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ABSTRACT

The recent development of multi-channel sensors has motivated interest in devising new methods for the
coherent processing of multivariate data. An extensive work has already been dedicated to multivariate
data processing ranging from blind source separation (BSS) to multi/hyper-spectral data restoration.
Previous work1 has emphasized on the fundamental role played by sparsity and morphological diversity
to enhance multichannel signal processing.
GMCA is a recent algorithm for multichannel data analysis which was used successfully in a variety of
applications including multichannel sparse decomposition, blind source separation (BSS), color image
restoration and inpainting. Inspired by GMCA, a recently introduced algorithm coined HypGMCA
is described for BSS applications in hyperspectral data processing. It assumes the collected data is a
linear instantaneous mixture of components exhibiting sparse spectral signatures as well as sparse spatial
morphologies, each in specified dictionaries of spectral and spatial waveforms. We report on numerical
experiments with synthetic data and application to real observations which demonstrate the validity of
the proposed method.
v

Introduction

Generalized Morphological Component Analysis (GMCA) is a recent algorithm for multivariate data
analysis introduced in a previous paper.2 It was applied successfully in a variety of multichannel data
processing applications, including BSS, color image restoration and inpainting.2, 3 Given a data matrix
X ∈ R

m,t and a number of components n, GMCA is used to decompose X into a sum of n rank one
contributions Xk with different statistical and spatio-spectral properties. Each matrix Xk is the product
of a spectral signature ak ∈ R

m,1 and a spatial density profile sk ∈ R
1,t. A major assumption of GMCA

is that each sk has a sparse representation νk in a given dictionary of spatial waveforms Φ ∈ R
t,t′ , which

for simplicity we take to be the same for all k. In matrix form, we write :

X =
∑

k Xk + N =
∑

k aksk + N (1)

= AS + N =
∑

k akνkΦ + N (2)

where the kth line of S ∈ R
n,t is sk and the kth column of A ∈ R

m,n is ak. The m× t random matrix N

is included to account for modeling errors, or instrumental noise, assumed to be Gaussian, uncorrelated
inter- and intra- channels, with variance σ2. In the case of multichannel image data, the image from
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the pth channel is formally represented here as the pth line of X, xp. The importance of sparsity in

blind source separation was recently recognized.4 The sparse coefficient vector νk ∈ R
1,t′ has most of

its entries close to zero while only a few have significant amplitudes. In addition to the latter marginal
property of the sparse representations νk, GMCA requires morphological diversity to achieve its decom-
position which is a property of their joint distribution. Let νk be the kth line of matrix ν ∈ R

n,t′ . The
latter property expresses the assumption that there is little probability that a column of ν will have
more than one significant entry. This is true for instance of sparse independent random processes. It
is also true of a random vector generated such that at most one entry is significant, in which case the
entries are not independent variables.

Building on GMCA, the purpose of this contribution is to describe a new algorithm for so-called
hyperspectral data processing. In what follows, regardless of other definitions or models living in other
scientific communities, the term hyperspectral will be used in reference to multichannel data with the
following two specific properties : first that the number of channels is large and second that these achieve
a regular if not uniform sampling of some additional and meaningful physical index (e.g. wavelength,
space, time) which we refer to as the spectral dimension. Typically, hyperspectral imaging systems
collect data in a large number (up to several hundreds) of contiguous intervals of the electromagnetic
spectrum. For such data, in a BSS setting for instance, one may be urged by prior knowledge to set
additional constraints on the estimated parameters A and S such as equality or positivity constraints
but also regularity constraints not only in the spatial dimension but in the spectral dimension as well.
For instance, it may be known a priori that the mixed underlying objects of interest Xk = aksk exhibit
both sparse spectral signatures and sparse spatial morphologies in known dictionaries of spectral and
spatial waveforms. The proposed algorithm, referred to as hypGMCA was devised to account for the
additional a priori sparsity constraint on the mixing matrix i.e. to enforce that columns ak have a
sparse representation in Ψ, a given dictionary of spectral waveforms.

In the next section, we discuss and build a modified MAP objective function which formalizes the
desired spatio-spectral sparsity constraint. The resulting hypGMCA algorithm is given in section 1.1.
In section 1.2, numerical experiments with synthetic and real hyperspectral data illustrate the efficiency
of the proposed algorithm.

