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Complexity and regularity of maximal energy domains for

the wave equation with fixed initial data

Yannick Privat∗ Emmanuel Trélat† Enrique Zuazua‡§

Abstract

We consider the homogeneous wave equation on a bounded open connected subset Ω of
IRn. The initial data being specified we address an optimal observation problem. Namely, we
consider the problem of determining a measurable subset ω of Ω maximizing the L2 norm of
the restriction of the corresponding solution to ω over a time interval [0, T ], among all possible
subsets of a given measure. We show that this problem always admits at least one solution.
We prove that, if the initial conditions satisfy some analyticity assumptions then the optimal
set is unique and it has a finite number of connected components. In contrast, we construct
smooth but not analytic initial conditions for which the optimal set is of Cantor type and in
particular has an infinite number of connected components.

Keywords: wave equation, optimal domain, Cantor set, Fourier series, calculus of variations.

AMS classification: 35L05 26A30 49K20 49J30

1 Introduction

Let n ≥ 1 be an integer. Let T be a positive real number and Ω be an open bounded connected
subset of IRn. We consider the homogeneous wave equation with Dirichlet boundary conditions

∂tty −∆y = 0 in IR∗+ × Ω,
y = 0 on IR∗+ × ∂Ω.

(1)

For all initial data (y0, y1) ∈ L2(Ω)×H−1(Ω), there exists a unique solution y of (1) in the space
C0([0, T ];L2(Ω)) ∩ C1([0, T ];H−1(Ω)), such that y(0, x) = y0(x) and ∂ty(0, x) = y1(x) for almost
every x ∈ Ω.

Note that the energy of the solution y over the whole domain Ω, defined by

E(t) =
1

2

∫
Ω

|y(t, x)|2 dx+
1

2
‖yt(t, x)‖2H−1(Ω),

is a constant function of t.
Of course this conservation property is no longer true when considering the integral over a

proper subset of Ω. But, from a control theoretical point of view and, in particular, motivated by
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the problem of optimal observation or optimal placement of observers, it is interesting to consider
such energies over a certain horizon of time. This is why we define the functional

GT (χω) =

∫ T

0

∫
ω

y(t, x)2 dx dt =

∫ T

0

∫
Ω

χω(x)y(t, x)2 dx dt, (2)

where ω is any arbitrary measurable subset of Ω of positive measure, and χω is the characteristic
function of ω.

Of course, similar problems can be formulated in other functional settings. for instance we
could consider initial data (y0, y1) in the energy space H1

0 (Ω)× L2(Ω) and observed quantities of

the form
∫ T

0

∫
Ω
χω(x)yt(t, x)2 dx dt or

∫ T
0

∫
Ω
χω(x)|∇y(t, x)|2 dx dt. But, for the sake of simplicity,

we shall focus on the L2-setting above.
For every subset ω, the quantity GT (χω) gives an account of the amount of energy of the

solution y is concentrated on ω, over the time interval [0, T ].
In this paper we address the problem of determining the optimal shape and location of the

subdomain ω of a given measure, maximizing GT (χω).

Optimal design problem (P). Let L ∈ (0, 1) and T > 0 be fixed. Given (y0, y1) ∈
L2(Ω) × H−1(Ω), we investigate the problem of maximizing GT (χω) over all possible
measurable subsets ω of Ω of Lebesgue measure |ω| = L|Ω|, where y ∈ C0([0, T ];L2(Ω))∩
C1([0, T ];H−1(Ω)) is the solution of (1) such that y(0, ·) = y0(·) and ∂ty(0, ·) = y1(·).

Note that the optimal set ω, whenever it exists, depends on the initial data under consideration.
This problem is a mathematical benchmark, in view of addressing other more intricate optimal
design problems where one could as well search for the optimal set ω for a certain class of initial
data. The problem we address here, where the initial data are fixed and therefore we are consider
a single solution is simpler but, as we shall see, it reveals some interesting properties.

In this article we provide a complete mathematical analysis of the optimal design problem (P).
The article is structured as follows. In Section 2 and, in particular, in Theorem 1 we give a sufficient
condition ensuring the existence and uniqueness of and optimal set. More precisely, we prove that,
if the initial data under consideration belong to a suitable class of analytic functions, then there
always exist a unique solution ω, which has a finite number of connected components. In Section 3,
we investigate the sharpness of the assumptions made in Theorem 1. More precisely, in Theorem 2
we build initial data (y0, y1) of class C∞ such that the problem (P) has a unique solution ω, which
is a fractal set and thus has an infinite number of connected components. In Section 4, we present
some possible generalizations of the results in this article with further potential applications.

