PCH.

In what follows, we will always assume that (H1) and (H2) are satisfied. It is a consequence of
our work that such assumption may be imposed only on the initial data, and then is automatically
satisfied over the relevant time scale.

Before asserting the strong ellipticity of the operator T, let us first recall the quantity | · |H1
µ
,

which is defined as
∀v ∈ H1(R), | v |2H1

µ
= | v |2L2 + µ | ∂xv |2L2 ,

and is equivalent to the H1(R)-norm but not uniformly with respect to µ. We define by H1
µ(R) the

space H1(R) endowed with this norm.
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Lemma 5.2. Let (µ, ε, δ, γ,bo) ∈ PCH and ζ ∈ L∞(R) such that (H2) is satisfied. Then the
operator

T[εζ] : H1
µ(R) −→ (H1

µ(R))?

is uniformly continuous and coercive. More precisely, there exists c0 > 0 such that

(Tu, v) ≤ c0|u|H1
µ
|v|H1

µ
;(5.2)

(Tu, u) ≥ 1

c0
|u|2H1

µ
(5.3)

with c0 = C(MCH, h
−1
02 , ε

∣∣ζ∣∣
L∞

).

Moreover, the following estimates hold:

(i) Let s0 >
1
2 and s ≥ 0. If ζ ∈ Hs0(R) ∩Hs(R) and u ∈ Hs+1(R) and v ∈ H1(R), then:∣∣(ΛsT[εζ]u, v

)∣∣ ≤ C0

(
(1 + ε

∣∣ζ∣∣
Hs0

)
∣∣u∣∣

Hs+1
µ

+
〈
ε
∣∣ζ∣∣

Hs

∣∣u∣∣
H
s0+1
µ

〉
s>s0

) ∣∣v∣∣
H1
µ
,(5.4)

(ii) Let s0 >
1
2 and s ≥ 0. If ζ ∈ Hs0+1 ∩Hs(R), u ∈ Hs(R) and v ∈ H1(R), then:∣∣([Λs,T[εζ]

]
u, v
)∣∣ ≤ ε C0

(∣∣ζ∣∣
Hs0+1

∣∣u∣∣
Hsµ

+
〈∣∣ζ∣∣

Hs

∣∣u∣∣
H
s0+1
µ

〉
s>s0+1

) ∣∣v∣∣
H1
µ
,(5.5)

where C0 = C(MCH, h
−1
02 ).

Proof. Let us define the bilinear form

a(u, v) =
(
Tu , v

)
=
(

(1 + εκ1ζ)u , v
)

+ νµ
(

(1 + εκ2ζ)∂xu , ∂xv
)
,

where
(
· , · ) denotes the L2-based inner product. It is straightforward to check that∣∣a(u, v)

∣∣ ≤ sup
x∈R
|1 + εκ1ζ|

(
u , v

)
+ µν sup

x∈R
|1 + εκ2ζ|

(
∂xu , ∂xv

)
,

so that (5.2) is now straightforward, by Cauchy-Schwarz inequality.
The H1

µ(R)-coercivity of a(·, ·), inequality (5.3), is a consequence of conditions (H2):

a(u, u) =
(
Tu , u

)
=

∫
R

(1 + εκ1ζ)|u|2 dx+ νµ

∫
R

(1 + εκ2ζ)|ux|2 dx

≥ h02 min(1, ν0)|u|2H1
µ
.

Let us now prove the higher-order estimates of the Lemma, starting with the product estimates.
One has (

ΛsTu , v
)

=
(

Λs{(1 + εκ1ζ)u} , v
)

+ νµ
(

Λs{(1 + εκ2ζ)∂xu} , ∂xv
)
.

Estimate (5.4) is now a straightforward consequence of Cauchy-Schwarz inequality, and Lemma A.1.
As for the commutator estimates, one uses(

[Λs,T]u , v
)

= εκ1

(
[Λs, ζ]u , v

)
+ νµεκ2

(
[Λs, ζ]∂xu , ∂xv

)
.

Estimates (5.5) follow, using again Cauchy-Schwarz inequality, and Lemma A.2.

The following lemma offers an important invertibility result on T.

Lemma 5.3. Let (µ, ε, δ, γ,bo) ∈ PCH and ζ ∈ L∞(R) such that (H2) is satisfied. Then the
operator

T[εζ] : H2(R) −→ L2(R)

is one-to-one and onto. Moreover, one has the following estimates:
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(i) (T[εζ])−1 : L2 → H1
µ(R) is continuous. More precisely, one has

‖ T−1 ‖L2(R)→H1
µ(R) ≤ c0,

with c0 = C(MCH, h
−1
02 , ε

∣∣ζ∣∣
L∞

).

(ii) Additionally, if ζ ∈ Hs0+1(R) with s0 >
1
2 , then one has for any 0 < s ≤ s0 + 1,

‖ T−1 ‖Hs(R)→Hs+1
µ (R) ≤ cs0+1.

(iii) If ζ ∈ Hs(R) with s ≥ s0 + 1, s0 >
1
2 , then one has

‖ T−1 ‖Hs(R)→Hs+1
µ (R) ≤ cs

where cs̄ = C(MCH, h
−1
02 , ε|ζ|H s̄), thus uniform with respect to (µ, ε, δ, γ,bo) ∈ PCH.

Proof. To show the invertibility of T we use the Lax-Milgram theorem. From the previous Lemma,
we know that the bilinear form:

a(u, v) =
(
Tu , v

)
=
(

(1 + εκ1ζ)u , v
)

+ µν
(

(1 + εκ2ζ)∂xu , ∂xv
)

is continuous and uniformly coercive on H1
µ(R). For any µ > 0, the dual of H1

µ(R) is H−1(R), of

whom L2(R) is a subspace, and one has
(
f, g
)
≤
∣∣f ∣∣

H1
µ

∣∣g∣∣
L2 , independently of µ > 0. Therefore,

using Lax-Milgram lemma, for all f ∈ L2(R), there exists a unique u ∈ H1
µ(R) such that, for all

v ∈ H1
µ(R)

a(u, v) = (f, v);

equivalently, there is a unique variational solution to the equation

(5.6) Tu = f.

We then get from the definition of T that

(5.7) νµ (1 + εκ2ζ) ∂2
xu = (1 + εκ1ζ)u− µενκ2(∂xζ)(∂xu)− f.

Now, using condition (H2), and since u ∈ H1(R), ζ ∈ L∞(R) and f ∈ L2(R), we deduce that
∂2
xu ∈ L2(R), and thus u ∈ H2(R). We proved that T[εζ] : H2(R) −→ L2(R) is one-to-one and

onto.

Let us now turn to the proof of estimates in (i)− (iii).
We start from the equality a(u, u) = (f, u). Using elliptic inequality (5.3) and Cauchy-Schwarz

inequality, one has

1

c0
|u|2H1

µ
≤ a(u, u) =

(
f , u

)
≤
∣∣f ∣∣

L2

∣∣u∣∣
L2 ≤

∣∣f ∣∣
L2

∣∣u∣∣
H1
µ
.

Dividing by c−1
0

∣∣u∣∣
H1
µ

yields the estimate in (i).

Let us now assume that f ∈ Hs(R), for s ≥ 0. We apply Λs to equation (5.6) and we write it
under the form:

T(Λsu) = Λsf − [Λs,T]u.

Proceeding as above, we use the L2 inner product with Λsu, and deduce

1

c0
|Λsu|2H1

µ
≤ a(Λsu,Λsu) =

(
TΛsu,Λsu

)
=
(
Λsf − [Λs,T]u , Λsu

)
≤
∣∣Λsf ∣∣

L2

∣∣Λsu∣∣
L2 +

∣∣([Λs,T]u , Λsu
)∣∣ .(5.8)

The result is now a consequence of (5.5).
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— If 0 ≤ s ≤ s0 + 1, one has

1

c0
|u|2

Hs+1
µ
≤
∣∣f ∣∣

Hs

∣∣u∣∣
Hs

+ ε C0

∣∣ζ∣∣
Hs0+1

∣∣u∣∣
Hsµ

∣∣u∣∣
Hs+1
µ

,

thus
|u|Hs+1

µ
≤ c0

( ∣∣f ∣∣
Hs

+ ε C0

∣∣ζ∣∣
Hs0+1

∣∣u∣∣
Hsµ

)
.

The estimate of (ii) for 0 < s ≤ 1 follows, using estimate (i) and
∣∣Λs−1u

∣∣
H1
µ
≤
∣∣u∣∣

H1
µ
. The result

for greater values of s, 1 < s ≤ s0 + 1, follows by continuous induction.

— If s > s0 + 1, then plugging (5.5) into (5.8) yields

1

c0
|u|2

Hs+1
µ
≤
∣∣f ∣∣

Hs

∣∣u∣∣
Hs

+ ε C0

(∣∣ζ∣∣
Hs0+1

∣∣u∣∣
Hsµ

+
∣∣ζ∣∣

Hs

∣∣u∣∣
H
s0+1
µ

)∣∣u∣∣
Hs+1
µ

,

thus
|u|Hs+1

µ
≤ c0

( ∣∣f ∣∣
Hs

+ ε C0

(∣∣ζ∣∣
Hs0+1

∣∣u∣∣
Hsµ

+
∣∣ζ∣∣

Hs

∣∣u∣∣
H
s0+1
µ

))
.

As above, the result follows by continuous induction on s.

Finally, let us introduce the following technical estimate, which is used several times in the
subsequent sections.

Corollary 5.4. Let (µ, ε, δ, γ,bo) ∈ PCH and ζ ∈ Hs(R) with s ≥ s0 + 1, s0 >
1
2 , such that (H2)

is satisfied. Assume moreover that u ∈ Hs−1(R) and that v ∈ H1(R). Then one has∣∣( [Λs,T−1[εζ]
]
u , T[εζ]v

)∣∣ =
∣∣( [Λs,T[εζ]

]
T−1[εζ]u , v

)∣∣
≤ ε C(MCH, h

−1
02 ,
∣∣ζ∣∣

Hs
)
∣∣u∣∣

Hs−1

∣∣v∣∣
H1
µ

(5.9)

Proof. The first identity can be obtained through simple calculation: using that T[εζ] is symmetric,([
Λs,T−1[εζ]

]
u,T[εζ]v

)
=
(
T[εζ]

[
Λs,T−1[εζ]

]
u, v
)

=
(
T[εζ]ΛsT−1[εζ]u − Λsu , v

)
=
(
−
[
Λs,T[εζ]

]
T−1[εζ]u , v

)
.

The estimate is now a direct application of (5.5) and Lemma 5.3. From point (ii) and (iii) of
Lemma 5.3, one has ∣∣T−1[εζ]u

∣∣
Hsµ
≤ C

∣∣u∣∣
Hs−1 ,

with C = C(MCH, h
−1
02 , ε

∣∣ζ∣∣
Hs−1 , ε

∣∣ζ∣∣
Hs0+1). Now apply commutator estimate (5.5), and one obtains

straightforwardly our desired estimate.

6 Linear analysis

Let us recall the system (4.13) introduced in section 4.2.

(6.1)


∂tζ + ∂x

(
h1h2

h1 + γh2
v̄

)
= 0,

T[εζ] (∂tv̄ + εςv̄∂xv̄) + (γ + δ)q1(εζ)∂xζ

+ ε
2q1(εζ)∂x

(
h2

1−γh
2
2

(h1+γh2)2 |v̄|2 − ς|v̄|2
)

= −µε 2
3

1−γ
(γ+δ)2 ∂x

(
(∂xv̄)2

)
,

with h1 = 1− εζ , h2 = 1/δ + εζ qi(X) = 1 + κiX (i = 1, 2) , κi, ς defined in(4.9),(4.12), and

T[εζ]V = q1(εζ)V − µν∂x (q2(εζ)∂xV ) .
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In order to ease the reading, we define the function

f : X → (1−X)(δ−1 +X)

1−X + γ(δ−1 +X)
.

One can easily check that

f(εζ) =
h1h2

h1 + γh2
, and f ′(εζ) =

h2
1 − γh2

2

(h1 + γh2)2
.

Additionally, let us denote

κ =
2

3

1− γ
(δ + γ)2

and q3(εζ) =
1

2

( h2
1 − γh2

2

(h1 + γh2)2
− ς
)
,

so that one can rewrite (here and in the following, we omit the bar on v for the sake of readability)

(6.2)


∂tζ + f(εζ)∂xv + ε∂xζf

′(εζ)v = 0,

T
(
∂tv +

ε

2
ς∂x(v2)

)
+ (γ + δ)q1(εζ)∂xζ + εq1(εζ)∂x(q3(εζ)v2) + µεκ∂x

(
(∂xv)2

)
= 0.