In Section 2, we extend HypGMCA to handle a wider range of mixture models beyond the celebrated
instantaneous mixture model. Based upon HypGMCA we introduce a new algortihm that can solve BSS
problems account for missing data or multichannel convolution models. Promising preliminary results
are shown in Section 2.3.

1. BLIND SOURCE SEPARATION FOR HYPERSPECTRAL DATA

With the above assumptions, equation (1) is rewritten as follows :

X =
∑

k

Xk + N =
∑

k

ΨγkνkΦ + N (3)

where Xk = aksk are rank one matrices sparse in Ω = Ψ ⊗ Φ ∗ such that ak has a sparse representa-
tion γk in Ψ while sk has a sparse representation νk in Φ. Denote αk = γkνk the rank one matrix of
coefficients representing Xk in Ω .

∗where ⊗ stands for the tensor product of Ψ and Φ



Initially, the objective of the GMCA algorithm is as follows :

min
A,S

∑

k

λk‖νk‖1 +
1

2σ2

∥

∥

∥

∥

∥

X−
∑

k

aksk

∥

∥

∥

∥

∥

2

2

with sk = νkΦ (4)

which is derived as a MAP estimation of the model parameters A and S where the ℓ1 penalty terms
imposing sparsity come from Laplacian priors on the sparse representation νk of sk in Φ. Interestingly,
the treatment of A and S in the above is asymmetric. This is a common feature of the great majority
of BSS methods which invoke a uniform improper prior distribution for the spectral parameters A.
Truly, A and S often have different roles in the model and very different sizes. However, dealing with
so-called hyperspectral data, assuming that the spectral signatures ak also have sparse representations
γk in spectral dictionary Ψ, this asymmetry is no longer so obvious. Also, a well known property of the
linear mixture model (1) is its scale and permutation invariance : without additional prior information,
the indexing of the Xk in the decomposition of data X is not meaningful and ak, sk can trade a scale
factor in full impunity. A consequence is that unless a priori specified otherwise, information on the
separate scales of ak and sk is lost due to the multiplicative mixing, and only a joint scale parameter
for ak, sk can be estimated. This loss of information needs to be translated into a practical prior on
Xk = aksk = ΨγkνkΦ. Unfortunately, deriving the distribution of the product of two independent
random variables γk and νk based on their marginal densities can be cumbersome. We propose instead
that the following pπ is a good and practical candidate joint sparse prior for γk and νk after the loss of
information induced by multiplication :

pπ(γk, νk) ∝ exp(−λk‖γ
kνk‖1) ∝ exp(−λk

∑

i,j

|γk
i νj

k|) (5)

where γk
i is the ith entry in γk and νj

k is the jth entry in νk. Note that the proposed distribution has
the nice property, for subsequent derivations, that the conditional distributions of γk given νk and of νk

given γk are both Laplacian distributions which are commonly and conveniently used to model sparse
distributions. Finally, inserting the latter prior distribution in a Bayesian MAP estimator leads to the
following minimization problem :

min
{γk,νk}

1

2σ2

∥

∥

∥

∥

∥

X−
∑

k

ΨγkνkΦ

∥

∥

∥

∥

∥

2

2

+
∑

k

λk‖γ
kνk‖1 (6)

Let us first note that the above can be expressed slightly differently as follows :

min{αk}
1

2σ2 ‖X −
∑

k Xk‖
2
2 +

∑

k λk‖αk‖1

with Xk = ΨαkΦ and ∀k, rank(Xk) ≤ 1

(7)

which uncovers a nice interpretation of our problem as that of approximating the data X by a sum of
rank one matrices Xk which are sparse in the specified dictionary of rank one matrices. This is the
usual ℓ1 minimization problem5 but with the additional constraint that the Xk are all rank one at
most. The latter constraint is enforced here mechanically through a proper parametric representation of
Xk = aksk or αk = γkνk. A similar problem was previously investigated6 with a very different approach.