2 Existence and uniqueness results

2.1 Existence

Throughout the section, we fix initial data (y0, y1) ∈ L2(Ω) ×H−1(Ω). For almost every x ∈ Ω,
we define

ϕ(x) =

∫ T

0

y(t, x)2 dt (3)

where y ∈ C0([0, T ];L2(Ω)) ∩ C1([0, T ];H−1(Ω)) is the solution of (1) such that y(0, ·) = y0(·) and
∂ty(0, ·) = y1(·). Note that the function ϕ is integrable on Ω, and that

GT (χω) =

∫
ω

ϕ(x) dx, (4)

for every measurable subset ω of Ω.
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Proposition 1. For any fixed initial data (y0, y1) ∈ L2(Ω)×H−1(Ω) the optimal design problem
(P) has at least one solution. Moreover, there exists a real number λ such that χω∗ is a solution
of (P) if and only if

|ω∗| = L|Ω| and {ϕ > λ} ⊂ ω∗ ⊂ {ϕ > λ}. (5)

In other words, any optimal set, solution of (P), is characterized in terms of a level sets of the
function ϕ.

Proof. The proof is based on a simple symmetrization argument. For every subset U of Ω, we
denote by US the ball centered at 0 having the same Lebesgue measure than U . We recall that, for
every nonnegative Lebesgue measurable function u defined on Ω and vanishing on its boundary,
denoting by Ω(c) = {x ∈ Ω | u(x) > c} its level sets, the Schwarz rearrangement of u is the function
uS defined on ΩS by

uS(x) = sup{c | x ∈ (Ω(c))S}.
The function uS is built from u by rearranging the level sets of u into balls having the same
Lebesgue measure (see, e.g., [5, Chapter 2]).

Now, let ω be a measurable subset of Ω of Lebesgue measure |ω| = L|Ω|. Using the Hardy-
Littlewood inequality (see [5, Theorem 2.1.4]), one has∫

ω

ϕ(x) dx =

∫
Ω

χω(x)ϕ(x) dx 6
∫

ΩS

χωS
(x)ϕS(x) dx =

∫
ωS

ϕS(x) dx.

Since ϕS is the spherical decreasing rearrangement of ϕ, there exists λ ∈ IR such that

{ϕS > λ} ⊂ ωS ⊂ {ϕS > λ}.

By a property of the Schwarz rearrangement, the functions ϕ and ϕS are equimeasurable, which
means that their level sets have the same Lebesgue measure. Therefore, for every subset ω∗ of
Ω such that (5) holds, one has

∫
ωS
ϕS(x) dx =

∫
ω∗
ϕ(x) dx. We have thus proved that for every

subset ω of Ω of Lebesgue measure |ω| = L|Ω|, one has∫
ω

ϕ(x) dx 6
∫
ω∗
ϕ(x) dx,

whence the result.

Remark 1. Relaxation. In Calculus of variations, it is usual to introduce a relaxed formulation
of the problem (P). Defining the set of unknowns

UL = {χω ∈ L∞(Ω, {0, 1}) | |ω| = L|Ω|},

the relaxation procedure consists in considering the convex closure of UL for the L∞ weak star
topology, that is

UL = {a ∈ L∞(Ω, [0, 1]) |
∫

Ω

a(x) dx = L|Ω|},

and then in extending the functional GT to UL by setting

GT (a) =

∫
Ω

a(x)ϕ(x) dx,

for every a ∈ UL. The relaxed version of (P) is then defined as the problem of maximizing GT
over UL. Since a 7→ GT (a) is clearly continuous for the L∞ weak star topology, we claim that

min
χω∈UL

GT (χω) = min
a∈UL

GT (a).
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It is easy to characterize all solutions of the relaxed problem. Indeed, adapting the proof of
Proposition 1, one gets that a is solution of the relaxed problem if and only if a = 0 on the
set {ϕ < λ}, a = 1 on the set {ϕ > λ}, and a(x) ∈ [0, 1] for almost every x ∈ {ϕ = λ} and∫

Ω
a(x) dx = L|Ω|. This shows that the optimal solution of the relaxed problem is a classical set

and therefore also a solution of the original unrelaxed problem.

2.2 Uniqueness

Let us now discuss the issue of the uniqueness of the optimal set.
Note that the characterization of the solutions of (P) in Proposition 1 enables situations where

(at least) two different subsets ω1 and ω2 maximize the functional GT over the class of Lebesgue
measurable subsets of Ω of measure L|Ω|. It occurs if and only if the set {ϕ = λ}, where λ is the
real positive number introduced in Proposition 1, has a positive Lebesgue measure. In the next
theorem, we provide sufficient regularity conditions on the initial data (y0, y1) of the wave equation
(1) to guarantee the uniqueness of the solution of (P).

We denote by A = −∆ the Dirichlet-Laplacian with domain D(A) = {u ∈ H1
0 (Ω) : ∆u ∈

L2(ω)}, D(A) = H2(Ω) ∩H1
0 (Ω) when the domain Ω is smooth of class C2.

Theorem 1. If Ω has a nontrivial boundary of class C∞ and if there exists R > 0 such that

+∞∑
j=0

Rj

j!