The equations can be written after applying T−1 to the second equation in (6.2) as

(6.3) ∂tU +A0[U ]∂xU +A1[U ]∂xU = 0,

with

(6.4) A0[U ] =

(
εf ′(εζ)v f(εζ)

T−1(Q0(εζ)·) εT−1(Q[εζ, v]·)

)
, A1[U ] =

(
0 0

ε2T−1(Q1(εζ, v)·) εςv

)
,

where Q0(εζ), Q1(εζ, v) are defined as

(6.5) Q0(εζ) = (γ + δ)q1(εζ), Q1(εζ, v) = q1(εζ)q′3(εζ)v2

and the operator Q[εζ, v] defined by

(6.6) Q[εζ, v]f ≡ 2q1(εζ)q3(εζ)vf + µκ∂x(f∂xv).

Following the classical theory of hyperbolic systems, the well-posedness of the initial value
problem of the above system will rely on a precise study of the properties, and in particular energy
estimates, for the linearized system around some reference state U = (ζ, v)>:

(6.7)

{
∂tU +A0[U ]∂xU +A1[U ]∂xU = 0;
U|t=0

= U0.

In the following subsection, we construct the natural energy space for our problem. Energy esti-
mates are then proved in section 6.2. Finally, we state the well-posedness of the linear system (6.7)
in section 6.3.

6.1 Energy space

Let us first remark that by construction, one has a pseudo-symmetrizer of the system, given by

(6.8) S[U ] =

(
Q0(εζ)

f(εζ) 0

0 T[εζ]

)
, S[U ]A0[U ] =

(
ε
Q0(εζ)

f(εζ) f
′(εζ)v Q0(εζ)

Q0(εζ) εQ[εζ, v]

)
.

Notice that S[U ] is symmetric, as T[εζ] is symmetric, and one can easily check that S[U ]A0[U ]
is symmetric as well. On the contrary, the operator

S[U ]A1[U ] =

(
0 0

ε2Q1(εζ, v) εςT[εζ](v·)

)
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represents the defect of symmetry. However, T[εζ](v·) has the desired following property:(
T[εζ](v∂xV ), V

)
=
(
q1(εζ)v∂xV + µ∂x(q2(εζ)∂x(v∂xV )) , V

)
= −1

2

(
∂x(q1(εζ)v)V , V

)
− µ

(
q2(εζ)∂x(v∂xV ) , ∂xV

)
= −1

2

(
∂x(q1(εζ)v)V, V

)
− µ

(
q2(εζ)(∂xv)∂xV, ∂xV

)
+ µ

1

2

(
∂x(q2(εζ)v)∂xV, ∂xV

)
.(6.9)

Therefore, the inner product
(
T[εζ](v∂xV ), V

)
is controlled by

∣∣V ∣∣2
H1
µ
, which is bounded in our

energy space, as defined below. In the same way, one can control the contribution of ε2Q1(εζ, v),
using the smallness of ε through the assumption of the Camassa-Holm regime ε = O(

√
µ).

Remark 6.1. In the analysis below, the only place where the smallness assumption of the Camassa-
Holm regime, ε = O(

√
µ), is used (apart from the simplifications it offers when constructing sys-

tem (6.1)), stands in the estimation of the contribution of ε2Q1(εζ, v). As a matter of fact, this

assumption is actually not required: one could replace Q0(εζ) by Q0(εζ)+ε2Q1(εζ, v) in the pseudo-

symmetrizer S[U ], thus canceling out the ε2Q1(εζ, v) term. Note however that the energy would then
be slightly different than the one defined below, and that in order for Lemma 6.3 to hold, one should
add an additional smallness assumption on εv, in order to ensure Q0(εζ) + ε2Q1(εζ, v) ≥ h03 > 0.

Let us now define our energy space.

Definition 6.2. For given s ≥ 0 and µ, T > 0, we denote by Xs the vector space Hs(R)×Hs+1(R)
endowed with the norm

∀ U = (ζ, v) ∈ Xs, |U |2Xs ≡ |ζ|2Hs + |v|2Hs + µ|∂xv|2Hs ,

while Xs
T stands for the space of U = (ζ, v) such that U ∈ C0([0, Tε ];Xs) and ∂tζ ∈ L∞([0, Tε ]×R),

endowed with the canonical norm

‖U‖XsT ≡ sup
t∈[0,T/ε]

|U(t, ·)|Xs + ess sup
t∈[0,T/ε],x∈R

|∂tζ(t, x)|.

A natural energy for the initial value problem (6.7) is given by

(6.10) Es(U)2 = (ΛsU, S[U ]ΛsU) = (Λsζ,
Q0(εζ)

f(εζ)
Λsζ) +

(
Λsv,

T[εζ]

γ + δ
Λsv

)
.

The link between Es(U) and the Xs-norm is investigated in the following Lemma.

Lemma 6.3. Let p = (µ, ε, δ, γ,bo) ∈ PCH, s ≥ 0 and ζ ∈ L∞(R), satisfying (H1) and (H2). Then
Es(U) is equivalent to the | · |Xs-norm uniformly with respect to p ∈ PCH. More precisely, there
exists c0 = C(MCH, h

−1
01 , h

−1
02 ) > 0 such that

1

c0
Es(U) ≤

∣∣U ∣∣
Xs
≤ c0E

s(U).

Proof. This is a straightforward application of Lemma 5.2, and that for Q0(εζ), f(εζ) > 0,

(6.11) inf
x∈R

Q0(εζ)

f(εζ)
≥ ( inf

x∈R
Q0(εζ))(sup

x∈R
f(εζ))−1 sup

x∈R

∣∣∣∣Q0(εζ)

f(εζ)

∣∣∣∣ ≤ (sup
x∈R

Q0(εζ))( inf
x∈R

f(εζ))−1,

where we recall that if (H1) is satisfied, then h1 = 1− εζ and h2 = 1
δ + εζ satisfy

inf
x∈R

h1 ≥ h01, sup
x∈R

∣∣h1

∣∣ ≤ 1 + 1/δ, inf
x∈R

h2 ≥ h01, sup
x∈R

∣∣h2

∣∣ ≤ 1 + 1/δ.

We conclude this section by proving some general estimates concerning our new operators, which
will be useful in the following subsection.
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Lemma 6.4. Let (µ, ε, δ, γ,bo) = p ∈ PCH, and let U = (ζu, u)> such that ζu ∈ L∞ satis-
fies (H1),(H2). Then for any V,W ∈ X0, one has

(6.12)
∣∣∣ ( S[U ]V , W

) ∣∣∣ ≤ C
∣∣V ∣∣

X0

∣∣W ∣∣
X0 ,

with C = C(MCH, h
−1
01 , h

−1
02 , ε

∣∣ζu∣∣L∞) .

Moreover, if ζu ∈ Hs, V ∈ Xs−1 with s ≥ s0 + 1, s0 > 1/2, then one has∣∣∣( [Λs, S[U ]
]
V , W

)∣∣∣ ≤ C
∣∣V ∣∣

Xs−1

∣∣W ∣∣
X0(6.13) ∣∣∣( [Λs, S−1[U ]

]
V , S[U ]W

)∣∣∣ ≤ C
∣∣V ∣∣

Hs−1×Hs−1

∣∣W ∣∣
X0(6.14)

with C = C(MCH, h
−1
01 , h

−1
02 , ε

∣∣ζu∣∣Hs) .

Proof. Let U = (ζu, u)> ∈ Xs, V = (ζv, v)> ∈ Xs, W = (ζw, w)> ∈ X0. Then by definition of S[·]
in (6.8), one has (

S[U ]V , W
)

=
( Q0(εζu)

f(εζu)
ζv , ζw

)
+
(
T[εζu]v , w

)
.

The first term is straightforwardly estimated by Cauchy-Schwarz inequality:∣∣( Q0(εζu)

f(εζu)
ζv , ζw

)∣∣ ≤ ∣∣Q0(εζu)

f(εζu)

∣∣
L∞

∣∣ζv∣∣L2

∣∣ζw∣∣L2 ,

and Q0(εζu)
f(εζu) is uniformly bounded since ζu satisfies (H1).

The second term is estimated by Lemma 5.2,(5.2).∣∣( T[εζu]v , w
)∣∣ ≤ c0|v|H1

µ
|w|H1

µ
≤ c0|V |X0 |W |X0 .

Estimate (6.12) is proved.

Now, let us decompose( [
Λs, S[U ]

]
V , W

)
=
( [

Λs,
Q0(εζu)

f(εζu)

]
ζv , ζw

)
+
( [

Λs,T[εζu]
]
v , w

)
.

By Cauchy-Schwarz inequality and Lemma A.2, one has∣∣( [Λs, Q0(εζu)

f(εζu)

]
ζv , ζw

)∣∣ ≤ ∣∣[Λs, Q0(εζu)

f(εζu)

]
ζv
∣∣
L2

∣∣ζw∣∣L2

≤
∣∣∂x{Q0(εζu)

f(εζu)

}∣∣
Hs−1

∣∣ζv∣∣Hs−1

∣∣ζw∣∣L2

≤ C(ε
∣∣ζu∣∣Hs)∣∣ζv∣∣Hs−1

∣∣ζw∣∣L2 ,

where we used Lemma A.1 and continuous Sobolev embedding for the last inequality.
The second term is estimated using Lemma 5.2, (5.5):∣∣( [Λs,T[εζu]

]
v , w

)∣∣ ≤ C(ε|ζu|Hs)|V |Xs−1 |W |X0 .

Estimate (6.13) is proved.

Finally, one has( [
Λs, S−1[U ]

]
V , S[U ]W

)
≤
( [

Λs,
f(εζu)

Q0(εζu)

]
ζv ,

Q0(εζu)

f(εζu)
ζw

)
+
( [

Λs,T−1[εζu]
]
v , T[εζu]w

)
.

The first term is estimated exactly as above, noticing that both f(εζu) and Q0(εζu) are bounded
from above and below since (H1) and (H2) are satisfied.

The second term is estimated using Corollary 5.4, (5.9). Estimate (6.14) follows, and the Lemma
is proved.
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6.2 Energy estimates

Our aim is to establish a priori energy estimates concerning our linear system. In order to be
able to use the linear analysis to both the well-posedness and stability of the nonlinear system, we
consider the following modified system

(6.15)

{
∂tU +A0[U ]∂xU +A1[U ]∂xU = F ;
U|t=0

= U0.

where we added a right-hand-side F , whose properties will be precised in the following Lemmas.

We begin by asserting a basic X0 energy estimate, that we extend to Xs space (s > 3/2) later
on.

Lemma 6.5 (X0 energy estimate). Set (µ, ε, δ, γ,bo) ∈ PCH. Let T > 0 and U ∈ L∞([0, T/ε];X0)
and U, ∂xU ∈ L∞([0, T/ε] × R) such that ∂tζ ∈ L∞([0, T/ε] × R) and ζ satisfies (H1),(H2), and
U,U satisfy system (6.15), with a right hand side, F , such that(

F, S[U ]U
)
≤ CF ε

∣∣U ∣∣2
X0 + f(t)

∣∣U ∣∣
X0 ,

with CF a constant and f a positive integrable function on [0, T/ε].
Then there exists λ ≡ C(

∥∥∂tζ∥∥L∞([0,T/ε]×R)
,
∥∥U∥∥

L∞([0,T/ε]×R)
,
∥∥∂xU∥∥L∞([0,T/ε]×R)

, CF ) such

that

(6.16) ∀t ∈ [0,
T

ε
], E0(U)(t) ≤ eελtE0(U0) +

∫ t

0

eελ(t−t′)f(t′)dt′.

The constant λ is independent of (µ, ε, δ, γ,bo) ∈ PCH, but depends on MCH, h
−1
01 , h

−1
02 .

Proof. Let us take the inner product of (6.15) by S[U ]U :(
∂tU, S[U ]U

)
+
(
A0[U ]∂xU, S[U ]U

)
+
(
A1[U ]∂xU, S[U ]U

)
=
(
F, S[U ]U

)
,

From the symmetry property of S[U ], and using the definition of Es(U), one deduces

(6.17)
1

2

d

dt
E0(U) =

1

2

(
U,
[
∂t, S[U ]

]
U
)
−
(
S[U ]A0[U ]∂xU,U

)
−
(
S[U ]A1[U ]∂xU,U

)
+
(
F, S[U ]U

)
.

