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ABSTRACT where one is urged bgrior knowledge to set additional

constraints on the estimated parameterg.(equality

Ponstraints, positivity). Building on GMCA, the pur-
ose of this contribution is to describe an algorithm for

Recently morphological diversity and sparsity have
emerged as new and effective sources of diversity fo
Blind Source Separation. Based on these new concepts, : o
novel methods such as Generalized Morphological Com§0'c"’Illed hyp_erspec_traldatg processing. The moqmed
ponent Analysis have been put forward. The latter take .MCA algorithm this entails is then given in section 3.

advantage of the very sparse representation of structu-'na”y’ ”“m‘?”ca' experiments in section 4 demon_s-
{ate the efficiency of the proposed method to deal with

red data in large overcomplete dictionaries, to separaH tral data i " bl
sources based on their morphology. Building on GMCA, yperspectraldata in component separation problems.

the purpose of this contribution is to describe a new al-

gorithm for hyperspectraldata processing. Large-scale 2 MODEL AND OBJECTIVE FUNCTION
hyperspectral data refers to collected data that exhibit

sparse spectral signatures in addition to sparse spatial Hyperspectral imaging systems collect data in a large

morphologies, in specified dictionaries of spectral and,;mper (up to several hundreds) of contiguous spectral
spatial waveforms. Numerical experiments are reporteghiarvals so that it makes sense to consieley. the re-

which demonstrate the validity of the proposed extenyjarity of some measurement from one channel to its

sion for solving source separation problems involvingneighhors. Typically, the spectral signatures of the struc
hyperspectral data. tures in the data may be knovarpriori to have a sparse
Index Terms— source separation, hyperspectralrepresentation in some specified possibly redundant dic-
data, sparsity, remote sensing, wavelets, astronomy. tionary of templatespectralwaveforms.
In what follows, regardless of other definitions or models
1. INTRODUCTION living in other scientific communities, the terhyper-
spectralwill be used generically to identify multichan-
Generalized Morphological Component Analysis €l data with the above two specific properties that
(GMCA) is a recent algorithm for multichannel data the number of c_hannels is I_arge and that the_z_se achieve a
analysis and blind source separation introduced in [2]f€gularif not uniform sampling of some additional and
which relies on sparsity and morphological diversity toMeaningful physical indexe(g.wavelength, space, time)
disentangle the source signals from observed mixturedVhich we refer to as thepectraldimension. We further
Indeed, sparsity has been recognized recently as an é¥SSume that hyperspectral data is structargdiori ac-
fective source of diversity for BSS [6]. The successes of0rding to the simple yet common instantaneous linear
GMCA in many generic multichannel data processingMixture model given as follows :
applications, including BSS, color image restoration "
and inpainting [3, 2], strongly motivated research to ex- X=AS+N= Z X, + N 1)

tend its applicability. In particular, there are instances Pt



where the measuremen® € R™! are a mixture of by means of a block-coordinate relaxation iterative al-
contributions from various objectX,; with different gorithm, alternately minimizing with respect tp and
statistical andspatio-spectralproperties. These induce v. Indeed, thanks to the chosen prior, for fixedresp.
inter- andintra- sensor structures or signal coherence inv), the marginal minimization problem over (resp.v)
space and across sensors which we classically assumeisoconvex. Inspired by [4], we obtain the following sys-
be well represented by rank one matrices, product of &em of update rules, akin to a Projected Landweber algo-
spectral signature® < R™! and a spatial density profile rithm [1] and after some algebra (see [3]) :

s; € RYt. Here,s;, anda” are respectively thé™ row

and column ofS € R™* and A € R™". Them x ¢ v = A, ((7 ¥ AT ) (5)
random matrixIN is included to account for Gaussian L
instrumental noise assumed, for simplicity, to be uncor- AP = A (Ow (™) ) (6)

related inter- and intra- channel with variance
Initially, the GMCA algorithm aims at solving the follo-
wing non-convex problem : where vector has lengt and entries)[k] = \e|[v* |1 /[[7* 12,
while ¢ has lengthn and entrieg[k] = A [|vill1/||ve 13-
The multichannel soft-thresholding operathy, acts on
X - Za Sk (2)  each rowk of v with thresholdy[k] and A acts on
each columnk of ~ with threshold([k]. Equations (5)
wheres; — 1;,®. We describe next the proposed mo- and (6) rules are easily interpreted as thresholded alter-
dified GMCA algorithm for hyperspectral data proces-
sing whenitis knowra priori that the underlying objects
of interestX;, = a*s; exhibit sparse spectral signatures

nate least squares solutions. Finally, in the spirit of the
and sparse spatial morphologies in known dictionaries

GMCA algorithm [3, 2], it is proposed that a solution
to problem (4) can be approached efficiently using the
spectral and spatial waveforms. Accounting for this prio
is made by assuming that each compor¥pt= a”sy,

frollowmg symmetric iterative thresholding scheme with
has a sparse representation in a givertichannekignal

mmZ)\k 17315 +

ra progressively decreasing threshold, which we refer to
as hypGMCA :

waveform dictionnarf @, ¥}. The derived optimization | 1. Set the number of iterations I,,.. and initial
problem for hyperspectral data is then the following : thresholds /\,(CO)
2. Transfozfrg the data X into «
3. While A, are higher than a given lower bound
man/\kH%l/kHl —|— X — Za Sk (3) N k
— Update v assuming ~ is fixed using equa-
tion (5).
hereX;, = a*s, = ® v, . D :
Whereds = a” sk ViV — Update ~ assuming v is fixed using equa-
tion (6).
DATA 5. Transform back v and v to estimate A and S.
For the sake of simplicity, consider now that tie Thesalient to fingorocess is also the core of hypGMCA.