(
‖Aj/2y0‖2L2 + ‖A(j−1)/2y1‖2L2

)1/2

< +∞, (6)

then the problem (P) has a unique1 solution χω, where ω is a measurable subset of Ω of Lebesgue
measure L|Ω|, satisfying moreover the following properties:

• ω is semi-analytic2, and has a finite number of connected components;

• If Ω is symmetric with respect to an hyperplane, σ being the symmetry operator, and if
y0 ◦ σ = y0 and y1 ◦ σ = y1, then ω enjoys the same symmetry property;

• There exists η > 0 such that d(ω, ∂Ω) > η, where d denotes the Euclidean distance on IRn.

Proof of Theorem 1. First of all we claim that, under the additional assumption (6), the corre-
sponding solution y of the wave equation is analytic over IR+ × Ω. Indeed, we first note that the
quantity

‖Aj/2y(t, ·)‖2L2 + ‖A(j−1)/2∂ty(t, ·)‖2L2

is constant with respect to t (it is a higher-order energy over the whole domain Ω). Then, since
Ω has a smooth boundary, it follows from (6) and from the Sobolev imbedding theorem (see for
example [1]) that there exists C > 0 such that

‖y(k)(t, ·)‖∞ 6 C
(2n+ k)!

R2n+k
,

1Similarly to the definition of elements of Lp-spaces, the subset ω is unique within the class of all measurable
subsets of Ω quotiented by the set of all measurable subsets of Ω of zero measure.

2A subset ω of IRn is said to be semi-analytic if it can be written in terms of equalities and inequalities of analytic
functions, that is, for every x ∈ ω, there exists a neighborhood U of x in M and 2pq analytic functions gij , hij (with
1 6 i 6 p and 1 6 j 6 q) such that

ω ∩ U =

p⋃
i=1

{y ∈ U | gij(y) = 0 and hij(y) > 0, j = 1, . . . , q}.

We recall that such semi-analytic (and more generally, subanalytic) subsets enjoy nice properties, for instance they
are stratifiable in the sense of Whitney (see [4, 7]).
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for every t > 0 and every integer k. The analyticity property of y follows. As a consequence, the
function ϕ defined by (3) is analytic on Ω. Hence ϕ cannot be constant on a subset of positive
measure (otherwise by analyticity it would be constant on Ω and hence equal to 0 due to the
boundary conditions). This ensures the uniqueness of the optimal set ω.

The first additional property follows from the analyticity properties. The symmetry property
follows from the fact that ϕ ◦ σ(x) = ϕ(x) for every x ∈ Ω. If ω were not symmetric with
respect to this hyperplane, the uniqueness of the solution of the first problem would fail, which

is a contradiction. Moreover, since ϕ(x) =
∫ T

0
|y(t, x)|2dt = 0 for every x ∈ ∂Ω, it follows that ϕ

reaches its global minimum on the boundary of Ω.

Remark 2. Condition (6) guarantees both the analyticity of the initial data and the boundary
compatibility conditions that are required to ensure the analyticity of the solution. Note that
the analyticity of (y0, y1) by itself is not sufficient to ensure the analyticity of the corresponding
solution y of the wave equation since boundary singularities associated to the lack of boundary
compatibility conditions propagate inside the domain according to the d’Alembert formula.

Remark 3. The solution of the problem (P) depends on the initial data under consideration. But
there are infinitely many initial data (y0, y1) ∈ L2(Ω)×H−1(Ω) leading to the same function ϕ and
thus to the same solution(s) of (P). Indeed, consider for the sake of simplicity, the one dimensional
case Ω = (0, π) with T = 2π. By expanding the initial data y0 and y1 as

y0(x) =

+∞∑
j=1

aj sin(jx) and y1(x) =

+∞∑
j=1

jbj sin(jx),

it follows that the functional GT (a) has the very simple expression

GT (a) = π

+∞∑
j=1

(a2
j + b2j )

∫ π

0

a(x) sin2(jx) dx, (7)

and the function ϕ writes

ϕ(x) = π

+∞∑
j=1

(a2
j + b2j ) sin2(jx). (8)

This justifies the claim above. Similar considerations have been discussed in [14, Section 1.2].

2.3 Non-uniqueness

We have seen that the optimal solution may not be unique whenever the function ϕ is constant
on some subset of Ω of positive measure. More precisely, assume that ϕ is constant, equal to c,
on some subset I of Ω of positive measure |I|. If |{ϕ > c}| < L|Ω| < |{ϕ > c}| then there exists
an infinite number of measurable subsets ω of Ω maximizing (4), all of them containing the subset
{ϕ > c}. The part of ω lying in {ϕ = c} can indeed be chosen arbitrarily.