Let us first estimate
(
S[U ]A0[U ]∂xU,U

)
. Let us recall that

S[U ]A0[U ] =

(
ε
Q0(εζ)

f(εζ) f
′(εζ)v Q0(εζ)

Q0(εζ) εQ[εζ, v]

)

so that(
S[U ]A0[U ]∂xU,U

)
= −1

2

(
ζ, ε∂x

(Q0(εζ)

f(εζ)
f ′(εζ)v

)
ζ
)
−
(
ζ, ∂x(Q0(εζ))v

)
+ ε

(
Q[εζ, v]∂xv, v

)
≡ A1 +A2 +A3

The estimates concerning A1 and A2 are straightforward. Using Cauchy-Schwarz inequality,
there exists C = C(

∥∥U∥∥
L∞

+
∥∥∂xU∥∥L∞) such that

|A1|+ |A2| ≤ εC(
∣∣ζ∣∣2

L2 +
∣∣v∣∣2

L2) ≤ εC
∣∣U ∣∣2

X0 .

As for A3, one has (recalling the definition of Q in (6.6)):(
Q[εζ, v]∂xv, v

)
= −

(
∂x(q1(εζ)q3(εζ)v)v, v

)
− µκ

(
(∂xv)(∂xv), ∂xv

)
Those two terms are controlled, again thanks to Cauchy-Schwarz inequality, so that

|
(
Q[εζ, v]∂xv, v

)
| ≤ C(

∥∥U∥∥
L∞

+
∥∥∂xU∥∥L∞)

∣∣v∣∣2
H1
µ
≤ C(

∥∥U∥∥
L∞

+
∥∥∂xU∥∥L∞)

∣∣U ∣∣2
X0 .
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Altogether, we proved

(6.18) |
(
S[U ]A0[U ]∂xU,U

)
| ≤ εC(

∥∥U∥∥
L∞

+
∥∥∂xU∥∥L∞)

∣∣U ∣∣2
X0 .

Let us now estimate
(
S[U ]A1[U ]∂xU,U

)
. One has(

S[U ]A1[U ]∂xU,U
)

=
(
ε2Q1(εζ, v)∂xζ, v

)
+ ες

(
T[εζ](v∂xv), v)

≡ A4 +A5.

In order to control the term A4, we write(
ε2Q1(εζ, v)∂xζ, v

)
= ε2

(
q1(εζ)q′3(εζ)v2∂xζ, v

)
= −ε2

(
∂x(q1(εζ)q′3(εζ)v2v), ζ

)
= −ε2

(
∂x(q1(εζ)q′3(εζ)v2)v, ζ

)
− ε2

(
q1(εζ)q′3(εζ)v2∂xv, ζ

)
.

Since p ∈ PCH, as defined in (3.2), one has ε ≤M√µ, and therefore

|A4| ≤ εC(
∥∥U∥∥

L∞
+
∥∥∂xU∥∥L∞)

∣∣U ∣∣2
X0 .

(where we used, once again, Cauchy-Schwarz inequality.)
In order to control A5 one makes use of the identity given in (6.9), applied to V = v, and deduce

easily
|A5| ≤ εC(

∥∥U∥∥
L∞

+
∥∥∂xU∥∥L∞)E0(U)2.

Altogether, one has

(6.19) |
(
S[U ]A1[U ]∂xU,U

)
| ≤ εC(

∥∥U∥∥
L∞

+
∥∥∂xU∥∥L∞)

∣∣U ∣∣2
X0 .

The last term to estimate is
(
U,
[
∂t, S[U ]

]
U
)
.

One has(
U,
[
∂t, S[U ]

]
U
)
≡ (v,

[
∂t,T

]
v) + (ζ,

[
∂t,

Q0(εζ)

f(εζ)

]
ζ)

=
(
v,
(
∂tq1(εζ)

)
v
)

+ µ
(
v, ∂x

(
(∂tq2(εζ))(∂xv)

))
+
(
ζ, ∂t

(Q0(εζ)

f(εζ)

)
ζ
)

= εκ1

(
v, (∂tζ)v

)
− µεκ2

(
∂xv, (∂tζ)∂xv)

)
+ ε
(
ζ,
Q′0(εζ)f(εζ)−Q0(εζ)f ′(εζ)

f(εζ)2
(∂tζ)ζ

)
From Cauchy-Schwarz inequality and since ζ satisfies (H1), one deduces

(6.20)
∣∣ 1

2

(
U,
[
∂t, S[U ]

]
U
) ∣∣ ≤ εC(

∥∥∂tζ∥∥L∞([0,T/ε]×R)
,
∥∥ζ∥∥

L∞([0,T/ε]×R)
)
∣∣U ∣∣2

X0 .

One can now conclude with the proof of the energy estimate. Plugging (6.18), (6.19) and (6.20)
into (6.17), invoking Lemma 6.3 and making use of the assumption of the Lemma on F , yields

1

2

d

dt
E0(U)2 ≤ ε C0E

0(U)2 + f(t)E0(U),

where C0 ≡ C(
∥∥∂tζ∥∥L∞([0,T/ε]×R)

,
∥∥U∥∥

L∞([0,T/ε]×R)
,
∥∥∂xU∥∥L∞([0,T/ε]×R)

, CF ). Consequently

d

dt
E0(U) ≤ C0εE

0(U) + f(t).
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Making use of the usual trick, we compute for any λ ∈ R,

eελt∂t(e
−ελtE0(U)) = −ελE0(U) +

d

dt
E0(U).

Thanks to the above inequality, one can choose λ = C0, so that for all t ∈ [0, Tε ], one deduces

d

dt
(e−ελtE0(U)) ≤ f(t)e−ελt.

Integrating this differential inequality yields

(6.21) ∀t ∈ [0,
T

ε
], E0(U)(t) ≤ eελtE0(U0) +

∫ t

0

eελ(t−t′)f(t′)dt′.

This proves the energy estimate (6.16).

Let us now turn to the a priori energy estimate in “large”Xs norm.

Lemma 6.6 (Xs energy estimate). Set (µ, ε, δ, γ,bo) ∈ PCH, and s ≥ s0 + 1, s0 > 1/2. Let
U = (ζ, v)> and U = (ζ, v)> be such that U,U ∈ L∞([0, T/ε];Xs), ∂tζ ∈ L∞([0, T/ε] × R) and ζ
satisfies (H1),(H2) uniformly on [0, T/ε], and such that system (6.15) holds with a right hand side,
F , with (

ΛsF, S[U ]ΛsU
)
≤ CF ε

∣∣U ∣∣2
Xs

+ f(t)
∣∣U ∣∣

Xs
,

where CF is a constant and f is an integrable function on [0, T/ε].
Then there exists λ = C(

∥∥U∥∥
XsT

+ CF ) such that the following energy estimate holds:

Es(U)(t) ≤ eελtEs(U0) +

∫ t

0

eελ(t−t′)f(t′)dt′.(6.22)

The constant λ is independent of (µ, ε, δ, γ,bo) ∈ PCH, but depends on MCH, h
−1
01 , h

−1
02 .

Remark 6.7. In this Lemma, and in the proof below, the norm
∥∥U∥∥

XsT
is to be understood as

essential sup:

‖U‖XsT ≡ ess sup
t∈[0,T/ε]

|U(t, ·)|Xs + ess sup
t∈[0,T/ε],x∈R

|∂tζ(t, x)|.

Proof. Let us multiply the system (6.15) on the right by ΛsS[U ]ΛsU , and integrate by parts. One
obtains

(6.23)
(
Λs∂tU, S[U ]ΛsU

)
+
(
ΛsA0[U ]∂xU, S[U ]ΛsU

)
+
(
ΛsA1[U ]∂xU, S[U ]ΛsU

)
= ε

(
ΛsF, S[U ]ΛsU

)
,

from which we deduce, using the symmetry property of S[U ], as well as the definition of Es(U):

(6.24)
1

2

d

dt
Es(U) =

1

2

(
ΛsU,

[
∂t, S[U ]

]
ΛsU

)
−
(
S[U ]A0[U ]∂xΛsU,ΛsU

)
−
(
S[U ]A1[U ]∂xΛsU,ΛsU

)
−
([

Λs, A0[U ] +A1[U ]
]
∂xU, S[U ]ΛsU

)
+ ε
(
ΛsF, S[U ]ΛsU

)
.

We now estimate each of the different components of the r.h.s of the above identity.

• Estimate of
(
S[U ]A0[U ]∂xΛsU,ΛsU

)
and

(
S[U ]A1[U ]∂xΛsU,ΛsU

)
. One can use the L2 estimate

derived in (6.18), applied to ΛsU . One deduces

(6.25) |
(
S[U ]A0[U ]∂xΛsU,ΛsU

)
| ≤ εC(

∥∥U∥∥
L∞

+
∥∥∂xU∥∥L∞)

∣∣U ∣∣2
Xs
.
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Now, thanks to Sobolev embedding, one has for s > s0 + 1, s0 > 1/2

C(
∥∥U∥∥

L∞
+
∥∥∂xU∥∥L∞) ≤ C(

∥∥U∥∥
XsT

),

so that

(6.26) |
(
S[U ]A0[U ]∂xΛsU,ΛsU

)
| ≤ εC(

∥∥U∥∥
XsT

)
∣∣U ∣∣2

Xs
.

Similarly, using (6.19), applied to ΛsU and continuous Sobolev embedding, one has

(6.27) |
(
S[U ]A1[U ]∂xΛsU,ΛsU

)
| ≤ εC(

∥∥U∥∥
XsT

)
∣∣U ∣∣2

Xs
.

• Estimate of
([

Λs, A[U ]
]
∂xU, S[U ]

]
ΛsU

)
, where A[U ] = A0[U ] + A1[U ]. Using the definition of

A[·] and S[·] in (6.4),(6.8), one has

([
Λs, A[U ]

]
∂xU, S[U ]ΛsU

)
=
(

[Λs, εf ′(εζ)v]∂xζ + [Λs, f(εζ)]∂xv ,
Q(εζ, v)

f(εζ)
Λsζ

)
+
(

[Λs,T−1
(
Q(εζ, v)∂xζ

)
, TΛsv

)
+ ε

(
[Λs,T−1Q[εζ, v] + ςv]∂xv,TΛsv

)
≡ B1 +B2 +B3.

Here and in the following, we denote T ≡ T[εζ] and Q(εζ, v) = Q0(εζ) + ε2Q1(εζ, v). Let us treat
each of these terms separately.

− Control of B1 =
(

[Λs, εf ′(εζ)v]∂xζ + [Λs, f(εζ)]∂xv ,
Q(εζ,v)

f(εζ) Λsζ
)

.

From Cauchy-Schwarz inequality, one has

|B1| ≤
∣∣∣[Λs, εf ′(εζ)v]∂xζ + [Λs, f(εζ)]∂xv

∣∣∣
L2

∣∣∣Q(εζ, v)

f(ζ)
Λsζ

∣∣∣
L2
.

Since s ≥ s0 + 1, we can use the commutator estimate Lemma A.2 to get∣∣∣[Λs, εf ′(εζ)v]∂xζ + [Λs, f(εζ)]∂xv
∣∣∣
L2

.
(
|∂x(εf ′(εζ))|Hs−1 + |∂x(f(εζ))|Hs−1

)
|∂xU |Hs−1

. εC(
∥∥U∥∥

XsT
)
∣∣U ∣∣

Xs
.

where we used, for the last inequality,

∂x(f(εζ)) = ε(∂xζ)f ′(εζ),

It follows, using that
Q(εζ,v)

f(ζ) ∈ L
∞ since ζ satisfies (H1):

|B1| ≤ εC(
∥∥U∥∥

XsT
)
∣∣U ∣∣2

Xs
.

− Control of B2 =
(

[Λs,T−1(Q(εζ, v)·)]∂xζ , TΛsv
)

.

By symmetry of T, one has

B2 =
(
T[Λs,T−1(Q(εζ, v)·)]∂xζ , Λsv

)
.