There have been previous reports of a symmetric treatment of A and S for BSS7–9 however in the
noiseless case. We also note that very recently, the objective function (6) was proposed10 for dictionary
learning oriented applications. However, the algorithm derived by M.Elad10 is very different from the
method proposed here which benefits from all the good properties of GMCA, notably its speed and
robustness which come along the iterative thresholding with a decreasing threshold.



Figure 1. Image data set used in the experiments. Each image contains 128 by 128 pixels. They all have zero
mean and are normalized to have unit variance.

1.1. GMCA Algorithm for hyperspectral data

For the sake of simplicity, consider now that the multichannel dictionary Ω = Ψ⊗Φ reduces to a single
orthonormal basis, tensor product of orthonormal bases Ψ and Φ of respectively spectral and spatial
waveforms. In this case, the minimization problem (6) is best formulated in coefficient space as follows :

min
{γk,νk}

1

2σ2
‖α − γν‖2

2 +

n
∑

k=1

λk‖γ
kνk‖1 (8)

where the columns of γ are γk, the rows of ν are νk and α = ΨTXΦT is the coefficient matrix of data X

in Ω. Thus, we are seeking a decomposition of matrix α into a sum of sparse rank one matrices αk = γkνk.

Unfortunately, there is no obvious closed form solution to problem (8), which is also clearly non-
convex. Similarly to the GMCA algorithm, we propose instead a numerical approach by means of a
block-coordinate relaxation iterative algorithm, alternately minimizing with respect to γ and ν. Indeed,
thanks to the chosen prior, for fixed γ (resp. ν), the marginal minimization problem over ν (resp.
γ) is convex and is readily solved using a variety of methods. Inspired by the iterative thresholding
methods,11–13 akin to Projected Landweber algorithms, we obtain the following system of update
rules :

{

ν(+) = ∆η

(

ν(−) + Rν

(

α − γν(−)
))

γ(+) = ∆ζ

(

γ(−) +
(

α − γ(−)ν
)

Rγ

) (9)

where Rν and Rγ are appropriate relaxation matrices for the iterations to be non-expansive. Assume

left invertibility of A and right invertibility of S. Then, taking Rν =
(

γT γ
)−1

γT and Rγ = νT
(

ννT
)−1

,
the above are rewritten as follows :

ν(+) = ∆η

(

(

γT γ
)−1

γT α
)

(10)

γ(+) = ∆ζ

(

ανT
(

ννT
)−1

)

(11)

where vector η has length n and entries η[k] = λk‖γ
k‖1/‖γ

k‖2
2, while ζ has length m and entries

ζ[k] = λk‖νk‖1/‖νk‖
2
2. The multichannel soft-thresholding operator ∆η acts on each row k of ν with

threshold η[k] and ∆ζ acts on each column k of γ with threshold ζ[k]. Equations (10) and (11) are easily
interpreted as thresholded alternate least squares solutions.

Finally, in the spirit of the fast GMCA algorithm,2 it is proposed that a solution to problem (8) can be
approached efficiently using the following symmetric iterative thresholding scheme with a progressively
decreasing threshold, which we refer to as hypGMCA :



1. Set the number of iterations Imax and initial thresholds λ
(0)
k

2. Transform the data X into α

3. While λ
(h)
k are higher than a given lower bound λmin,

– Update ν assuming γ is fixed using equation (10).
– Update γ assuming ν is fixed using equation (11) .

– Decrease the thresholds λ
(h)
k .

5. Transform back γ and ν to estimate A and S.

With the threshold successively decaying towards zero along iterations, the current sparse approximations
for γ and ν are progressively refined by including finer structures spatially and spectrally, alternatingly.
This salient to fine estimation process is the core of hypGMCA. This optimization technique has been
used with success in GMCA2; decreasing the value of the threshold is likely to refrain the algorithm
from falling into spurious local minima which makes it similar to simulated annealing techniques. The
final threshold should vanish in the noiseless case or it may be set to a multiple of the noise standard
deviation as in common detection or denoising methods. Soft thresholding results from the use of an ℓ1

sparsity measure, which comes as an approximation to the ℓ0 pseudo-norm. Applying a hard threshold
instead towards the end of the iterative process, may lead to better results as was noted experimentally

in a previous paper.3,? When non-unitary or redundant transforms are used, the above is no longer
strictly valid. Nevertheless, simple shrinkage still gives satisfactory results in practice.14 In the end,
implementing the proposed update rules requires only a slight modification of the GMCA algorithm given
in a previous paper.3 Where a simple least squares linear regression was used in the GMCA update for
ak, the proposed update rule applies a thresholding operator to the least squares solution thus enforcing
sparsity on the estimated spectral signatures as a priori desired. The case where the dictionary Ω is the
union of several orthonormal bases Ωk may also be handled with a BCR approach. Update rules are
easily derived, leading however to a much slower algorithm requiring the different forward and reverse
transformations to be applied at each iteration.