Note that there is no simple characterization of all initial data for which this non-uniqueness
phenomenon occurs, however to get convinced that this may indeed happen it is convenient to
consider the one-dimensional case where T is moreover an integer multiple of 2π. Indeed in that
case the functional GT reduces to (7) and the corresponding function ϕ reduces to (8). Using the
notations of Remark 3, and noting that

π

2

+∞∑
j=1

(a2
j + b2j ) = ‖(y0, y1)‖2L2×H−1 ,
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one gets

ϕ(x) =
π

2

+∞∑
j=1

(a2
j + b2j )−

π

2

+∞∑
j=1

(a2
j + b2j ) cos(2jx),

for almost every x ∈ (0, π). Then ϕ can be written as a Fourier series whose sine Fourier coefficients
vanish and cosine coefficients are nonpositive and summable. Hence, to provide an explicit example
where the non-uniqueness phenomenon occurs, consider any nontrivial even function ψ of class C∞

on IR whose support is contained in [−α, α] for some α ∈ (0, π/4). The C1 regularity ensures that
its Fourier coefficients are summable. To ensure the nonpositivity of its Fourier coefficients, it
suffices to consider the π-periodic function ϕ defined on (0, π) by the convolution

ϕ(x) =

∫
IR

ψ(y)ψ(π − y) dy −
∫

IR

ψ(y)ψ (x− y) dy.

Indeed, the function ϕ defined in such a way vanishes at x = 0 and x = π, is of class C∞ on (0, π),
with support contained in [0, 2α]∪ [π−2α, π], and all its Fourier coefficients are nonpositive. More
precisely ϕ has a Fourier series expansion of the form

ϕ(x) =

(∫
IR

ψ(y) dy

)2

−
+∞∑
j=1

βj cos(2jx),

with βj > 0 for every j > 1. To construct an example where the solution of (P) is not unique, it
suffices to define the initial data y0 and y1 by their Fourier expansion, and with the notations of
Remark 3 in such a way that π

2 (a2
j + b2j ) = βj , for every j > 1. Since the function ϕ vanishes (at

least) on [2α, π−2α], it suffices to choose L > 4α/π and it follows that a is a solution of the relaxed
problem mina∈UL

GT (a) introduced in Remark 1 if and only if the three following conditions hold:

(i) a(x) = 1 on suppϕ,

(ii) a(x) ∈ [0, 1] for almost every x ∈ (0, π)\ suppϕ,

(iii)
∫ π

0
a(x) dx = Lπ.

The non uniqueness of solutions is thus obvious.

2.4 Numerical simulations

We provide hereafter a numerical illustration of the results presented in this section. According to
Theorem 1, the optimal domain is characterized as a level set of the function ϕ. Some numerical
simulations are provided on Figure 1, with Ω = (0, π)2, L = 0.6, T = 3, y1 = 0 and

y0(x) =

N0∑
n,k=1

an,k sin(nx1) sin(kx2),

where N0 ∈ IN∗ and (an,k)n,k∈IN∗ are real numbers. The level set is numerically computed using a
simple dichotomy procedure.

6



Some level sets of y
0

 

 

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Optimal domain for L=0.6

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

Some level sets of y
0

 

 

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Optimal domain for L=0.6

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

Figure 1: Ω = (0, π)2 with Dirichlet boundary conditions, L = 0.6, T = 3 and y1 = 0. At the top:
N0 = 15 and an,k = 1/[n2 +k2]. At the bottom: N0 = 15 and an,k = [1− (−1)n+k]/[n2k2]. On the
left: some level sets of y0. On the right: optimal domain (in green) for the corresponding choice
of y0.

3 On the complexity of the optimal set

3.1 Main result

It is interesting to raise the question of the complexity of the optimal sets solutions of the problem
(P). In Theorem 1 we proved that, if the initial data belong to some analyticity spaces, then
the (unique) optimal set ω is the union of a finite number of connected components. Hence,
analyticity implies finiteness and it is interesting to wonder whether this property still holds true
for less regular initial data.

In what follows we show that, in the one dimensional case and for particular values of T , there
exist C∞ initial data for which the optimal set ω has a fractal structure and, more precisely, is of
Cantor type.

The proof of the following theorem is quite technical and relies on a careful harmonic analysis
construction. In order to facilitate the use of Fourier series, it is more convenient to assume
hereafter that Ω = (0, 2π).

Theorem 2. Let Ω = (0, 2π) and let T > 0 be an integer multiple of 4π. There exist C∞ initial
data (y0, y1) defined on Ω for which the problem (P) has a unique solution ω; moreover ω has a
fractal structure and in particular it has an infinite number of connected components.

Remark 4. It is interesting to note that the generalization of this fractal optimal set to the
hypercube Ω = (0, 2π)n is not immediate since the solutions of the multi-dimensional wave equation
fail to be time-periodic.

Proof. Without loss of generality, we set T = 4π. Denote by (en)n∈IN∗ the eigenfunctions of the
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Dirichlet Laplacian on Ω defined by

en(x) = sin(nx/2).

Note that for a given n ∈ IN∗, en is associated to the eigenvalue n2/4.
Using the same kind of computations as those of Remark 3, one gets that

ϕ(x) = 2π

+∞∑
j=1

(a2
j + b2j ) sin2(jx/2)

= π

+∞∑
j=1

(a2
j + b2j )− π

+∞∑
j=1

(a2
j + b2j ) cos(jx).