Now, one can check that, by definition of the commutator,

T[Λs,T−1(Q(εζ, v)·)]∂xζ = TΛsT−1Q(εζ, v)∂xζ −Q(εζ, v)Λs∂xζ

= TΛsT−1Q(εζ, v)∂xζ − ΛsTT−1(Q(εζ, v)∂xζ) + Λs(Q(εζ, v)∂xζ)−Q(εζ, v)Λs∂xζ

= −
[
Λs,T

]
T−1(Q(εζ, v)∂xζ) +

[
Λs, Q(εζ, v)

]
∂xζ
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We can now use Corollary 5.4, and deduce∣∣∣([Λs,T]T−1(Q(εζ, v)∂xζ) , Λsv
)∣∣∣ ≤ C(ε

∣∣ζ∣∣
Hs

)
∣∣Q(εζ, v)∂xζ

∣∣
Hs−1

∣∣v∣∣
Hs+1
µ
≤ C(

∣∣U ∣∣
Xs

)
∣∣ζ∣∣

Hs

∣∣v∣∣
Hs+1
µ

.

The last inequality is obtained using Lemma A.1.
From Lemma A.2 and the explicit definition of Q = Q0 + ε2Q1 in (6.5), one has∣∣ [Λs, Q(εζ, v)

]
∂xζ

∣∣
L2 = ε

∣∣[Λs, (γ + δ)κ1ζ + εq1(εζ)q′3(εζ)v2]∂xζ
∣∣
L2 ≤ εC(

∣∣U ∣∣
Hs

)
∣∣∂xζ∣∣Hs−1 ,

so that we finally get

|B2| ≤ εC(
∥∥U∥∥

XsT
)
∣∣U ∣∣2

Xs
.

− Control of B3 = ε
([

Λs,T−1Q[εζ, v] + ςv
]
∂xv,TΛsv

)
.

Let us first use the definition of Q[εζ, v] (6.5) to expand:

B3 = ε
(

[Λs,T−1(q1(εζ)q3(εζ)v·)]∂xv,TΛsv
)

+ µεκ
(

[Λs,T−1∂x((∂xv) ·)]∂xv,TΛsv
)

+ ες
(

[Λs, v]∂xv,TΛsv
)

≡ B31 +B32 +B33.

In order to estimate B31 and B32, one proceeds as for the control of B2. One can check

T[Λs,T−1(q1(εζ)q3(εζ)v·)]∂xv = −[Λs,T]T−1(q1(εζ)q3(εζ)v∂xv) + [Λs, q1(εζ)q3(εζ)v]∂xv.

As above, using Cauchy-Schwarz inequality, Corollary 5.4 and Lemma A.2, one obtains

|B31| ≤ εC(
∥∥U∥∥

XsT
)
∣∣U ∣∣2

Xs
.

In the same way,

T[Λs,T−1(∂x((∂xv) ·)]∂xv = −[Λs,T]T−1(∂x((∂xv)(∂xv))] + ∂x
(
[Λs, ∂xv]∂xv

)
.

Again, using Cauchy-Schwarz inequality, Corollary 5.4 and Lemma A.2, one has

µ
∣∣∣([Λs,T]T−1(∂x((∂xv)(∂xv))],Λsv

)∣∣∣ ≤ csµ
∣∣ζ∣∣

Hs

∣∣∂x((∂xv)(∂xv))
∣∣
Hs−1

∣∣v∣∣
Hs+1
µ

≤ cs
∣∣ζ∣∣

Hs

∣∣v∣∣
Hs+1
µ

∣∣v∣∣2
Hs+1
µ

,

and
µ
∣∣∣(∂x([Λs, ∂xv]∂xv

)
,Λsv

)∣∣∣ = µ
∣∣∣([Λs, ∂xv]∂xv,Λ

s∂xv
)∣∣∣ ≤ cs∣∣v∣∣Hs+1

µ

∣∣v∣∣2
Hs+1
µ

.

Thus we proved

|B32| ≤ εC(
∥∥U∥∥

XsT
)
∣∣U ∣∣2

Xs
.

Finally, we turn to B33 = ες
(

[Λs, v]∂xv,TΛsv
)

. From Lemma 5.2, one has

|B33| ≤
∣∣[Λs, v]∂xv

∣∣
H1
µ

∣∣Λsv∣∣
H1
µ
≤
∣∣[Λs, v]∂xv

∣∣
L2

∣∣Λsv∣∣
H1
µ

+
√
µ
∣∣∂x([Λs, v]∂xv

)∣∣
L2

∣∣Λsv∣∣
H1
µ
.

Note the identity
∂x
(
[Λs, v]∂xv

)
=
(
[Λs, ∂xv]∂xv

)
+
(
[Λs, v]∂2

xv
)
,

so that Lemma A.2 yields
√
µ
∣∣∂x([Λs, v]∂xv

)∣∣
L2 ≤

∣∣v∣∣
Hs+1
µ

∣∣v∣∣
Hs+1
µ

.

Altogether, we proved

(6.28) |
([

Λs, A[U ]
]
∂xU, S[U ]

]
ΛsU

)
| ≤ εC(

∥∥U∥∥
XsT

)
∣∣U ∣∣2

Xs
.
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• Estimate of 1
2

(
ΛsU,

[
∂t, S[U ]

]
ΛsU

)
.

One has

(
ΛsU,

[
∂t, S[U ]

]
ΛsU

)
≡ (Λsv,

[
∂t,T

]
Λsv) + (Λsζ,

[
∂t,

Q0(εζ)

f(εζ)

]
Λsζ)

=
(

Λsv,
(
∂tq1(εζ)

)
Λsv

)
+ µ

(
Λsv, ∂x

(
(∂tq2(εζ))(∂xΛsv)

))
+
(

Λsζ, ∂t

(Q0(εζ)

f(εζ)

)
Λsζ

)
= εκ1

(
Λsv, (∂tζ)Λsv

)
− µεκ2

(
Λs∂xv, (∂tζ)Λs∂xv)

)
+ ε
(

Λsζ,
Q′0(εζ)f(εζ)−Q0(εζ)f ′(εζ)

f(εζ)2
(∂tζ)Λsζ

)
From Cauchy-Schwarz inequality and since ζ satisfies (H1), one deduces

∣∣ 1

2

(
ΛsU,

[
∂t, S[U ]

]
ΛsU

) ∣∣ ≤ εC(
∥∥∂tζ∥∥L∞([0,T/ε]×R)

,
∥∥ζ∥∥

L∞([0,T/ε]×R)
)
∣∣U ∣∣2

Xs
,

and continuous Sobolev embedding yields

(6.29)
∣∣ 1

2

(
ΛsU,

[
∂t, S[U ]

]
ΛsU

) ∣∣ ≤ εC(
∥∥U∥∥

XsT
)
∣∣U ∣∣2

Xs
.

Finally, let us recall the assumption of the Lemma:(
ΛsF, S[U ]ΛsU

)
≤ ε CF

∣∣U ∣∣2
Xs

+ f(t)
∣∣U ∣∣

Xs
.(6.30)

We now plug (6.26), (6.27), (6.28), (6.29), and (6.30) into (6.24). Using Lemma 6.3, it follows

1

2

d

dt
Es(U)2 ≤ C0εE

s(U)2 + Es(U)f(t),

with C0 = C(
∥∥U∥∥

XsT
+ CF ), and consequently

d

dt
Es(U) ≤ εC0E

s(U) + f(t) .

Now, for any λ ∈ R, one has

eελt∂t(e
−ελtEs(U)) = −ελEs(U) +

d

dt
Es(U).

Thus with λ = C0, one has for all t ∈ [0, Tε ],

d

dt
(e−ελtEs(U)) ≤ f(t)e−ελt.

Integrating this differential inequality yields

∀t ∈ [0,
T

ε
], Es(U)(t) ≤ eελtEs(U0) + C0

∫ t

0

eελ(t−t′)f(t′)dt′.

This concludes the proof of Lemma 6.6.
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6.3 Well-posedness of the linear system

Let us now state the main result of this section.

Proposition 6.8. Set p = (µ, ε, δ, γ,bo) ∈ PCH (see (3.2)) and s ≥ s0 + 1 with s0 > 1/2, and
let Up = (ζp, vp)> ∈ Xs

T (see Definition 6.2) be such that (H1),(H2) are satisfied for t ∈ [0, T/ε],
uniformly with respect to p ∈ PCH. For any U0 ∈ Xs, there exists a unique solution to (6.7),
Up ∈ C0([0, T/ε];Xs) ∩ C1([0, T/ε];Xs−1) ⊂ Xs

T , and C0, λT = C(
∥∥U∥∥

XsT
, T,MCH, h

−1
01 , h

−1
02 ),

independent of p ∈ PCH, such that one has the energy estimates

∀ 0 ≤ t ≤ T

ε
, Es(Up)(t) ≤ eελT tEs(U0) and Es−1(∂tU

p) ≤ C0e
ελT tEs(U0).

Proof. Existence and uniqueness of a solution to the initial value problem (6.7) follows, by standard
techniques, from the a priori estimate (6.22) in Lemma 6.6:

Es(U)(t) ≤ eελtEs(U0),(6.31)

(since F ≡ 0, and omitting the index p for the sake of simplicity.) We briefly recall the argument
below, and refer to [33,38], for example, for more details.

First, let us notice that using the system of equation (6.7), one can deduce an energy estimate
on the time-derivative of the solution. Indeed, one has∣∣∂tU ∣∣Xs−1 =

∣∣−A0[U ]∂xU −A1[U ]∂xU
∣∣
Xs−1

≤
∣∣εf ′(εζ)v∂xv + f(εζ)v∂xv

∣∣
Hs−1

+
∣∣T[εζ]−1

(
Q0(εζ)∂xζ + εQ[εζ, v]∂xv + ε2Q1(εζ, v)∂xζ

)
+ εςv∂xv

∣∣
Hsµ

≤ C(
∣∣U ∣∣

Xs
)
∣∣U ∣∣

Xs
≤ C0e

ελT tEs(U0),(6.32)

where we use Lemmata A.1 and 5.3.

The completion of the proof is as follows. In order to construct a solution to (6.7), we use a
sequence of Friedrichs mollifiers, defined by Jν ≡ (1 − ν∂2

x)−1/2 (ν > 0), in order to reduce our
system to ordinary differential equation systems on Xs, which are solved uniquely by Cauchy-
Lipschitz theorem. Estimates (6.31),(6.32) hold for each Uν ∈ C0([0, T/ε];Xs), uniformly in ν > 0.
One deduces that a subsequence converges towards U ∈ L2([0, T/ε];Xs), a (weak) solution of the
Cauchy problem (6.7). By regularizing the initial data as well, one can show that the system induces
a smoothing effect in time, and that the solution U ∈ C0([0, T/ε];Xs)∩C1([0, T/ε];Xs−1) is actually
a strong solution. The uniqueness is a straightforward consequence of (6.31) (with U0 ≡ 0) applied
to the difference of two solutions.

7 Proof of existence, stability and convergence

In this section we prove the main results of this paper. We start by proving an a priori estimate
on the difference of two possible solutions. Existence and uniqueness of the solution of the Cauchy
problem for our new Green-Naghdi system, in the Camassa-Holm regime ε = O(

√
µ) and over large

times, is then deduced from the linear analysis of the previous section and this a priori estimate.
The estimate also provides

• the stability of the solution with respect to the initial data, thus the Cauchy problem for our
system is well-posed in the sense of Hadamard, in Sobolev spaces; see subsection 7.2.

• the stability of the solution with respect to a perturbation of the equation, which allows,
together with the well-posedness, to fully justify our system (and any other well-posed, con-
sistent model); see section 8.
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7.1 One more a priori estimate

In this subsection, we control the difference of two solutions of the nonlinear system, with different
initial data and right-hand sides. More precisely, we prove the following result.

Proposition 7.1. Let (µ, ε, δ, γ,bo) ∈ PCH and s ≥ s0 + 1, s0 > 1/2, and assume that there exists
Ui for i ∈ {1, 2}, such that Ui = (ζi, vi)

> ∈ Xs
T , U2 ∈ L∞([0, T/ε);Xs+1), ζ1 satisfies (H1),(H2)

on [0, T/ε], with h01, h02 > 0, and Ui satisfy

∂tU1 + A0[U1]∂xU1 + A1[U1]∂xU1 = F1 ,

∂tU2 + A0[U2]∂xU2 + A1[U2]∂xU2 = F2 ,

with Fi ∈ L1([0, T/ε];Xs). Then there exists constants C0 = C(MCH, h
−1
01 , h

−1
02 , ε

∣∣U1

∣∣
Xs
, ε
∣∣U2

∣∣
Xs

)
and λT = C0 × C(|U2|L∞([0,T/ε);Xs+1)) such that

∀t ∈ [0,
T

ε
], Es(U1 − U2)(t) ≤ eελT tEs(U1 |t=0 − U2 |t=0 ) + C0

∫ t

0

eελT (t−t′)Es(F1 − F2)(t′)dt′.