1.2. Numerical experiments

In this section, we compare the performance of hypGMCA and GMCA in toy BSS experiments with
1D and 2D data. First we consider synthetic 2D data consisting of m = 128 mixtures of n = 5 image
sources, generated according to the linear mixing model 1. The sources were drawn at random from a set
of structured 128×128 images shown on Figure 1. These images provide us with 2D spatially structured
processes which are sparse enough in the curvelet domain.15 The spectral signatures, i.e. the columns
of the mixing matrix, were generated as sparse processes in some orthogonal wavelet domain given a
priori. The wavelet coefficients of the spectra were sampled from a Laplacian probability density with
scale parameter µ = 1. Finally, white Gaussian noise with variance σ2 was added to the pixels of the
synthetic mixture data in the different channels. Figure 2 displays four typical noisy simulated mixture
data with SNR = 20dB.
The graph on figure 4 traces the evolution of CA = ‖In − PÃ†A‖1, which we use to assess the recovery
of the mixing matrix A, as a function of the SNR which was varied from 0 to 40dB. Matrix P serves
to reduce the scale and permutation indeterminacy inherent in model (3) and Ã† is the pseudo-inverse
of the estimated matrix of spectral signatures. In simulation, the true source and spectral matrices
are known so that P can be computed easily. Criterion CA is then strictly positive, and null only if
matrix A is correctly estimated up to scale and permutation. Finally, as we expected since it benefits
from the added a priori spectral sparsity constraint it enforces, the proposed hypGMCA is clearly more
robust to noise. A visual inspection of figure 3 allows a further qualitative assessment of the improved
source recovery provided by correctly accounting for a priori spatial as well as spectral sparsity. The
images on the right hand side were obtained with GMCA while the images on the left were obtained
with hypGMCA. In all cases, both methods were run in the curvelet domain15 with the same number
of iterations.



Figure 2. Four 128 × 128 mixtures out of the 128 channels. The SNR is equal to 20dB.

1.3. Decomposition of Mars hyperspectral data

In this section, we illustrate the good behavior of hypGMCA for real-world hyperspectral data analysis.
We applied the proposed algorithm to hyperspectral data from the 128 channels of spectrometer OMEGA
on Mars Express (www.esa.int/marsexpress), at wavelengths ranging from 0.93µm to 2.73 µm with a
spectral resolution of 13 nm. The data are calibrated so that each pixel measures a reflectance. Example
maps collected in four different channels are shown on figure 5. Model 3 is clearly too simple to describe
this hyperspectral reflectance data set. Non-linear instrumental and atmospheric effects are most likely
to contribute to the true generative process. In any case, following a similar decision made in a previous
study,16 we use hypGMCA to fit the linear mixing model 3 to the data. Obviously, this is making
the physically plausible assumption that the contributing components we seek to separate have sparse
spectral signatures as well as sparse spatial concentration maps in a priori specified orthogonal wavelet
bases. We also assume that the sources are positive. In the hypGMCA algorithm, this constraint
is enforced by projection of the estimated source maps S on the cone generated by the vectors with
positive entries. The number of iterations is Imax = 250.
Amongst the n = 10 estimated sources only two are strongly correlated with the H2O and CO2 ice
reference spectra. Figure 6 displays their spectral signatures compared to the reference spectra, and
Figure 7 shows the corresponding spatial density (positive) maps. Owing to the non-linearity of the
physical mixture process, the close fit between the estimated and reference CO2 spectra is satisfactory.
The H2O ice spectrum is remarkably similar to the reference spectra for wavelengths higher than 1µm.
As also noted in a previous study,16 the CO2 ice appears located in large regions around the pole of
planet Mars, while H2O ice seems to lie be concentrated in some tight interstices of the Mars surface.
In the end, despite the simple linear mixture model we used, hypGMCA is able to extract components
with spectral signatures that closely match reference spectra.