Note that the coefficients (a2
j + b2j ) are nonnegative and of converging sum. The construction

of the set ω having an infinite number of connected components is based on the following result.

Proposition 2. There exist a measurable open subset C of [−π, π], of Lebesgue measure |C| ∈
(0, 2π), and a smooth function f on [−π, π], satisfying the following properties:

• C is of fractal type, and in particular has an infinite number of connected components;

• f(x) > 0 for every x ∈ C, and f(x) = 0 for every x ∈ [−π, π] \ C;

• f is even;

• for every integer n,

αn =

∫ π

−π
f(x) cos(nx) dx > 0;

• The series
∑
an is convergent.

Indeed, consider the function f introduced in this proposition and choose the initial data y0

and y1 such that their Fourier coefficient aj and bj verify π(a2
j + b2j ) = αj for every j ∈ IN∗. Let us

extend the characteristic function χC of C as a 2π-periodic function on IR, and denote by C̃ the
set [0, 2π] ∩ {χC = 1}.

Thus, one has

ϕ(x) =

+∞∑
j=1

αj −
+∞∑
j=1

αj cos(jx).

Notice that the function ϕ constructed in such a way is nonnegative, verifies ϕ(0) = ϕ(π) = 0 and
there exists λ > 0 such that the set ω = {ϕ > λ} has an infinite number of connected components.
In other words the optimal set ω can be chosen as the complement of the fractal set C̃ in [0, 2π].

Theorem 2 follows from that result. Lemma 2 is proved in the next subsection.

3.2 Proof of Proposition 2

There are many possible variants of such a construction. We provide hereafter one possible way of
proving this result.

Let α ∈ (0, 1/3). We assume that α is a rational number, that is, α = p
q where p and q

are relatively prime integers, and moreover we assume that p + q is even. Let us first construct

8



the fractal set C ⊂ [−π, π]. Since C will be symmetric with respect to 0, we describe below the
construction of C ∩ (0, π). Set s0 = 0 and

sk = π − π

2k
(α+ 1)k,

for every k ∈ IN∗. Around every such point sk, k ∈ IN∗, we define the interval

Ik =
[
sk −

π

2k
α(1− α)k, sk +

π

2k
α(1− α)k

]
of length |Ik| = π

2k−1α(1− α)k.

Lemma 1. We have the following properties:

• inf I1 > απ;

• sup Ik < inf Ik+1 < π for every k ∈ IN∗.

Proof. Since α < 1/3 it follows that inf I1 = π − π
2 (α + 1) > απ. For the second property, note

that the inequality sup Ik < inf Ik+1 is equivalent to

α(1− α)k−1(3− α) < (α+ 1)k,

which holds true for every k ∈ IN∗ since α(3− α) < α+ 1.

It follows in particular from that lemma that the intervals Ik are two by two disjoint. Now, we
define the set C by

C ∩ (0, π) = [0, απ] ∪
+∞⋃
k=1

Ik.

The resulting set C (symmetric with respect to 0) is then of fractal type and has an infinite number
of connected components (see Figure 2).

We now define the function f such that f is continuous, piecewise affine, equal to 0 outside C,
and such that f(sk) = bk for every k ∈ IN, where the bk are positive real numbers to be chosen
(see Figure 2).

Let us compute the Fourier series of f . Since f is even, its sine coefficients are all equal to 0.
In order to compute its cosine coefficients, we will use the following result.

Lemma 2. Let a ∈ IR, ` > 0 and b > 0. Let g be the function defined on IR by

g(x) =


2b
` (x− a+ `

2 ) if a− `
2 6 x 6 a,

2b
` (a+ `

2 − x) if a 6 x 6 a+ `
2 ,

0 otherwise.

In other words, g is a positive triangle of height b above the interval [a− `
2 , a+ `

2 ]. Then∫
IR

g(x) cos(nx) dx =
4b

`n2
cos(na)

(
1− cos

n`

2

)
,

for every n ∈ IN∗.
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Figure 2: Drawing of the function f and of the set C

It follows from this lemma that∫ απ

0

f(x) cos(nx) dx =
b0

απn2
(1− cos(nαπ)), (9)

and∫
Ik

f(x) cos(nx) dx =
2k+1bk

α(1− α)kπn2
cos
(
nπ − nπ

2k
(α+ 1)k

)(
1− cos

(nπ
2k
α(1− α)k

))
, (10)

for every k ∈ IN∗. Note that ∣∣∣∣∫
Ik

f(x) cos(nx) dx

∣∣∣∣ 6 4bk
απn2

(
2

1− α

)k
, (11)

for every k ∈ IN∗. Formally, the nth cosine Fourier coefficient of f is given by

an =

∫ π

−π
f(x) cos(nx) dx = 2

∫ απ

0

f(x) cos(nx) dx+ 2

+∞∑
k=1

∫
Ik

f(x) cos(nx) dx.

Our next task consists of choosing adequately the positive real numbers bk, k ∈ IN, so that the
series appearing in the above formal expression of an is convergent, an is nonnegative, and the
series of general term an is convergent.