Proof. When multiplying the equations satisfied by Ui on the left by S[Ui], one obtains

S[U1]∂tU1 + Σ0[U1]∂xU1 + Σ1[U1]∂xU1 = S[U1]F1

S[U2]∂tU2 + Σ0[U2]∂xU2 + Σ1[U2]∂xU1 = S[U2]F2;

with Σ0[U ] = S[U ]A0[U ] and Σ1[U ] = S[U ]A1[U ]. Subtracting the two equations above, and
defining V = U1 − U2 ≡ (ζ, v)> one obtains

S[U1]∂tV + Σ0[U1]∂xV + Σ1[U1]∂xV =

S[U1](F1 − F2)− (Σ0[U1] + Σ1[U1]− Σ0[U2]− Σ1[U2])∂xU2 − (S[U1]− S[U2])(∂tU2 − F2).

We then apply S−1[U1] and deduce the following system satisfied by V :

(7.1)

{
∂tV +A0[U1]∂xV +A1[U1]∂xV = F
V (0) = (U1 − U2) |t=0 ,

where,

(7.2) F ≡ F1 − F2 − S−1[U1]
(
Σ0[U1] + Σ1[U1]− Σ0[U2]− Σ1[U2]

)
∂xU2

− S−1[U1]
(
S[U1]− S[U2]

)
(∂tU2 − F2).

We wish to use the energy estimate of Lemma 6.6 to the linear system (7.1). Thus one needs to
control accordingly the right hand side F .

In order to do so, we take advantage of the following Lemma.

Lemma 7.2. Let (µ, ε, δ, γ,bo) ∈ PCH and s ≥ s0 > 1/2. Let V = (ζv, v)>, W = (ζw, w)> ∈ Xs

and U1 = (ζ1, v1)>, U2 = (ζ2, v2)> ∈ Xs such that there exists h > 0 with

1− εζ1 ≥ h > 0, 1− εζ2 ≥ h > 0,
1

δ
+ εζ1 ≥ h > 0,

1

δ
+ εζ2 ≥ h > 0.

Then one has ∣∣∣ ( Λs
(
S[U1]− S[U2]

)
V , W

) ∣∣∣ ≤ ε C
∣∣U1 − U2

∣∣
Xs

∣∣V ∣∣
Xs

∣∣W ∣∣
X0(7.3) (

Λs
(
S[U1]A[U1]− S[U2]A[U2]

)
V , W

)
≤ ε C

∣∣U1 − U2

∣∣
Xs

∣∣V ∣∣
Xs

∣∣W ∣∣
X0(7.4)

with C = C(MCH, h
−1, ε

∣∣U1

∣∣
Xs
, ε
∣∣U2

∣∣
Xs

), and denoting A[·] ≡ A0[·] +A1[·].
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Proof of Lemma 7.2. Let V = (ζv, v)>, W = (ζw, w)> ∈ X0 and U1 = (ζ1, v1)>, U2 = (ζ2, v2)> ∈
Xs. By definition of S[·] (see (6.8)), one has(

Λs
(
S[U1]−S[U2]

)
V , W

)
=
(

Λs
(Q0(εζ1)

f(εζ1)
− Q0(εζ2)

f(εζ2)

)
ζv , ζw

)
+
(

Λs
(
T[εζ1]−T[εζ2]

)
v , w

)
.

Now, one can check that

T[εζ1]v − T[εζ2]v =
(
q1(εζ1)− q1(εζ2)

)
v − µν∂x

{(
q2(εζ1)− q2(εζ2)

)
∂xv
}

= ε
(
κ1(ζ1 − ζ2)v − µν∂x

{
κ2(ζ1 − ζ2)∂xv

})
,

so that, after one integration by part, and using Cauchy-Schwarz inequality and Lemma A.1, one
has

(7.5)
∣∣∣ ( Λs

(
T[εζ1]− T[εζ2]

)
v , w

) ∣∣∣ ≤ ε C(κ1, νκ2)
∣∣ζ1 − ζ2∣∣Hs∣∣v∣∣Hs+1

µ

∣∣w∣∣
H1
µ
.

In the same way, we remark that one can write Q0(X)
f(X) as a rational function:

Q0(X)

f(X)
= (γ + δ)

( (1 +X)(1−X + γ(δ−1 +X))

(1−X)(δ−1 +X)
≡ P (X)

Q(X)
.

It follows

Q0(εζ1)

f(εζ1)
− Q0(εζ2)

f(εζ2)
=

P (εζ1)Q(εζ2)− P (εζ2)Q(εζ1)

Q(εζ1)Q(εζ2)

=

(
P (εζ1)− P (εζ2)

)
Q(εζ2)− P (εζ2)

(
Q(εζ1)−Q(εζ2)

)
Q(εζ1)Q(εζ2)

.

Since P (X) and Q(X) are polynomials, and using Lemma A.1, it is straightforward to check that
for s ≥ s0 > 1/2, one has∣∣(P (εζ1)− P (εζ2)

)
Q(εζ2)− P (εζ2)

(
Q(εζ1)−Q(εζ2)

)∣∣
Hs
≤ εC(ε

∣∣ζ1∣∣Hs , ε∣∣ζ2∣∣Hs)∣∣ζ1 − ζ2∣∣Hs
Now, applying Cauchy-Schwarz inequality and Lemma A.1 together with Lemma A.3, one deduces
that as long as

h1(εζ1), h2(εζ1), h1(εζ2), h2(εζ2) ≥ h > 0,

one has (again thanks to continuous Sobolev embedding for s ≥ s0 > 1/2)

(7.6)
∣∣∣( Λs

(Q0(εζ1)

f(εζ1)
− Q0(εζ2)

f(εζ2)

)
ζv , ζw

)∣∣∣ ≤ ε C
∣∣ζ1 − ζ2∣∣Hs ∣∣ζv∣∣Hs∣∣ζw∣∣L2 ,

with C = C(MCH, h
−1, ε

∣∣ζ1∣∣Hs , ε∣∣ζ2∣∣Hs). Estimates (7.5) and (7.6) yield (7.3).

Let us now turn to (7.4). One has

(
Λs
(
S[U1]A[U1]− S[U2]A[U2]

)
V , W

)
= ε

(
Λs
(Q0(εζ1)

f(εζ1)
f ′(εζ1)v1 −

Q0(εζ2)

f(εζ2)
f ′(εζ2)v2

)
ζv , ζw

)(7.7)

+
(

Λs
(
Q0(εζ1)−Q0(εζ2)

)
v , ζw

)
+
(

Λs
(
Q0(εζ1)−Q0(εζ2)

)
ζv , w

)
+ ε2

(
Λs
(
Q1(εζ1, v1)−Q1(εζ2, v2)

)
ζv , w

)
+ ε
(

Λs
(
Q[εζ1, v1]−Q[εζ2, v2]

)
v , w

)
+ ες

(
Λs
(
T[εζ1](v1 v)− T[εζ2](v2 v)

)
, w

)
.
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The second and third terms in the right-hand-side of (7.7) may be estimated exactly as in (7.6),
and we do not detail the precise calculations. The first term follows in the same way, using the
decomposition

ε
(Q0(εζ1)

f(εζ1)
f ′(εζ1)v1 −

Q0(εζ2)

f(εζ2)
f ′(εζ2)v2

)
=
(Q0(εζ1)

f(εζ1)
f ′(εζ1)− Q0(εζ2)

f(εζ2)
f ′(εζ2)

)
(εv1)

+ ε(v1 − v2)
Q0(εζ2)

f(εζ2)
f ′(εζ2),

so that one has∣∣∣∣( Λs
(Q0(εζ1)

f(εζ1)
f ′(εζ1)v1 −

Q0(εζ2)

f(εζ2)
f ′(εζ2)v2

)
ζv , ζw

)∣∣∣∣ ≤ C(ε
∣∣v1

∣∣
Hs

)ε
∣∣ζ1 − ζ2∣∣Hs ∣∣ζv∣∣Hs∣∣ζw∣∣L2

+ C(ε
∣∣ζ2∣∣Hs)ε∣∣v1 − v2

∣∣
Hs

∣∣ζv∣∣Hs∣∣ζw∣∣L2 .

The fourth term is similar, as ε2Q1(εζi, vi) = Q1(εζi, εvi) is a bivariate polynomial. Let us detail
the last two estimates. One has

(7.8)
(
Q[εζ1, v1]−Q[εζ2, v2]

)
v = 2

(
q1(εζ1)q3(εζ1)v1− q1(εζ2)q3(εζ2)v2

)
v+µκ∂x

(
v∂x(v1−v2)

)
.

Again, the contribution of the first term in (7.8) is estimated as above (recalling that this term is
multiplied by a ε- factor), and the contribution of the last term in (7.8) is estimated below:∣∣∣εµκ( Λs∂x

(
v∂x(v1 − v2)

)
, w

)∣∣∣ ≤ Cεκ∣∣v1 − v2

∣∣
Hs+1
µ

∣∣v∣∣
Hs

∣∣w∣∣
H1
µ
.

We conclude by estimating the last term in (7.7). One has

T[εζ1](v1 v)− T[εζ2](v2 v) =
(
q1(εζ1)v1 − q1(εζ2)v2

)
v − µν∂x

{(
q2(εζ1)∂x(v1 v)− q2(εζ2)∂x(v2 v)

}
=
(
T[εζ1]− T[εζ2]

)
(v1 v) + ε(v1 − v2)

(
q1(εζ2)v

)
− µν∂x

{
q2(εζ2)∂x

(
(v1 − v2) v

)}
.

One finally uses Cauchy-Schwarz inequality, Lemma A.1 as well as (7.5), and obtain∣∣∣ ε( Λs
(
T[εζ1](v1 v)− T[εζ2](v2 v)

)
, w

) ∣∣∣ ≤ ε2 C(κ1, νκ2)
∣∣ζ1 − ζ2∣∣Hs ∣∣v1 v

∣∣
Hs+1
µ

∣∣w∣∣
H1
µ

+ ε C(κ1ε
∣∣ζ2∣∣Hs)∣∣v1 − v2

∣∣
Hs

∣∣v∣∣
Hs

∣∣w∣∣
L2

+ νε C(κ2ε
∣∣ζ2∣∣Hs)∣∣v1 − v2

∣∣
Hs+1
µ

∣∣v∣∣
Hs+1
µ

∣∣w∣∣
H1
µ
.

Altogether, we obtain (7.4), and the Lemma is proved.

Let us continue the proof of Proposition 7.1, by estimating F defined in (7.2), that we recall:

(7.9) F ≡ F1 − F2 − S−1[U1]
(
Σ0[U1] + Σ1[U1]− Σ0[U2]− Σ1[U2]

)
∂xU2

− S−1[U1]
(
S[U1]− S[U2]

)
(∂tU2 − F2).

More precisely, we want to estimate(
ΛsF , S[U1]ΛsV

)
=
(

ΛsF1 − ΛsF2 , S[U1]ΛsV
)

+
(

Λs(Σ0[U1] + Σ1[U1]− Σ0[U2]− Σ1[U2])∂xU2 , ΛsV
)

−
(

Λs(S[U1]− S[U2])(∂tU2 − F2) , ΛsV
)

+
( [

Λs, S−1[U1]
]
(Σ0[U1] + Σ1[U1]− Σ0[U2]− Σ1[U2])∂xU2 , S[U1]ΛsV

)
−
( [

Λs, S−1[U1]
]
(S[U1]− S[U2])(∂tU2 − F2) , S[U1]ΛsV

)
= (I) + (II) + (III) + (IV ) + (V ).
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Let us estimate each of these terms. The contribution of (I) is immediately bounded using
Lemma 6.4:

(7.10)
∣∣ (I)

∣∣ ≤ C|F1 − F2|Xs |V |Xs ,

with C = C(MCH, h
−1, ε

∣∣U1

∣∣
L∞

).

The contributions of (II) and (III) follow from Lemma 7.2. Indeed, recalling that V ≡ U1 −
U2, (7.3) yields immediately

(7.11)
∣∣ (III)

∣∣ ≤ Cε|∂tU2 − F2|Xs |V |2Xs ,

and (7.4) yields

(7.12)
∣∣ (II)

∣∣ ≤ Cε|∂xU2|Xs |V |2Xs ,

with C = C = C(MCH, h
−1, ε

∣∣U1

∣∣
Xs
, ε
∣∣U2

∣∣
Xs

).