2. BEYOND THE LINEAR MIXTURE MODEL

2.1. More realistic mixture models

In the previous sections, we have assumed that the linear mixture model

X = AS + N



Figure 3. Left column : Estimated sources using the original GMCA algorithm. Right column : Estimated
sources using the new hypGMCA.

holds. Nevertheless, when dealing with real-world data, this model is seldom valid. A more appropriate
model of the data should take into account some observational process H; beyond the standard linear
mixture model X = AS, the data are rather modelled as a function of A and S

X = H (A,S) + N (12)

Let us define X0 = AS. X0 are the data that would be measured if the model were an instantaneous
linear mixture. The need for more sophisticated models is motivated by challenges in multi/hyperspectral
analysis problems that include :
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Figure 4. Evolution of the mixing matrix criterion CA as a function of the SNR in dB. Solid line :
recovery results with GMCA. • : recovery results with hypGMCA.

Figure 5. From left to right : Mars Express observations at wavelengths = 1.38 - 1.75 - 1.94 and 2.41 µm.

• Missing data : sensors are seldom perfect and some missing pixels may provide no information.
In that case, the data X can be modeled as a linear mixture model in which pixels are missing

X = M⊙
(

X0
)

+ N (13)

= M⊙ (AS) + N (14)

where M is a m × t binary mask such that

M[i, j] =

{

1 if the pixel (i, j) is observed
0 otherwise

The operation ⊙ stands for the entrywise product of matrices of size m × t.

• Multichannel convolution : multi/hyperspectral data are often mesured by different sensors in
an instrument having a fixed aperture. As stated by standard laws in optics, a given observation
has a point spread function (PSF) that depends on the wavelength at which it is observed. Then,
each datum {xi}i=1,··· ,m has a specific PSF {Hi}i=1,··· ,m :

∀i ∈ {1, · · · , m}; xi = Hi ⋆ x0
i + ni (15)

This so-called multichannel convolution model would be very helpful when dealing with real-world
data as provided by space telescopes such as the ESA space mission Planck†.

†See http://planck.esa.int



Figure 6. Left picture : Reference (solid line) and estimated (•) spectra for H2O ice. Right picture :

Reference (solid line) and estimated (•) spectra for CO2 ice.

Figure 7. Estimated spatial concentration maps of H2O ice (left) and CO2 ice (right).

In the above multichannel models (the list is obviously not exhaustive), the observation mapping H does
not preserve the structure of the instantaneous linear mixture model X0 = AS. Retrieving the mixing
matrix A and the sources S can’t be performed by simply applying GMCA or HypGMCA. When solving
inverse problems, the direct problem must be properly taken into account to estimate the parameters
A, S. We proposed17 a first approach to extend GMCA to solve BSS problems involving a multichannel
convolution. Based upon GMCA, this preliminary approach was designed to account for the sparsity of
the sources. In this paper, we introduce a new algorithm that enables to account for realistic physical
prior such as

• spatio-spectral sparsity constraints such as in HypGMCA

• positivity of the mixing matrix and the sources



In the remaining of this section we will put more emphasis on the multichannel convolutive model‡. To
illustrate how strenuous this problem is, let’s consider the following synthetic example:

• The data X are composed of m = 32 channels each of which being an image of size 256 × 256.

• The number of sources is n = 3 and their entries are positive as displayed in Figure 10.

• The mixing matrix of size 32 × 3 and its entries are positive as shown in Figure 11.

• the noise is white and Gaussian with standard deviation 2 (which corresponds, in the experiment,
to a SNR in each channel ranging from 17 to 42 dB).

• the convolution kernels {Hi}i=1,··· ,m are Gaussian .

The complexity of this non-linear§ blind source is twofold : i) the noise makes it hard to deconvolve
each channel before applying HypGMCA and ii) the recoverability of each source will highly depend
on its weight (mixing matrix) in each observation. To give an illustration of this point, let us consider
Figure 8.