Let us first consider the integral (9) (first peak). It is clearly nonnegative for every n ∈ IN∗,
and is positive except whenever n is a multiple of 2q. Taking advantage of the rationality of α, we
can moreover derive an estimate from below, as follows. Set

σ0 = min

{
1− cos(n

p

q
π) | n = 1, . . . , 2q − 1

}
.

10



One has σ0 > 0, and there holds ∫ απ

0

f(x) cos(nx) dx >
b0σ0

απn2
, (12)

for every n ∈ IN∗ \ (2qIN∗). At this step, assume that

bk 6

(
1− α

2

)k
1

2k
σ0b0

8
, (13)

for every k ∈ IN∗ (b0 > 0 is arbitrary). Under this assumption, using (11) it follows that the formal
expression of an above is well defined, and that∣∣∣∣∣

+∞∑
k=1

∫
Ik

f(x) cos(nx) dx

∣∣∣∣∣ 6 1

2

b0σ0

απn2
6

1

2

∫ απ

0

f(x) cos(nx) dx,

for every n ∈ IN∗ \ (2qIN∗), ensuring therefore an > 0 for such integers n.
If n = 2rq, with r ∈ IN∗, then the integral (9) vanishes. We then focus on the second peak,

that is, on the integral (10) with k = 1. Since n = 2rq, its value is∫
I1

f(x) cos(nx) dx =
4b1

α(1− α)πn2
cos

(
2rqπ − rqπ(

p

q
+ 1)

)(
1− cos

(
rqπ

p

q
(1− p

q
)

))
.

Since p+ q is even, it follows that cos
(

2rqπ − rqπ(pq + 1)
)

= 1. Hence, we have∫
I1

f(x) cos(nx) dx =
4b1

α(1− α)πn2

(
1− cos

(
rπ
p

q
(q − p)

))
> 0.

Moreover, since the integers p and q are relatively prime integers and q − p is even, in this last
expression one has cos(rπ pq (q − p)) = 1 if and only if r is multiple of q, that is, if and only if n is

multiple of 2q2. As before we derive an estimate from below, setting

σ1 = min

{
1− cos

(
rπ
p

q
(q − p)

) ∣∣ r = 1, . . . , 2q − 1

}
.

One has σ1 > 0, and there holds∫
I1

f(x) cos(nx) dx >
4b1σ1

α(1− α)πn2
, (14)

for every n ∈ (2qIN∗) \ (2q2IN∗). At this step, additionally to (13) assume that

bk 6

(
1− α

2

)k−1
1

2k+1
b1σ1, (15)

for every k > 2. Under this assumption, using (11) it follows that∣∣∣∣∣
+∞∑
k=2

∫
Ik

f(x) cos(nx) dx

∣∣∣∣∣ 6 1

2

4b1σ1

α(1− α)πn2
6

1

2

∫
I1

f(x) cos(nx) dx,

for every n ∈ (2qIN∗) \ (2q2IN∗), ensuring therefore an > 0 for such integers n.
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The construction can be easily iterated. At iteration m, assume that n = 2rqm, with r ∈ IN∗.
Then the integrals over the m first peaks vanish, that is,∫ απ

0

f(x) cos(nx) dx =

∫
Ik

f(x) cos(nx) dx = 0

for every k = 1, . . . ,m− 1. We then focus on the (m+ 1)th peak, that is, on the integral (10) with
k = m. Since n = 2rqm, its value is∫

Im

f(x) cos(nx) dx =
2m+1bm

α(1− α)mπn2
cos

(
2rqmπ − rqmπ

2m−1

(
p

q
+ 1

)m)
×
(

1− cos

(
rqmπ

2m−1

p

q

(
1− p

q

)m))
.

Since p+ q is even, it follows that

cos

(
2rqmπ − rqmπ

2m−1

(
p

q
+ 1

)m)
= 1,

and hence, ∫
Im

f(x) cos(nx) dx =
2m+1bm

α(1− α)mπn2

(
1− cos

(
rπ

2m−1

p

q
(q − p)m

))
> 0.

Moreover, since the integers p and q are relatively prime integers and q−p is even, it follows easily
that q and ( q−p2 )m are relatively prime integers, and therefore this last expression vanishes if and
only if r is multiple of q, that is, if and only if n is multiple of 2qm+1. Setting

σm = min

{
1− cos

(
rπ

2m−1

p

q
(q − p)m

) ∣∣ r = 1, . . . , 2q − 1

}
,

one has σm > 0 and ∫
Im

f(x) cos(nx) dx >
2m+1bmσm

α(1− α)mπn2
,

for every n ∈ (2qmIN∗)\ (2qm+1IN∗). Additionally to (13), (15) and the following iterative assump-
tions, we assume that

bk 6

(
1− α

2

)k−m
1

2k−m+2
bmσm, (16)

for every k > m+ 1. Under this assumption, using (11) it follows that∣∣∣∣∣
+∞∑

k=m+1

∫
Ik

f(x) cos(nx) dx

∣∣∣∣∣ 6 1

2

2m+1bmσm
α(1− α)mπn2

6
1

2

∫
Im

f(x) cos(nx) dx,

for every n ∈ (2qmIN∗) \ (2qm+1IN∗), ensuring therefore an > 0 for such integers n.
The construction of the function f goes in such a way by iteration. By construction, its Fourier

cosine coefficients an are positive, and moreover, the series
∑+∞
n=0 an is convergent. We have thus

constructed a function f satisfying all requirements of the statement except the fact that f is
smooth.