Finally, we control (IV ) and (V ) using Lemma 6.4, (6.14):∣∣( [Λs, S−1[U1]
]
U , S[U1]ΛsV

)∣∣ ≤ C|U |Hs−1 |V |Xs ,

with C = C(MCH, h
−1, ε

∣∣ζ1∣∣Hs).
Thus it remains to estimate |U |Hs−1 , where U ≡ U(i) ≡ (Σ0[U1]+Σ1[U1]−Σ0[U2]−Σ1[U2])∂xU2

or U ≡ U(ii) ≡ (S[U1]− S[U2])(∂tU2 − F2).
We proceed as in Lemma 7.2, helped by the fact that one is allowed lose one derivative in our

estimates. Let W ≡ ∂tU2 − F2 ≡ (ζw, w)>. One has

U(ii) ≡ (S[U1]− S[U2])W ≡


(Q0(εζ1)

f(εζ1)
− Q0(εζ2)

f(εζ2)

)
ζw(

T[εζ1]− T[εζ2]
)
w

 ≡ (ζ(ii)
u(ii)

)
.

Recall that
T[εζ1]w − T[εζ2]w = ε

(
κ1(ζ1 − ζ2)w − µν∂x

{
κ2(ζ1 − ζ2)∂xw

})
,

so that one has straightforwardly

|u(ii)|Hs−1 ≤ εC(κ1, νκ2)|ζ1 − ζ2|Hs |w|Hs+1
µ

.

As for the first component, we apply (7.6) and deduce

|ζ(ii)|2Hs−1 =
(
Λs−1ζ(ii),Λ

s−1ζ(ii)
)
≤ εC|ζ1 − ζ2|Hs−1 |ζw|Hs−1 |ζ(ii)|Hs−1 .

It follows

(7.13)
∣∣ (V )

∣∣ ≤ Cε|∂tU2 − F2|Xs |V |2Xs ,

with C = C(MCH, h
−1, ε

∣∣U1

∣∣
Xs
, ε
∣∣U2

∣∣
Xs

).
Now, recall U(i) ≡ (Σ0[U1] + Σ1[U1]− Σ0[U2]− Σ1[U2])∂xU2. Proceeding as above, one obtains∣∣ U(i)

∣∣
Hs−1 ≤ C|∂xU2|Xs |V |Xs ,

and thus

(7.14)
∣∣ (IV )

∣∣ ≤ Cε|∂xU2|Xs |V |2Xs .

Altogether, we proved (using Lemma 6.3) that F , as defined in (7.2), satisfies

(7.15) |
(

ΛsF, S[U1]ΛsV
)
| ≤ C0(|∂xU2|Xs + |∂tU2 − F2|Xs)εEs(V )2 + C0E

s(V )Es(F1 − F2).

with C0 = C(MCH, h
−1, ε

∣∣U1

∣∣
Xs
, ε
∣∣U2

∣∣
Xs

). Notice also that by the system satisfied by U2, one has
(see detailed calculations in (6.32))

|∂tU2 − F2|Xs ≡ −|(A0[U2] +A1[U2])∂xU2|Xs
≤ C(|U2|Xs+1)

We can now conclude by Lemma 6.6, and the proof is complete.
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7.2 Well-posedness result

In this section, we prove the well-posedness of the Cauchy problem for our new Green-Naghdi
model (4.13) in the sense of Hadamard. Existence and uniqueness of the solution is given by
Theorem 7.3, while the stability with respect to the initial data is provided by Theorem 7.4. These
results correspond to Theorems 3.2 and 3.3, as stated in section 3.

Theorem 7.3 (Existence and uniqueness). Let p = (µ, ε, δ, γ,bo) ∈ PCH and s ≥ s0 + 1, s0 > 1/2,
and assume U0 = (ζ0, v0)> ∈ Xs satisfies (H1),(H2). Then there exists a maximal time Tmax > 0,
uniformly bounded from below with respect to p ∈ PCH, such that the system of equations (4.13)
admits a unique solution U = (ζ, v)> ∈ C0([0, Tmax);Xs) ∩ C1([0, Tmax);Xs−1) with the initial
value (ζ0, v0) |t=0 = (ζ0, v0), and preserving the conditions (H1),(H2) (with different lower bounds)
for any t ∈ [0, Tmax).

Moreover, there exists T−1, C0, λ = C(MCH, h
−1
01 , h

−1
02 ,
∣∣U0

∣∣
Xs

), independent of p ∈ PCH, such
that Tmax ≥ T/ε, and one has the energy estimates

∀ 0 ≤ t ≤ T

ε
,

∣∣U(t, ·)
∣∣
Xs

+
∣∣∂tU(t, ·)

∣∣
Xs−1 ≤ C0e

ελt .

If Tmax <∞, one has
|U(t, ·)|Xs −→∞ as t −→ Tmax,

or one of the two conditions (H1),(H2) ceases to be true as t −→ Tmax.

Proof. We construct a sequence of approximate solution (Un = (ζn, un))n≥0 through the induction
relation

(7.16) U0 = U0, and ∀n ∈ N,
{
∂tU

n+1 +A[Un]∂xU
n+1 = 0;

Un+1
|t=0

= U0.

By Proposition 6.8, there is a unique solution Un+1 ∈ C0([0, Tn+1/ε];X
s) ∩ C1([0, Tn+1/ε];X

s−1)
to (7.16) if Un ∈ C0([0, Tn/ε];X

s) ∩ C1([0, Tn/ε];X
s−1) ⊂ Xs

T , and satisfies (H1),(H2).

Existence and uniform control of the sequence Un. The existence of T ′ > 0 such that the sequence
Un is uniquely defined, controlled in Xs

T ′ , and satisfies (H1),(H2), uniformly with respect to n ∈ N,
is obtained by induction, as follows.

Proposition 6.8 yields

(7.17) Es(Un+1)(t) ≤ eελntEs(U0) and
∣∣∂tUn+1(t, ·)

∣∣
Xs−1 ≤ CnEs(Un+1) ≤ CneελntEs(U0),

with λn, Cn = C(MCH, h
−1
01,n, h

−1
02,n,

∥∥Un∥∥
XsTn

), provided Un ∈ Xs
Tn

satisfies (H1),(H2) with positive

constants h01,n, h02,n on [0, Tn/ε].
Since Un = (ζn, vn)> satisfies (7.16), one has

∂tζ
n+1 = −εf ′(εζn)vn∂xζ

n+1 − f(εζn)∂xv
n+1.

Using continuous Sobolev embedding of Hs−1 into L∞ (s−1 > 1/2), and since ζn satisfies (H1),(H2)
with h01,n, h02,n on [0, Tn/ε], one deduces that

(7.18) |∂tζn+1|L∞ ≤ C(MCH, h
−1
01,n, h

−1
02,n

)∥∥Un∥∥
XsTn

.

Let gn+1 = a+ bεζn+1, where (a, b) ∈ {(1,−1), ( 1
δ , 1), (1, κ1), (1, κ2)}. One has

gn+1 = g |t=0 + bε

∫ t

0

∂tζ
n+1,

so that (7.18) yields

|gn+1 − gn+1 |t=0 |L∞ ≤ εt × bC(MCH, h
−1
01,n, h

−1
02,n

)∥∥Un∥∥
XsTn

.
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Now, one has gn+1 |t=0 ≡ g0 |t=0 ≥ min(h−1
01,0, h

−1
02,0) > 0, independent of n. Thus one can easily

prove (by induction) that it is possible to chose T ′ > 0 such that gn+1 > α/2 holds on [0, T ′/ε],
and the above energy estimates hold uniformly with respect to n, on [0, T ′/ε].

More precisely, one has that ζn satisfies (H1),(H2) with h01/2, h02/2 > 0 and the estimates

(7.19) Es(Un)(t) ≤ eελtEs(U0) and
∣∣∂tUn(t, ·)

∣∣
Xs−1 ≤ C0e

ελtEs(U0),

on [0, T ′/ε], where λ,C0 = C(MCH, h
−1
01 , h

−1
02 ,
∣∣U0

∣∣
Xs

) are uniform with respect to n.

Convergence of Un towards a solution of the nonlinear problem. We now conclude by proving that
the sequence Un converges towards a solution of our nonlinear problem. In order to do so, let us
define V n ≡ Un+1 − Un. Vn satisfies the system

(7.20)

{
∂tV

n +A0[Un]∂xV +A1[Un]∂xV = Fn

V |t=0 ≡ 0,

where,
(7.21)
Fn ≡ −S−1[Un](Σ0[Un] + Σ1[Un]−Σ0[Un−1]−Σ1[Un−1])∂xU

n−S−1[Un](S[Un]−S[Un−1])∂tU
n.

We wish to use the energy estimate of Lemma 6.5 to the linear system (7.1). Thus one needs to
control accordingly the right hand side Fn.

More precisely, we want to estimate(
Fn , S[Un]V n

)
= −

(
(Σ0[Un] + Σ1[Un]− Σ0[Un−1]− Σ1[Un−1])∂xU

n , V n
)

−
(

(S[Un]− S[Un−1])∂tU
n , V n

)
.

Proceding as in Lemma 7.2, one can easily deduce∣∣( Fn , S[Un]V n
)∣∣ ≤ εC∣∣Un − Un−1

∣∣
X0

∣∣V n∣∣
X0(
∣∣∂xUn∣∣X0 +

∣∣∂tUn∣∣X0),

with C = C(MCH, h
−1
01 , h

−1
02 , ε

∣∣Un−1
∣∣
W 1,∞ , ε

∣∣Un∣∣
W 1,∞).

Using the uniform control of Un, ∂tU
n in (7.19), one deduces∣∣( Fn , S[Un]V n

)∣∣ ≤ εC0

∣∣V n−1
∣∣
X0

∣∣V n∣∣
X0 ,

with C0 independent of n. Thus Lemma 6.5 yields

∀t ∈ [0,
T ′

ε
], E0(V n)(t) ≤ εC0

∫ t

0

eελ(t−t′)E0(V n−1)(t′)dt′ ≤ εC
∫ t

0

E0(V n−1)(t′)dt′,

where C is independent of n and t. Hence

∀t ∈ [0,
T ′

ε
], E0(V n)(t) ≤ εntnCn

n!
sup

t′∈[0,T ′/ε]

E0(V 0)(t′),

and the sequence Un ≡ U0 +
∑
V n converges in C0([0, T ′/ε];X0).

Completion of the proof. Since Un converges in C0([0, T ′/ε];X0) and is uniformly bounded in Xs,
standard interpolation arguments imply that the sequence Un converges in C0([0, T ′/ε];Xs′), for any
s′ < s. Similarly, ∂tU

n converges in C0([0, T ′/ε];Xs′−1). Choosing s′−1 > 1/2, one may pass to the
limit all the terms in system (7.16), and one deduces that the limit U is a solution of system (4.13).
Passing to the limit the properties of Un, and in particular the energy estimates (7.19), one deduces
U ∈ L∞([0, T/ε];Xs), ∂tU ∈ L∞([0, T/ε];Xs−1), and U satisfies the energy estimate of the Theorem

(using Lemma 6.3), and preserves the conditions (H1),(H2) for any t ∈ [0, T
′

ε ], independently of
p ∈ PCH.

Finally, as in Proposition 6.8 (with U ≡ U), one has U ∈ C0([0, T ′/ε];Xs)∩C1([0, T ′/ε];Xs−1).
The uniqueness of U follows from the stability result of Proposition 7.1 with F1 ≡ F2 ≡ 0, and
one can therefore define a maximal time of existence of the solution, that we denote Tmax. Tmax is
bounded from below by T ′/ε > 0, and the behavior of the solution as t→ Tmax if Tmax <∞ follows
from standard continuation arguments.
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Theorem 7.4 (Stability). Let (µ, ε, δ, γ,bo) ∈ PCH and s ≥ s0+1 with s0 > 1/2, and assume U0,1 =
(ζ0,1, v0,1)> ∈ Xs and U0,2 = (ζ0,2, v0,2)> ∈ Xs+1 satisfies (H1),(H2). Denote Uj the solution
to (4.13) with Uj |t=0 = U0,j.Then there exists T−1, λ, C0 = C(MCH, h

−1
01 , h

−1
02 ,
∣∣U0,1

∣∣
Xs
, |U0,2|Xs+1)

such that

∀t ∈ [0,
T

ε
],

∣∣(U1 − U2)(t, ·)
∣∣
Xs
≤ C0e

ελt
∣∣U1,0 − U2,0

∣∣
Xs
.