Figure 8. Top picture : Spectrum related to source 1 superimposed with the condition number of each
convolution kernel {Hi}i=1,··· ,m. Bottom picture : Spectra {ai}1,··· ,m.

‡Which is different form the convolutive mixing model which is popular in the audio separation community.
§Here non-linearity means that the linear observation mapping H does not preserve the linearity of the mixture

model



The top picture of Figure 8 shows the spectrum of source 1 (normalized for a better readibility) and
the condition number of each convolution kernel {Hi}i=1,··· ,m which gives a measure of the deterioration
caused by convolution on each channel. Clearly, the recoverability of a given source will be higher when
i) the sources have different contributions in each channel (which is reasonable if one assumes that
the sources have different spectral morphologies) and ii) if the channels in which the source has high
contributions are only slightly deteriorated by the convolution (i.e. low condition number). We can
remark in the picture at the bottom of Figure 8 that the sources have morphologically different spectra.
Furthermore, source 1 is mainly active in channel 22; the condition number H22 is equal to 34.4 which
tends to make the recovery of source 1 difficult. For the sake of concision, a thorough analysis of the
multichannel convolutive model will be presented in a forthcoming paper.
We would like to point out that, to our knowledge, there exists no other methods solving joint blind
source separation and deconvolution.

2.2. Extending HypGMCA

In the next, we will make the following assumptions

• the sources S are sparse in Φ and have non negative entries.

• the mixing matrix A has sparse columns in Ψ and non negative entries.

Following the framework of HypGMCA , the mixing matrix A and the sources S are estimated according
to a MAP estimation as follows

min
{ai≥0,si≥0}i=1,··· ,n

∑

i

λi‖Ψ
T aisiΦ

T ‖ℓ1 +
1

2
‖X−H (A,S) ‖2

F (16)

where u ≥ 0 means that the entries of the vector u are non negative. Based upon HypGMCA , the
parameters A and S are estimated iteratively and alternately via a Sparse coding / Dictionary learning
scheme18 such that

• Sparse coding : the sources are estimated assuming that the mixing matrix A is known

min
{si≥0}i=1,··· ,n

∑

i

λi‖Ψ
T aisiΦ

T ‖ℓ1 +
1

2
‖X−H (A,S) ‖2

F (17)

Assuming that H is bilinear (which is the case for the aforementioned examples), the model is
linear and the problem above is convex. Let us define ΠA the diagonal matrix whose diagonal is
the vector [λ1‖Ψ

T a1‖ℓ1 , · · · , λm‖ΨT am‖ℓ1 ]. Then the problem in Equation (17) can be recast as
follows

min
S≥0

‖ΠASΦT ‖1 +
1

2
‖X−H (A,S) ‖2

F (18)

where ‖ . ‖1 is the matrix (1, 1)-norm. It can be solved efficiently using state-of-the-art fast algo-
rithm for ℓ1 minimizations.19

• Dictionary learning : the mixing matrix is estimated while fixing the sources S

min
{ai≥0}i=1,··· ,n

∑

i

λi‖Ψ
T aisiΦ

T ‖ℓ1 +
1

2
‖X−H (A,S) ‖2

F (19)

Let ΠS stand for the diagonal matrix whose diagonal is the vector [λ1‖s1Φ
T ‖ℓ1, · · · , λm‖smΦT ‖ℓ1 ].

Then, updating A is equivalently made as follows

min
A≥0

‖ΨTAΠS‖1 +
1

2
‖X−H (A,S) ‖2

F (20)



Similarly to the problem in Equation (17), this problem can be solved efficiently using recent fast
algorithm such as NESTA.19 Let us remark the symmetry of the proposed algorithms : A and S

play similar roles in the hyperspectral data case.

The two-step algorithm is then organized as follows

1. Set the initials values S(0) and A(0), the number of iterations Imax and initial thresholds λ
(0)
k

2. While λ
(h)
k are higher than a given lower bound λmin,

– Update the sources S by solving
minS≥0

P

i
λi‖Ψ

T aisiΦ
T ‖ℓ1 + 1

2
‖X −H (A,S) ‖2

F

– Update the sources A by solving.
minA≥0

P

i
λi‖Ψ

T aisiΦ
T ‖ℓ1 + 1

2
‖X −H (A,S) ‖2

F

– Decrease the thresholds λ
(h)
k .