Let us finally show that, using appropriate convolutions, we can modify f in order to obtain a
smooth function keeping all required properties. Set f0 = f[−απ,απ] and fk = fIk for every k ∈ IN∗.

12



For every ε > 0, let ρε be a real nonnegative function which is even, whose support is [−ε, ε],
whose integral over IR is equal to 1, and whose Fourier (cosine) coefficients are all positive. Such
a function clearly exists. Indeed, only the last property is not usual, but to ensure this Fourier
property it suffices to consider the convolution of any usual bump function with itself. Then, for
every k ∈ IN, consider the (nonnegative) function f̃k defined by the convolution f̃k = ρε(k) ? fk,

where each ε(k) is chosen small enough so that the supports of all functions f̃k are still disjoint
two by two and contained in [−π, π] as in Lemma 1. Then, we define the function f̃ as the sum of
all functions f̃k, and we symmetrize it with respect to 0. Clearly, every Fourier (cosine) coefficient
of f̃ is the sum of the Fourier (cosine) coefficients of f̃k, and thus is positive, and their sum is
still convergent. The function f̃ is smooth and satisfies all requirements of the statement of the
proposition. This ends the proof.

4 Conclusions and further comments

4.1 Other partial differential equations

The study developed in this article can be extended in several directions and in particular to other
partial differential equations (PDE)

Indeed, Proposition 1 holds by addressing the problem

inf
|ω|=L|Ω|

∫
ω

ϕ(x) dx,

with ϕ ∈ L1(Ω). It is clear that the same result holds for other evolution PDE, either parabolic or
hyperbolic.

On the other hand, the conclusion of Theorem 1 is true as soon as one is able to ensure that

the function ϕ(x) =
∫ T

0
|y(t, x)|2 dt is analytic in Ω. Depending on the model under consideration

it may however be more or less difficult to ensure this property by prescribing suitableregularity
properties on the initial conditions. Let us next provide details for two examples.

Schrödinger equation. Consider the Schrödinger equation on Ω

i∂ty = ∆y, (17)

with Dirichlet boundary conditions, and y(0, ·) = y0(·) ∈ L2(Ω,C). Clearly, Theorem 1 holds true
when replacing the sufficient condition (6) with

+∞∑
j=0

Rj

j!
‖Aj/2y0‖L2(Ω) < +∞.

As concerns the complexity of the optimal set, it is clear that the construction of C∞ initial data
for which the optimal set ω has a fractal structure, made in Theorem 2 can be applied to this case
as well.

The generalization of the fractal optimal set in several space dimensions is simper in this
case. Indeed, by considering cartesian products of this one-dimensional fractal set constructed
in the proof of Theorem 2, it is immediate to generalize the construction to Ω = (0, π)n since
any solution of (17) remains periodic in this case, which ensures that GT does not involve any
additional crossed terms. As mentioned above, the problem is more complex for the wave equation
because of the lack of periodicity and, accordingly, the non diagonal terms in GT .
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Heat equation. Consider the homogeneous heat equation on Ω

∂ty = ∆y,

with Dirichlet boundary conditions, and y(0, ·) = y0(·) ∈ L2(Ω). Let (φj)j∈IN∗ be a Hilbertian
basis of L2(Ω) consisting of eigenfunctions of the Dirichlet-Laplacian operator on Ω, associated
with the negative eigenvalues (−λ2

j )j∈IN∗ . We decompose y0 as

y0 =

+∞∑
j=1

ajφj(·)

with aj = 〈y0, φj〉L2 . We claim that the function ϕ is analytic provided that the initial datum y0

satisfies the condition
∞∑
j=1

λ
n−1
2

j |aj | < +∞. (18)

Indeed, using standard Sobolev estimates, one has ‖φj‖L∞ 6 Cλ
n/2
j . It follows that for almost

every x ∈ Ω,

ϕ(x) 6
∫ T

0

+∞∑
j,k=1

|ajak|e−(λj+λk)t|φj(x)φk(x)| dt

6
+∞∑
j,k=1

|ajak|
(λjλk)n/2

λj + λk

6
1

2

+∞∑
j,k=1

|ajak|(λjλk)
n−1
2 =

1

2

+∞∑
j=1

|aj |λ
n−1
2

j

2

.

The claim follows by noting that for a given t > 0, the function |y(t, ·)|2 is analytic in Ω and by
standard analyticity results. As a consequence, if the condition (18) holds, then the conclusion of
Theorem 1 is true.

