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ABSTRACT

Recently morphological diversity and sparsity have
emerged as new and effective sources of diversity for
Blind Source Separation. Based on these new concepts,
novel methods such as Generalized Morphological Com-
ponent Analysis have been put forward. The latter takes
advantage of the very sparse representation of structu-
red data in large overcomplete dictionaries, to separate
sources based on their morphology. Building on GMCA,
the purpose of this contribution is to describe a new al-
gorithm for hyperspectraldata processing. Large-scale
hyperspectral data refers to collected data that exhibit
sparse spectral signatures in addition to sparse spatial
morphologies, in specified dictionaries of spectral and
spatial waveforms. Numerical experiments are reported
which demonstrate the validity of the proposed exten-
sion for solving source separation problems involving
hyperspectral data.

Index Terms— source separation, hyperspectral
data, sparsity, remote sensing, wavelets, astronomy.

1. INTRODUCTION

Generalized Morphological Component Analysis
(GMCA) is a recent algorithm for multichannel data
analysis and blind source separation introduced in [2],
which relies on sparsity and morphological diversity to
disentangle the source signals from observed mixtures.
Indeed, sparsity has been recognized recently as an ef-
fective source of diversity for BSS [6]. The successes of
GMCA in many generic multichannel data processing
applications, including BSS, color image restoration
and inpainting [3, 2], strongly motivated research to ex-
tend its applicability. In particular, there are instances

where one is urged byprior knowledge to set additional
constraints on the estimated parameters (e.g. equality
constraints, positivity). Building on GMCA, the pur-
pose of this contribution is to describe an algorithm for
so-calledhyperspectraldata processing. The modified
GMCA algorithm this entails is then given in section 3.
Finally, numerical experiments in section 4 demons-
trate the efficiency of the proposed method to deal with
Hyperspectral data in component separation problems.

2. MODEL AND OBJECTIVE FUNCTION

Hyperspectral imaging systems collect data in a large
number (up to several hundreds) of contiguous spectral
intervals so that it makes sense to considere.g. the re-
gularity of some measurement from one channel to its
neighbors. Typically, the spectral signatures of the struc-
tures in the data may be knowna priori to have a sparse
representation in some specified possibly redundant dic-
tionary of templatespectralwaveforms.
In what follows, regardless of other definitions or models
living in other scientific communities, the termhyper-
spectralwill be used generically to identify multichan-
nel data with the above two specific propertiesi.e. that
the number of channels is large and that these achieve a
regular if not uniformsampling of some additional and
meaningful physical index (e.g.wavelength, space, time)
which we refer to as thespectraldimension. We further
assume that hyperspectral data is structureda priori ac-
cording to the simple yet common instantaneous linear
mixture model given as follows :

X = AS + N =
n

∑

k=1

Xk + N (1)



where the measurementsX ∈ R
m,t are a mixture of

contributions from various objectsXk with different
statistical andspatio-spectralproperties. These induce
inter- andintra- sensor structures or signal coherence in
space and across sensors which we classically assume to
be well represented by rank one matrices, product of a
spectral signatureak ∈ R

m,1 and a spatial density profile
sk ∈ R

1,t. Here,sk andak are respectively thekth row
and column ofS ∈ R

n,t andA ∈ R
m,n. The m × t

random matrixN is included to account for Gaussian
instrumental noise assumed, for simplicity, to be uncor-
related inter- and intra- channel with varianceσ2.
Initially, the GMCA algorithm aims at solving the follo-
wing non-convex problem :

min
A,S

∑

k

λk‖νk‖1 +
1

2σ2

∥

∥

∥

∥

∥
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∑

k

aksk

∥

∥

∥

∥

∥

2

(2)

wheresk = νkΦ. We describe next the proposed mo-
dified GMCA algorithm for hyperspectral data proces-
sing when it is knowna priori that the underlying objects
of interestXk = aksk exhibit sparse spectral signatures
and sparse spatial morphologies in known dictionaries of
spectral and spatial waveforms. Accounting for this prior
is made by assuming that each componentXk = aksk

has a sparse representation in a givenmultichannelsignal
waveform dictionnary{Φ,Ψ}. The derived optimization
problem for hyperspectral data is then the following :

min
A,S

∑

k

λk‖γkνk‖1 +
1

2σ2

∥

∥

∥

∥

∥
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n
∑
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∥

∥

∥

∥

2

(3)

whereXk = aksk = ΦγkνkΨ.