Proof. The existence and uniform control of the solution U1 (resp. U2) in L∞([0, T/ε];Xs) (resp.
L∞([0, T/ε];Xs+1)) is provided by Theorem 7.3. The proposition is then a direct consequence of
the a priori estimate of Proposition 7.1, with F1 = F2 = 0, and Lemma 6.3.

8 Full justification of asymptotic models

We conclude our work by explaining how the results of the previous sections allow to fully justify
our system (and other consistent ones) as asymptotic model for the propagation of internal waves.
A model is said to be fully justified (using the terminology of [27]) if the Cauchy problem for both
the full Euler system and the asymptotic model is well-posed for a given class of initial data, and
over the relevant time scale; and if the solutions with corresponding initial data remain close. As
described in [29, Section 6.3], the full justification of a system (S) follows from:

• (Consistency) One proves that families of solutions to the full Euler system, existing and
controlled over the relevant time scale satisfies the system (S) up to a small residual.

• (Existence) One proves that families of solutions to the full Euler system as above do exist.
This difficult step is ensured by Theorem 5 (or Theorem 6 for large times) in [29], provided
that a stability criterion is satisfied (see details therein).

• (Convergence) One proves that the solutions of the full Euler system, and the ones of the
system (S), with corresponding initial data, remain close over the relevant time scale.

The last step supposes that the Cauchy problem for the model is well-posed, and is a consequence
of the stability of its solutions with respect to perturbations of the equation, so that the first two
steps of the procedure (consistency and existence) yield the conclusion (convergence), and therefore
the full justification of the model. Let us refer to Theorem 7 in [29] for the application of such
procedure for the full justification of the so-called shallow-water/shallow-water asymptotic model,
which corresponds to our system, when withdrawing O(µ) terms.

The consistency of our model has been given in Theorem 3.1. The well-posedness of the Cauchy
problem is stated in Theorem 3.2, and the stability results is a consequence of Proposition 7.1.
Thus we have all the ingredients for the full justification of our model, stated in Theorem 3.4, and
that we recall below.

Theorem 8.1 (Convergence). Let p ≡ (µ, ε, δ, γ,bo) ∈ PCH (see (3.2)) and s ≥ s0 + 1 with
s0 > 1/2, and let U0 ≡ (ζ0, ψ0)> ∈ Hs+N (R)2, N sufficiently large, satisfy the hypotheses of
Theorem 5 in [29] as well as (H1),(H2). Then there exists C, T > 0, independent of p, such that

• There exists a unique solution U ≡ (ζ, ψ)> to the full Euler system (2.4), defined on [0, T ]
and with initial data (ζ0, ψ0)> (provided by Theorem 5 in [29]);

• There exists a unique solution Ua ≡ (ζa, va)> to our new model (3.3), defined on [0, T ] and
with initial data (ζ0, v0)> (provided by Theorem 3.2);

• With v̄ ≡ v̄[ζ, ψ], defined as in (3.4), one has for any t ∈ [0, T ],∣∣(ζ, v̄)− (ζa, va)
∣∣
L∞([0,t];Xs)

≤ C µ2 t.

Proof. As stated above, the existence of U is provided by Theorem 5 in [29], and the existence of Ua
is given by our Theorem 3.2 (we choose T as the minimum of the existence time of both solutions; it
is bounded from below, independently of p ∈ PCH). If N is large enough, then U ≡ (ζ, ψ)> satisfies
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the assumptions of our consistency result, Theorem 3.1, and therefore (ζ, v̄)> solves (3.3) up to a
residual R = (r1, r2)>, with

∣∣R∣∣
L∞([0,T ];Hs)

≤ C(MCH, h
−1
01 ,
∣∣U0
∣∣
Hs+N

)(µ2 +µε2). The result follows

from the stability Proposition 7.1, with F1 = (r1,T[εζ]−1r2)> and F2 = 0.

In addition to allowing the complete, full justification of our model, the results of the previous
sections allow to rigorously justify any lower order, well-posed and consistent model. We quickly
show how to apply the procedure to such models, with the example of the so-called Constantin-
Lannes decoupled approximation, introduced by one of the authors in [19], and that we recall
below.

Definition 8.2 (Constantin-Lannes decoupled approximation model). Let ζ0, v0 be given scalar
functions, and set parameters (µ, ε, δ, γ,bo) ∈ PCH, as defined in (3.2), and (λ, θ) ∈ R2. The
Constantin-Lannes decoupled approximation is then

UCL ≡
(
v+(t, x− t) + v−(t, x+ t), (γ + δ)

(
v+(t, x− t)− v−(t, x+ t)

))
,

where v± |t=0 = 1
2 (ζ0 ± v0

γ+δ ) |t=0 and v± = (1± µλ∂2
x)−1vλ± with vλ± satisfying

(8.1) ∂tv
λ
± ± εα1v

λ
±∂xv

λ
± ± ε2α2(vλ±)2∂xv

λ
± ± ε3αθ,λ3 (vλ±)3∂xv±

± µνθ,λx ∂3
xv
λ
± − µνθ,λt ∂2

x∂tv
λ
± ± µε∂x

(
κθ,λ1 vλ±∂

2
xv
λ
± + κθ2(∂xv

λ
±)2
)

= 0,

with parameters defined as follows:

(8.2)

α1 =
3

2

δ2 − γ
γ + δ

, α2 = −3
γδ(δ + 1)2

(γ + δ)2
, α3 = −5

δ2(δ + 1)2γ(1− γ)

(γ + δ)3
,

νθ,λt ≡ θ

6

1 + γδ

δ(δ + γ)
+ λ, νθ,λx ≡ 1− θ

6

1 + γδ

δ(δ + γ)
− 1

2 bo
− λ,

κθ,λ1 ≡ (1 + γδ)(δ2 − γ)

3δ(γ + δ)2
(1 +

1− θ
4

)− (1− γ)

6(γ + δ)
+ λ

3

2

δ2 − γ
γ + δ

,

κθ2 ≡
(1 + γδ)(δ2 − γ)

3δ(γ + δ)2
(1 +

1− θ
4

)− (1− γ)

12(γ + δ)
.

Remark 8.3. The scalar equation (8.1) has been introduced as a model for gravity surface wave
(one layer of homogeneous fluid) in [24], and its rigorous justification has been developed in [12].
The justification is to be understood in the following sense: if one chooses carefully the initial data
(so as to focus on only one direction of propagation), then the Constantin-Lannes equation provides
a good (unidirectional) approximation of the flow. The reason why a bi-directional, decoupled ap-
proximation as above has not been developed in the water-wave setting is that lower order scalar
equations offer the same accuracy. The specificity of internal waves lies in the existence of a critical
ratio (δ2 = γ) for which quadratic nonlinearities vanish, thus calling for higher order decoupled
models, especially in the Camassa-Holm regime.

The Cauchy problem for the equation (8.1) has been proved to be locally well-posed in [12], and
a property of persistence of spatial decay at infinity has been proved in [19]. We state these results
below.

Proposition 8.4 (Well-posedness and persistence). Let u0 ∈ Hs+1, with s ≥ s0 + 1, s0 > 1/2. Let

the parameters in (8.2) be such that µ, ε, νθ,λt > 0, and define m > 0 such that

(8.3) νθ,λt + (νθ,λt )−1 + µ+ ε+ |α1|+ |α2|+ |α3|+ |νθ,λx |+ |κ
θ,λ
1 |+ |κθ2| ≤ m.

Then there exists T = C
(
m,
∣∣u0
∣∣
Hs+1
µ

)
and a unique u ∈ C0([0, T/ε);Hs+1

µ )∩C1([0, T/ε);Hs
µ) such

that u satisfies (8.1) and initial data u |t=0 = u0.
Moreover, u satisfies the following energy estimate for 0 ≤ t ≤ T/ε:∥∥∂tu∥∥L∞([0,T/ε);Hsµ)

+
∥∥u∥∥

L∞([0,T/ε);Hs+1
µ )

≤ C(m,
∣∣u0
∣∣
Hs+1
µ

).
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Assume additionally that for fixed n, k ∈ N, the function xju0 ∈ Hs+s̄, with 0 ≤ j ≤ n and
s̄ = k + 1 + 2(n − j). Then there exists T = C

(
m,n, k,

∑n
j=0

∣∣xju0
∣∣
H
s+k+1+2(n−j)
µ

)
such that for

0 ≤ t ≤ T ×min(1/ε, 1/µ), one has

∥∥xn∂k∂tu∥∥L∞([0,t);Hsµ)
+
∥∥xn∂ku∥∥L∞([0,t);Hs+1

µ )
≤ C

(
m,n, k,

n∑
j=0

∣∣xju0
∣∣
H
s+k+1+2(n−j)
µ

)
.

The decoupled model of Definition 8.2 is consistent with our new model (3.3), in the following
way.

Proposition 8.5 (Consistency). Let ζ0, v0 ∈ Hs+6, with s ≥ s0 +1, s0 > 1/2. For (µ, ε, δ, γ,bo) =
p ∈ PCH, we denote Up

CL the unique solution of the CL approximation, as defined in Defini-
tion 8.2. For some given M?

s+6 > 0, sufficiently large, assume that there exists T ? > 0 and a
family (Up

CL)p∈PCH
such that

T ? = max
{
T ≥ 0 such that

∥∥Up
CL

∥∥
L∞([0,T );Hs+6)

+
∥∥∂tUp

CL

∥∥
L∞([0,T );Hs+5)

≤ M?
s+6

}
.

Then there exists U c = U c[Up
CL] such that U ≡ Up

CL+U c satisfies the Green-Naghdi system (3.3)
up to a remainder R bounded for t ∈ [0, T ?] by∥∥R∥∥

L∞([0,t];Hs)
≤ C max(ε2(δ2 − γ)2, µ2) (1 +

√
t),

with C = C(M?
s+6,MCH, |λ|, |θ|), and the corrector term U c is estimated as∥∥U c∥∥

L∞([0,t];Hs)
+
∥∥∂tU c∥∥L∞([0,t];Hs)

≤ C max(ε(δ2 − γ), µ) min(t,
√
t).

Additionally, if there exists α > 1/2, M ]
s+6, T

] > 0 such that

6∑
k=0

∥∥(1 + x2)α∂kxU
p
CL

∥∥
L∞([0,T );Hs)

+

5∑
k=0

∥∥(1 + x2)α∂kx∂tU
p
CL

∥∥
L∞([0,T );Hs)

≤ M ]
s+6 ,

then the remainder term, R is uniformly bounded for t ∈ [0, T ]]:∥∥R∥∥
L∞([0,t];Hs)

≤ C max(ε2(δ2 − γ)2, µ2),

with C = C(M ]
s+6,MCH, |λ|, |θ|) and U c is uniformly estimated as∥∥U c∥∥

L∞([0,t];Hs)
+
∥∥∂tU c∥∥L∞([0,t];Hs)

≤ C max(ε(δ2 − γ), µ) min(t, 1).

Proof. A similar statement concerning the consistency of the Constantin-Lannes decoupled approx-
imation towards the original Green-Naghdi system (4.6) (in the shallow water regime (3.1) and
neglecting the surface tension contributions) has been given in [19, Proposition 1.12]. Taking into
account the surface tension contribution only requires a slight modification in one of the parameters
(one has νθ,λx = 1−θ

6
1+γδ
δ(δ+γ) − λ in [19]), as shows tedious but straightforward calculations. Finally,

using the boundedness of Up
CL assumed in the statement, and following the proof of Theorem 3.1,

one easily checks that the corresponding result holds with regards to our system (3.3), in the more
stringent Camassa-Holm regime (3.2).

Remark 8.6. Let us note that Proposition 8.4 ensures that the above result is not empty, but on
the contrary is valid for long times (provided that νθ,λt > 0 and the initial data sufficiently smooth).
More precisely, if the initial data (ζ0, v0) = U0 ∈ Hs+7, s ≥ s0 + 1, s0 > 1/2, then for any p ∈ PCH

and λ, θ such that νθ,λt > ν0 > 0, then there exists C1, C2 independent of p, such that for M?
s+6 ≥ C1,

the decoupled approximate solution satisfies the uniform bound of Proposition 8.5, with T ? ≥ C2/ε.
Moreover, upon additional condition on the decaying in space of the initial data, there exists

C1, C2 such that for any M ]
s+6 ≥ C1, one has T ] ≥ C2/max(ε, µ).
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The above properties, thanks to the well-posedness and stability of our Green-Naghdi type
system proved in this work, are sufficient to fully justify the solutions of the Constantin-Lannes
decoupled approximation as approximate solutions of our model, and therefore as approximate
solutions of the full Euler system (2.4).