4.2 Other boundary conditions

Throughout the article, for the clairy of the exposition we restricted our study to the wave equation
with Dirichlet boundary conditions. With minor changes, our results can be extended to the case
of other boundary conditions. For example, in the Neumann case, it is necessary to consider initial
data (y0, y1) in L2(Ω)× [H1(Ω)]′.

Denoting now by A the Neumann-Laplacian, Theorem 1 still holds in this case (except the last
claim, that is, the fact that there is a positive distance between the optimal set and the boundary
of Ω, which is specific to the Dirichlet case).

Theorem 1 is still valid ifor more general choices of boundary conditions such as Neumann,
mixed Dirichlet-Neumann, or Robin boundary conditions for the wave equation, and the corre-
sponding appropriate functional spaces are discussed in [15].

4.3 Perspectives

In this article, given fixed initial data, we have solved the problem of determining the best shape
and location of a subdomain of a given measure maximizing the energy of the corresponding
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solution of the wave equation with Dirichlet boundary conditions, restricted to the subdomain and
over a certain horizon of time. We have discussed the question of the uniqueness of an optimal
solution. We have also investigated the complexity of the optimal set, showing that it depends on
the regularity of the initial data. In particular, we have constructed an example where the optimal
set is fractal.

In this article we have considered the problem of optimally observing solutions. The dual
problem of optimally controlling the solutions to rest can also be considered. Similar results have
been established in [12, 13] and [16] in the context of optimal design of the control support.

In this paper we have considered the problem of choosing the optimal observation set for
fixed initial data. But, in engineering applications this problem can be viewed as a first step
towards modeling the problem of optimizing the shape and location of sensors or actuators location
problems. Recall that the equation (1) is said to be observable on ω in time T if there exists a
positive constant C such that the inequality

C‖(y0, y1)‖2L2×H−1 6
∫ T

0

∫
ω

y(t, x)2 dx dt, (19)

holds for every (y0, y1) ∈ L2(Ω)×H−1(Ω). This is the so-called observability inequality (see [10]).
It is well known that within the class of C∞ domains Ω, this observability property holds if the
pair (ω, T ) satisfies the Geometric Control Condition in Ω (see [2, 3]), according to which every ray
of Geometric Optics that propagates in Ω and is reflected on its boundary ∂Ω intersects ω within
time T . We denote by CT (χω) the largest constant in the observability inequality above, that is

CT (χω) = inf

{
GT (χω)

‖(y0, y1)‖2L2×H−1

∣∣ (y0, y1) ∈ L2(Ω)×H−1(Ω)\{(0, 0)}

}
. (20)

An a priori natural way of modeling the problem of optimal shape and placement of sensors or
controllers for the wave equation consists of maximizing the functional CT (χω) over the set of all
measurable subsets ω of Ω of Lebesgue measure |ω| = L|Ω|. Moreover, it can be argued that the
observability constant CT (χω), appearing in the observability inequality (19), gives an account for
the quality of some inverse problem consisting of reconstructing the initial data (y0, y1) from the
observed variable χωy over [0, T ]. This optimal design problem, settled as such, is a difficult one.
We refer to [14] for a study of a simplified version in which the criterium to be optimized is reduced
to a purely spectral one by some randomization procedure.

It can be also of interest in practice to address a variant of the above criterion by considering
suitable class of initial data:

J(χω) = inf
(y0,y1)∈V

GT (χω)

‖(y0, y1)‖2L2×H−1

,

where V is a set of initial data. In the criterion above (observability constant), one has V =
L2 ×H−1, that is the set of all possible initial data, but it may be interesting to consider subsets
of L2 ×H−1, such as:

• The subset of initial data having a certain number of nonzero Fourier components. This
is the case in practice when the measurement devices can only measure, say, the first N
frequencies of the solutions of the wave equation.

• A set of data in a neighborhood of a given fixed datum in L2 × H−1. It may happen in
practice that only such initial data be relevant for physical reasons.
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• A set of initial data which is defined as a parametrized (finite or infinite dimensional) sub-
manifold of L2×H−1, appearing in the model of some physical experiment. For instance the
works in [8, 9, 11, 17] consider a finite number of possibilities for the unknown domains and
run the optimization over this finite dimensional manifold.

A systematic analysis of these issues is still to be done.

Acknowledgment.The first author was partially supported by the ANR project OPTIFORM.
The third author was partially supported by Grant MTM2011-29306-C02-00, MICINN, Spain, ERC
Advanced Grant FP7-246775 NUMERIWAVES, ESF Research Networking Programme OPTPDE
and Grant PI2010-04 of the Basque Government.

References

[1] R.A. Adams, Sobolev Spaces, Pure and Applied Mathematics 65 (1975), Academic Press, New
York.

[2] C. Bardos, G. Lebeau, J. Rauch, Sharp sufficient conditions for the observation, control, and
stabilization of waves from the boundary, SIAM J. Control Optim. 30 (1992), no. 5, 1024–1065.
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