3. GMCA ALGORITHM FOR HYPERSPECTRAL
DATA

For the sake of simplicity, consider now that theΨ

andΦ reduce to respectively spectral and spatial wave-
forms orthogonal bases. In this case, the minimization
problem (3) is best formulated in coefficient space as fol-
lows :

min
{γk,νk}

1

2σ2
‖α − γν‖2 +

n
∑

k=1

λk‖γ
kνk‖1 (4)

where the columns ofγ areγk, the rows ofν areνk

andα = Ψ
T
XΦ

T is the coefficient matrix of dataX
in Ω. Thus, we are seeking a decomposition of matrixα
into a sum of sparse rank one matricesαk = γkνk.
Unfortunately, there is no obvious closed form solutions
to problem (4). We propose instead a numerical approach

by means of a block-coordinate relaxation iterative al-
gorithm, alternately minimizing with respect toγ and
ν. Indeed, thanks to the chosen prior, for fixedγ (resp.
ν), themarginalminimization problem overν (resp.γ)
is convex. Inspired by [4], we obtain the following sys-
tem of update rules, akin to a Projected Landweber algo-
rithm [1] and after some algebra (see [3]) :

ν(+) = ∆η

(

(

γT γ
)−1

γT α
)

(5)

γ(+) = ∆ζ

(

ανT
(

ννT
)−1

)

(6)

where vectorη has lengthn and entriesη[k] = λk‖γ
k‖1/‖γ

k‖2
2,

while ζ has lengthm and entriesζ[k] = λk‖νk‖1/‖νk‖
2
2.

The multichannel soft-thresholding operator∆η acts on
each rowk of ν with thresholdη[k] and ∆ζ acts on
each columnk of γ with thresholdζ[k]. Equations (5)
and (6) rules are easily interpreted as thresholded alter-
nate least squares solutions. Finally, in the spirit of the
GMCA algorithm [3, 2], it is proposed that a solution
to problem (4) can be approached efficiently using the
following symmetric iterative thresholding scheme with
a progressively decreasing threshold, which we refer to
as hypGMCA :

1. Set the number of iterations Imax and initial
thresholds λ

(0)
k

2. Transform the data X into α
3. While λ

(h)
k are higher than a given lower bound

λmin,
– Update ν assuming γ is fixed using equa-

tion (5).
– Update γ assuming ν is fixed using equa-

tion (6).
– Decrease the thresholds λ

(h)
k .

5. Transform back γ and ν to estimate A and S.

Thesalient to fineprocess is also the core of hypGMCA.
With the threshold successively decreasing towards zero
along iterations, the current sparse approximations forγ
andν are progressively refined by including finer struc-
tures spatially and spectrally, alternatingly. The final
threshold should vanish in thenoiselesscase or it may
be set to a multiple of the noise standard deviation as
in common detection or denoising methods. When non-
unitary or redundant transforms are used, the above is no
longer strictly valid. Nevertheless, simple shrinkage still
gives satisfactory results in practice.

4. NUMERICAL EXPERIMENTS

In this section, we report on two toy BSS experi-
ments in 1D and 2D to compare GMCA to its extension



hypGMCA. First we consider synthetic 2D data consis-
ting of m = 128 mixtures ofn = 5 image sources.
The sources are a set of128 × 128 structured images.
The spectra were generated as sparse process in some
orthogonal wavelet domain givena priori. The wavelet
coefficients of the spectra were sampled from a Lapla-
cian probability density with scale parameterµ = 1.
Finally, white Gaussian noise with varianceσ2 was ad-
ded to the pixels of the synthetic mixture data in the dif-
ferent channels. Figure 1 displays four typical noisy si-
mulated mixture data with SNR= 20dB. A visual ins-