and® reduce to respectively spectral and spatial waveWith the threshold successively decreasing towards zero
forms orthogonal bases. In this case, the minimizatioralong iterations, the current sparse approximations for
problem (3) is best formulated in coefficient space as folandv are progressively refined by including finer struc-
lows : tures spatially and spectrally, alternatingly. The final
threshold should vanish in theoiselesscase or it may
be set to a multiple of the noise standard deviation as
) in common detection or denoising methods. When non-
unitary or redundant transforms are used, the above is no
longer strictly valid. Nevertheless, simple shrinkagh sti
where the columns of arey*, the rows ofv arer;, ~ gives satisfactory results in practice.
anda = ¥TX®T is the coefficient matrix of datX
in . Thus, we are seeking a decomposition of madrix 4. NUMERICAL EXPERIMENTS
into a sum of sparse rank one matriegs= v*v;.
Unfortunately, there is no obvious closed form solutions  In this section, we report on two toy BSS experi-
to problem (4). We propose instead a numerical approaciments in 1D and 2D to compare GMCA to its extension

0 soslla— v 3 Ml

{ k=1



hypGMCA. First we consider synthetic 2D data consis-
ting of m = 128 mixtures ofn = 5 image sources.
The sources are a set 28 x 128 structured images.
The spectra were generated as sparse process in some |
orthogonal wavelet domain givempriori. The wavelet
coefficients of the spectra were sampled from a Lapla-
cian probability density with scale paramefer= 1.
Finally, white Gaussian noise with varianeé was ad-
ded to the pixels of the synthetic mixture data in the dif-
ferent channels. Figure 1 displays four typical noisy si-
mulated mixture data with SNR= 20dB. A visual ins-

Fig. 1. Four128 x 128 mixtures out of the 128 channels. Fig. 2. Left column : Estimated sources using the origi-
The SNR is equal ta0dB. nal GMCA algorithmRight column : Estimated sources
using the new hypGMCA.

pection of figure 2 allows a first qualitative assessment
of the improved source recovery provided by correctly
accounting fora priori spatial as well as spectral spar- thetic source processBsyenerated fromi.d. Laplacian
sity. The top images were obtained with GMCA while probability density distributions with scale parameter
the bottom images, were obtained with hypGMCA. Inall ;, = 1. The Dirac basis was taken as the dictionary of
cases, both methods were run in the curvelet domain [Spatial waveformgp. The entries of the mixing matrix
with the same number of iterations. The graph on figure 3ire also drawn froni.i.d. Laplacian distributions with
gives more quantitative results. It traces the evolution okcale parameter = 1 and the Dirac basis was also
the mixing matrix criteriorCy = ||I, — PATA||; asa taken as dictionary of spectral wavefornis The data
function of the SNR which was varied fromto 40dB,  are not contaminated by noise. The number of samples
whereP serves to reduce the scale and permutation inis ¢ = 2048 and the number of channelsiis = 128.
determinacy of the mixing model amif is the pseudo- Figure 4 depicts the comparisons between GMCA and
inverse of the estimated mixing matrix. In simulation, theits extension to the hyperspectral setting. Each point of
true source and spectral matrices are known and so theiiis figure has been computed as the mean aver
P can be computed easily. The mixing matrix criterion istrials. The panel on the left of Figure 4 features the
then strictly positive unless the mixing matrix is corrgctl evolution of the recovery SNR when the number of
estimated up to scale and permutation. Finally, as we exsources varies fror to 64. At lower n, the spatiospec-
pected since it benefits from the addegriori spectral  tral sparsity constraint only slightly enhances the source
sparsity constraint it enforces, the proposed hypGMCAseparation. However, as becomes larger thaihs the
is clearly more robust to noise. spectral sparsity constraint clearly enhances the reco-
very results. For instance, when = 64, the GMCA

In a second experiment, GMCA and hypGMCA algorithm with the spectral sparsity constraint outper-
are compared as the numberof sources is increased forms the original GMCA by up td2dB. The right of
while the numbers of samplés@and channels: are kept ~ Figure 4 shows the behavior of both algorithms in terms
constant. Increasing the number of sources makes thaf C;, = Y7, ||a’s; — a@'&||, />0, [lasi],- As ex-
separation task more difficult. We consider now 1D syn-pected, accounting for spectral sparsity yields sparser



GMCA with spectral constraints

o

N

bl
T

°
&
T
.

Mixing Matrix Criterion
o

°
2
;

waveforms. The proposed method relies on an iterative
thresholding procedure with a progressively decreasing
threshold. This alone gives the method true robustness
to noise. As expected, taking into account the additional
prior knowledge of spectral sparsity leads to enhanced
performance. It was illustrated by numerical experi-
ments that spatiospectral sparsity yields robustness to
noise contamination, as well as statbility when the di-
mensionality of the problem increases. Current work is
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on enforcing other prior constraints such as positivity

and on applications of the proposed method.

Fig. 3. Evolution of the mixing matrix criterion Ca as
a function of the SNR in dB. Solid line :recovery results

with GMCA. e : recovery results with hypGMCA. 1]

results. Furthermore, as the number of sources increases,
the deviation between the aforementioned methods bﬁfz]
comes wider.
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Fig. 4. Abscissa :Number of sourceQrdinate - left :
Recovery SNRRight : sparsity-based criteriofy, . So-
lid line : recovery results with GMCAe : recovery re-
sults with hypGMCA.

5. CONCLUSION

We described a new algorithm, hypGMCA, for blind
source separation in the case where it is knawgriori
that the spatial and spectral features in the data have
sparse representations in known dictionaries of template
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