Similarly to GMCA and HypGMCA , the decreasing thresholds λk plays an important role : the
parameters A and S are first estimated from the most significant features of each sources; it has been
shown2 that this process makes GMCA and HypGMCA more robust to spurious local minima. Moreover,
in the spirit of continuation techniques,12 solving ℓ1-regularized least-square problems is computationally
faster when the multiplier of the ℓ1 term is high. Starting from high values of λk tends to accelerate the
convergence of the algorithm as each iteration (h) provides good starting points S(h) and A(h) for the

next step where λ
(h)
k > λ

(h+1)
k .

2.3. Preliminary recovery results

In this section, we present some preliminary numerical results obtained with synthetic data. The problem
set up has been described in Section 2.1; the data are composed of m = 32 channels; each observation is
an image of size 256×256 (see Figure 9); choosing Φ as an undecimated wavelet frame is appropriate. The
spectra are chosen to be spiky positive signals (bottom picture of Figure 8); assuming that the columns
of the matrix A are sparse in a 1D orthogonal wavelet basis Ψ is then reasonable. The convolution ker-
nels Hi are Gaussian-shaped with random width. White Gaussian noise with standard deviation σ = 2
is added (which corresponds, in the experiment, to a SNR in each channel that ranges from 17 to 42 dB).

Figure 9. Left picture : Observation x7. Right picture : Observation x22.

We used NESTA19 to solve each subproblem (namely sparse coding and dictionary learning). As-
suming that the norm of each source is approximately the same, the thresholds {λi}i=1,··· ,n are chosen to
be the same and λmin = 3σ . In more realistic applications, these parameters should be estimated; this
point will be studied in a future work. The number of iterations needed for convergence is Imax = 50.
The original and estimated sources are shown in Figure 10.



Figure 10. Left pictures : Original sources. Right pictures : Estimated sources.

Figure 11. Original and estimated spectra.

Having in mind that solving such a problem is strenuous, the results are visually reasonable. The
spectra, shown in Figure 11, are also well estimated. For this particular experiment, the mixing matrix
criterion is equal to 0.0283. In the hyperspectral case, recovering each data cube {aisi}i=1,··· ,n with
accuracy is important. Then measuring the recovery SNR of each of these cubes is a good measure of
the quality of the separation. In that case, the mean value of the recovery SNR of these cubes is equal
to 21.9 dB which confirms the good visual impression.
We previously20 shedded on the GMCA’s ability to solve multichannel restoration problems in an adap-
tive manner. Alongside the source separation problem, HypGMCA provides also a good way to restore



multichannel data as shown in Figure 12.B. This preliminary experiment provides encouraging results
showing that the HGMCA framework may be an appropriate tool to analyze a potentially wide range
of multi/hyperspectral data.

Figure 12. First column : Ideal observations x0
31 (no convolution). Column in the middle : Noisy convolved

observation x31. Left column : Restored observation x̃31.

3. CONCLUSION

We described a new algorithm, hypGMCA, for blind source separation in the case where it is known a pri-
ori that the spatial and spectral features in the data have sparse representations in known dictionaries of
template waveforms. The proposed method relies on an iterative thresholding procedure with a progres-
sively decreasing threshold. As expected, and confirmed in numerical experiments, taking into account
the additional prior knowledge of spectral sparsity enhances source separation. It also provides greater
robustness to noise contamination as well as stability when the dimensionality of the problem increases.
We also noted that accounting for the prior knowledge that the sources are positive requires only a slight
modification of the algorithm. Finally, the proposed method was applied to real hyperspectral data
from Omega on Mars Express. The close match between the learned spectra and the reference spectra
is remarkable. Numerical experiments focus on a comparison between GMCA and hypGMCA. GMCA
is compared to state-of-the-art BSS algorithms.2, 3 We also present the first extension of HypGMCA
to solve BSS problems involving observation mappings such as missing data or multichannel convolution
models. Preliminary numerical results are given which show promising performances. Future work will
focus on improving these results and to apply the new method to real-world data.

Acknowledgments : The authors are grateful to Olivier Forni for providing the hyperspectral
data from Omega on Mars Express.
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