Fig. 1. Four128× 128 mixtures out of the 128 channels.
The SNR is equal to20dB.

pection of figure 2 allows a first qualitative assessment
of the improved source recovery provided by correctly
accounting fora priori spatial as well as spectral spar-
sity. The top images were obtained with GMCA while
the bottom images, were obtained with hypGMCA. In all
cases, both methods were run in the curvelet domain [5]
with the same number of iterations. The graph on figure 3
gives more quantitative results. It traces the evolution of
the mixing matrix criterionCA = ‖In − PÃ

†
A‖1 as a

function of the SNR which was varied from0 to 40dB,
whereP serves to reduce the scale and permutation in-
determinacy of the mixing model and̃A† is the pseudo-
inverse of the estimated mixing matrix. In simulation, the
true source and spectral matrices are known and so that
P can be computed easily. The mixing matrix criterion is
then strictly positive unless the mixing matrix is correctly
estimated up to scale and permutation. Finally, as we ex-
pected since it benefits from the addeda priori spectral
sparsity constraint it enforces, the proposed hypGMCA
is clearly more robust to noise.

In a second experiment, GMCA and hypGMCA
are compared as the numbern of sources is increased
while the numbers of samplest and channelsm are kept
constant. Increasing the number of sources makes the
separation task more difficult. We consider now 1D syn-

Fig. 2. Left column : Estimated sources using the origi-
nal GMCA algorithm.Right column : Estimated sources
using the new hypGMCA.

thetic source processesS generated fromi.i.d. Laplacian
probability density distributions with scale parameter
µ = 1. The Dirac basis was taken as the dictionary of
spatial waveformsΦ. The entries of the mixing matrix
are also drawn fromi.i.d. Laplacian distributions with
scale parameterµ = 1 and the Dirac basis was also
taken as dictionary of spectral waveformsΨ. The data
are not contaminated by noise. The number of samples
is t = 2048 and the number of channels ism = 128.
Figure 4 depicts the comparisons between GMCA and
its extension to the hyperspectral setting. Each point of
this figure has been computed as the mean over100
trials. The panel on the left of Figure 4 features the
evolution of the recovery SNR when the number of
sources varies from2 to 64. At lower n, thespatiospec-
tral sparsity constraint only slightly enhances the source
separation. However, asn becomes larger than15 the
spectral sparsity constraint clearly enhances the reco-
very results. For instance, whenn = 64, the GMCA
algorithm with the spectral sparsity constraint outper-
forms the original GMCA by up to12dB. The right of
Figure 4 shows the behavior of both algorithms in terms
of Cℓ1 =

∑n
i=1

∥

∥aisi − ãis̃i

∥

∥

1
/
∑n

i=1

∥

∥aisi

∥

∥

1
. As ex-

pected, accounting for spectral sparsity yields sparser
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Fig. 3. Evolution of the mixing matrix criterion CA as
a function of the SNR in dB.Solid line :recovery results
with GMCA. • : recovery results with hypGMCA.

results. Furthermore, as the number of sources increases,
the deviation between the aforementioned methods be-
comes wider.
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Fig. 4. Abscissa :Number of sources.Ordinate - left :
Recovery SNR.Right : sparsity-based criterionCℓ1 . So-
lid line : recovery results with GMCA.• : recovery re-
sults with hypGMCA.

5. CONCLUSION

We described a new algorithm, hypGMCA, for blind
source separation in the case where it is knowna priori
that the spatial and spectral features in the data have
sparse representations in known dictionaries of template

waveforms. The proposed method relies on an iterative
thresholding procedure with a progressively decreasing
threshold. This alone gives the method true robustness
to noise. As expected, taking into account the additional
prior knowledge of spectral sparsity leads to enhanced
performance. It was illustrated by numerical experi-
ments that spatiospectral sparsity yields robustness to
noise contamination, as well as statbility when the di-
mensionality of the problem increases. Current work is
on enforcing other prior constraints such as positivity
and on applications of the proposed method.
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