Proposition 8.7 (Convergence of the decoupled model). Let p ≡ (µ, ε, δ, γ,bo) ∈ PCH, and set
λ, θ ∈ R such that (8.3) holds. Let U0 ≡ (ζ0, ψ0)> ∈ Hs+N , N sufficiently large, satisfy the
hypotheses of Theorem 5 in [29] as well as (H1),(H2). Denote by Up ≡ (ζ, ψ)> the solution of
the full Euler system (2.4) and by Up

CL the decoupled approximation defined in Definition 8.2, with
initial data U0. Then there exists C, T > 0, independent of p ∈ PCH, such that for any 0 ≤ t ≤ T ,
one has ∥∥Up

CL − U
p∥∥
L∞([0,t];Hs)

≤ C
(
ε0 min(t, t1/2)(1 + ε0t)

)
,

with ε0 ≡ max(ε(δ2 − γ), µ), and U
p ≡ (ζ, v̄[ζ, ψ])> where v̄[ζ, ψ] is defined as in (3.4).

Moreover, if the initial data is sufficiently localized in space, as in the second part of Proposi-
tion 8.5, then one has∥∥Up

CL − U
p∥∥
L∞([0,t];Hs)

≤ C
(
ε0 min(t, 1)(1 + ε0t)

)
.

Proof. By Proposition 8.5, we know that for any Up
CL, there exists U c = U c[Up

CL] such that
U ≡ Up

CL + U c satisfies the Green-Naghdi system (3.3), up to a small remainder R. Control-
ling the difference

∥∥U −UGN
p
∥∥, where UGN

p is the solution of the Green-Naghdi system (3.3) with
corresponding initial data, is done exactly as in Theorem 3.4, and we omit the proof. The result
is then a straightforward consequence of the triangular inequality, as

∥∥Up − UGN
p
∥∥ is estimated in

Theorem 3.4, and
∥∥U c[Up

CL]
∥∥ in Proposition 8.5.

A Product and commutator estimates in Sobolev spaces.

Let us recall here some product as well as commutator estimates in Sobolev spaces, used throughout
the present paper.

Lemma A.1 (product estimates).
Let s ≥ 0, one has ∀f, g ∈ Hs(R)

⋂
L∞(R), one has∣∣ f g ∣∣

Hs
.
∣∣ f ∣∣

L∞

∣∣ g ∣∣
Hs

+
∣∣ f ∣∣

Hs

∣∣ g ∣∣
L∞

.

If s ≥ s0 > 1/2, one deduces thanks to continuous embedding of Sobolev spaces,∣∣ f g ∣∣
Hs

.
∣∣ f ∣∣

Hs

∣∣ g ∣∣
Hs
.

More generally, for s ≥ 0 and s0 > 1/2, one has ∀f ∈ Hs(R)
⋂
Hs0(R), g ∈ Hs(R),∣∣ f g ∣∣

Hs
.
∣∣ f ∣∣

Hs0

∣∣ g ∣∣
Hs

+
〈∣∣ f ∣∣

Hs

∣∣ g ∣∣
Hs0

〉
s>s0

,

Let F ∈ C∞(R) such that F (0) = 0. If g ∈ Hs(R)
⋂
L∞(R) with s ≥ 0, one has F (g) ∈ Hs(R)

and ∣∣ F (g)
∣∣
Hs
≤ C(

∣∣g∣∣
L∞

,
∣∣F ∣∣

C∞
)
∣∣ g ∣∣

Hs
.

Finally, we will use ∣∣ f g ∣∣
Hs+1
µ
≤ C

∣∣ f ∣∣
Hs+1
µ

∣∣ g∣∣
Hs+1
µ

.

The first estimates are classical (see [1, 25,28]), and the last one follows straightforwardly from∣∣ f g ∣∣2
Hs+1
µ

.
∣∣ f g ∣∣2

Hs
+ µ

∣∣ ∂x(f g)
∣∣2
Hs

.
∣∣ f ∣∣2

Hs

∣∣ g ∣∣2
Hs

+ µ
∣∣ g ∂xf ∣∣2Hs + µ

∣∣ f ∂xg ∣∣2Hs .
We know recall commutator estimate, mainly due to the Kato-Ponce [25], and recently improved

by Lannes [28] (see Theorems 3 and 6):



November 27, 2013 Vincent Duchêne, Samer Israwi, Raafat Talhouk 39

Lemma A.2 (commutator estimates).
For any s ≥ 0, and ∂xf, g ∈ L∞(R)

⋂
Hs−1(R), one has∣∣ [Λs, f ]g

∣∣
L2 .

∣∣ ∂xf ∣∣Hs−1

∣∣ g ∣∣
L∞

+
∣∣ ∂xf ∣∣L∞ ∣∣ g ∣∣Hs−1 .

Thanks to continuous embedding of Sobolev spaces, one has for s ≥ s0 + 1, s0 >
1
2 ,∣∣ [Λs, f ]g

∣∣
L2 .

∣∣ ∂xf ∣∣Hs−1

∣∣ g ∣∣
Hs−1 .

More generally, for any s ≥ 0 and s0 > 1/2, ∂xf, g ∈ Hs0(R)
⋂
Hs−1(R), one has∣∣ [Λs, f ]g

∣∣
L2 .

∣∣ ∂xf ∣∣Hs0 ∣∣ g ∣∣Hs−1 +
〈∣∣ ∂xf ∣∣Hs−1

∣∣ g ∣∣
Hs0

〉
s>s0+1

.

We conclude this section with two corollaries of Lemma A.1, used in particular in the proof of
Theorem 4.4.

Lemma A.3. Let f, ζ ∈ L∞
⋂
H s̄, with s̄ ≥ 0 and h1 = 1− εζ, with h1(εζ) ≥ h > 0 for any x ∈ R.

Then one has ∣∣ 1

h1
f
∣∣
H s̄
≤ C(h−1, ε

∣∣ζ∣∣
L∞

)
(∣∣f ∣∣

H s̄
+ ε
∣∣ζ∣∣

H s̄

∣∣f ∣∣
L∞

)
.

Proof. We make use of the identity

1

h1
f =

1

1− εζ
f = f +

εζ

1− εζ
f.

Moser’s tame estimates (Lemma A.1) yields

∣∣ 1

h1
f
∣∣
H s̄
≤
∣∣f ∣∣

H s̄
+
∣∣ εζ

1− εζ
f
∣∣
H s̄

.
∣∣f ∣∣

H s̄
+
∣∣ εζ

1− εζ
∣∣
L∞

∣∣f ∣∣
H s̄

+
∣∣ εζ

1− εζ
∣∣
H s̄

∣∣f ∣∣
L∞

.

The only non-trivial term to estimate is now
∣∣ εζ

1−εζ
∣∣
H s̄

. Using that h1 = 1−εζ ≥ h > 0, we introduce

a function F ∈ C∞(R) such that

F (X) =

{
X

1−X if 1−X ≥ h > 0,

0 if 1−X ≤ 0.

The function F satisfies the hypotheses of Lemma A.1, and one has

∣∣ εζ

1− εζ
∣∣
H s̄

=
∣∣F (εζ)

∣∣
H s̄
≤ C(

∣∣εζ∣∣
L∞

, h−1)
∣∣εζ∣∣

H s̄
.

The Lemma is now straightforward.

Let us apply this Lemma to the rigorous estimate of specific expansions.

Lemma A.4. Let f, ζ ∈ L∞([0, T );H s̄), with s̄ ≥ s0 > 1/2, such that h1 ≡ 1− εζ ≥ h > 0 for any
(t, x) ∈ [0, T )× R. Then one has

∣∣ 1

h1
f − f

∣∣
H s̄
≤ ε C(h−1, ε

∣∣ζ∣∣
H s̄

)
∣∣ζ∣∣

H s̄

∣∣f ∣∣
H s̄

and ∣∣ 1

h1
f − (1 + εζ)f

∣∣
H s̄
≤ ε2 C(h−1, ε

∣∣ζ∣∣
H s̄

)
∣∣ζ∣∣2

H s̄

∣∣f ∣∣
H s̄
.
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Proof. Let us first remark that the formal expansions are straightforward:

1

1−X
= 1 +O(X) and

1

1−X
= 1 +X +O(X2) for |X| < 1.

The rigorous estimate is obtained thanks to Lemma A.3, applied to the identities

1

h1
f − f =

εζ

h1
f , and

1

h1
f − (1 + εζ)f =

ε2ζ2

h1
f.

Indeed, one has for s ≥ s0 > 1/2,

∣∣ 1

h1
f − f

∣∣
H s̄

=
∣∣ εζ
h1
f
∣∣
H s̄

.
∣∣εζ∣∣

H s̄

∣∣ 1

h1
f
∣∣
H s̄
≤ εC(h−1, ε

∣∣ζ∣∣
H s̄

)
∣∣f ∣∣

H s̄
,

where we used Lemmata A.1 and A.3. The second estimate, concerning
∣∣ 1
h1
f − (1 + εζ)f

∣∣
H s̄

, is
obtained identically.
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[17] V. Duchêne. Asymptotic shallow water models for internal waves in a two-fluid system with a
free surface. SIAM J. Math. Anal., 42(5):2229–2260, 2010.
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[20] V. Duchêne, S. Israwi and R. Talhouk. Shallow water asymptotic models for the propagation
of internal waves. Discrete Contin. Dyn. Syst. Ser. S, 7(2):239–269, 2014.

[21] A. E. Green and P. M. Naghdi. A derivation of equations for wave propagation in water of
variable depth. J. Fluid Mech., 78(02):237–246, 1976.

[22] P. Guyenne, D. Lannes, and J.-C. Saut. Well-posedness of the Cauchy problem for models of
large amplitude internal waves. Nonlinearity, 23(2):237–275, 2010.

[23] K. R. Helfrich and W. K. Melville. Long nonlinear internal waves. In Annual review of fluid
mechanics, 38:395–425, 2006.

[24] R. S. Johnson. Camassa-Holm, Korteweg-de Vries and related models for water waves. J.
Fluid Mech., 455:63–82, 2002.

[25] T. Kato and G. Ponce. Commutator estimates and the Euler and Navier-Stokes equations.
Comm. Pure Appl. Math., 41(7):891–907, 1988.

[26] C.G. Koop and G. Butler. An investigation of internal solitary waves in a two-fluid system. J.
Fluid Mech., 112:225—251, 1981.

[27] D. Lannes. Water waves: mathematical analysis and asymptotics, volume 188 of Mathematical
Surveys and Monographs, AMS, 2013.

[28] D. Lannes. Sharp estimates for pseudo-differential operators with symbols of limited smooth-
ness and commutators. J. Funct. Anal., 232(2):495–539, 2006.

[29] D. Lannes. A stability criterion for two-fluid interfaces and applications. Arch. Ration. Mech.
Anal., 208(2):481–567, 2013.

[30] R. Liska, L. Margolin and B. Wendroff. Nonhydrostatic two-layer models of incompressible
flow Comput. Math. Appl., 29:25—37, 1995.

[31] Z. L. Mal′tseva. Unsteady long waves in a two-layer fluid. Dinamika Sploshn. Sredy, (93-
94):96–110, 1989.

[32] Y. Matsuno. A unified theory of nonlinear wave propagation in two-layer fluid systems. J.
Phys. Soc. Japan, 62(6):1902–1916, 1993.

[33] G. Métivier. Para-differential calculus and applications to the Cauchy problem for nonlinear
systems, volume 5 of Centro di Ricerca Matematica Ennio De Giorgi (CRM) Series. Edizioni
della Normale, Pisa, 2008.

[34] M. Miyata. An internal solitary wave of large amplitude. La mer, 23(2):43–48, 1985.



42 A new fully justified model in the Camassa-Holm regime November 27, 2013

[35] L. A. Ostrovsky and J. Grue. Evolution equations for strongly nonlinear internal waves. Phys.
Fluids, 15(10):2934–2948, 2003.

[36] J.-C. Saut and L. Xu. The Cauchy problem on large time for surface waves Boussinesq systems.
J. Math. Pures Appl. (9), 97(6):635–662, 2012.
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