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Complexity and regularity of maximal energy domains for

the wave equation with fixed initial data

Yannick Privat∗ Emmanuel Trélat† Enrique Zuazua‡§

Abstract

We consider the homogeneous wave equation on a bounded open connected subset Ω of
IRn. Some initial data being specified, we consider the problem of determining a measurable
subset ω of Ω maximizing the L2-norm of the restriction of the corresponding solution to ω
over a time interval [0, T ], over all possible subsets of Ω having a certain prescribed measure.
We prove that this problem always has at least one solution and that, if the initial data
satisfy some analyticity assumptions, then the optimal set is unique and moreover has a finite
number of connected components. In contrast, we construct smooth but not analytic initial
conditions for which the optimal set is of Cantor type and in particular has an infinite number
of connected components.

Keywords: wave equation, optimal domain, Cantor set, Fourier series, calculus of variations.

AMS classification: 35L05 26A30 49K20 49J30

1 Introduction

Let n ≥ 1 be an integer. Let T be a positive real number and Ω be an open bounded connected
subset of IRn. We consider the homogeneous wave equation with Dirichlet boundary conditions

∂tty −4y = 0 in (0,+∞)× Ω,
y = 0 on (0,+∞)× ∂Ω.

(1)

For all initial data (y0, y1) ∈ H1
0 (Ω) × L2(Ω), there exists a unique solution y of (1) in the space

C0([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)), such that y(0, x) = y0(x) and ∂ty(0, x) = y1(x) for almost

every x ∈ Ω.
Note that the energy of the solution y over the whole domain Ω, defined by

E(t) =
1

2

∫
Ω

(
‖∇xy(t, x)‖2 + |yt(t, x)|2

)
dx,

is a constant function of t. This conservation property is no longer true when considering the
integral over a proper subset of Ω. But, from a control theoretical point of view and, in particular,
motivated by the problem of optimal observation or optimal placement of observers, it is interesting
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to consider such energies over a certain horizon of time. This motivates the consideration of the
functional

Gγ,T (χω) =

∫ T

0

∫
ω

(
γ1‖∇xy(t, x)‖2 + γ2|y(t, x)|2 + γ3|∂ty(t, x)|2

)
dx dt, (2)

where γ = (γ1, γ2, γ3) ∈ [0,+∞)3 \{(0, 0, 0)} is fixed and ω is any arbitrary measurable subset of Ω
of positive measure. Here and throughout the article, the notation χω stands for the characteristic
function of ω.

For every subset ω, the quantity Gγ,T (χω) provides an account for the amount of energy of the
solution y restricted to ω over the horizon of time [0, T ].

In this paper we address the problem of determining the optimal shape and location of the
subdomain ω of a given measure, maximizing Gγ,T (χω).

Optimal design problem (Pγ,T ). Let L ∈ (0, 1), let γ ∈ [0,+∞)3 \ {(0, 0, 0)}, and
let T > 0 be fixed. Given (y0, y1) ∈ H1

0 (Ω)×L2(Ω) arbitrary, we investigate the problem
of maximizing the functional Gγ,T defined by (2) over all possible measurable subsets
ω of Ω of Lebesgue measure |ω| = L|Ω|, where y ∈ C0([0, T ];H1

0 (Ω)) ∩ C1([0, T ];L2(Ω))
is the unique solution of (1) such that y(0, ·) = y0(·) and ∂ty(0, ·) = y1(·).

We stress that the search of an optimal set is done over all possible measurable subsets of Ω
having a certain prescribed Lebesgue measure. This class of domains is very large and it results
in a non-trivial infinite-dimensional shape optimization problem, in which we optimize not only
the placement of ω but also its shape. If we were to restrict our search to domains having a
prescribed shape, for instance, a certain number of balls with a fixed radius where the unknowns
are the centers of the balls, then the problem would turn into a more classical finite-dimensional
one. Here, we do not make any restriction on the shape of the unknown domain ω.

Note that, in the above problem, the initial conditions (y0, y1) are arbitrary, but fixed. There-
fore the optimal set ω, whenever it exists, depends on the initial data under consideration. This
problem is a mathematical benchmark, in view of addressing other more intricate optimal design
problems where one could as well search for the optimal set ω for a certain class of initial data.
The problem we address here, where the initial data are fixed and therefore we are considering a
single solution, is simpler but, as we shall see, it reveals interesting properties.

In this paper we provide a complete mathematical analysis of the optimal design problem (Pγ,T ).
The article is structured as follows. In Section 2 (see in particular Theorem 2) we give a sufficient
condition ensuring the existence and uniqueness of an optimal set. More precisely, we prove that,
if the initial data under consideration belong to a suitable class of analytic functions, then there
always exists a unique optimal domain ω, which has a finite number of connected components for
any value of T > 0 but some isolated values. In Section 3, we investigate the sharpness of the
assumptions made in Theorem 2. More precisely, in Theorem 3 we build initial data (y0, y1) of
class C∞ such that the problem (Pγ,T ) has a unique solution ω, which is a fractal set and thus has
an infinite number of connected components. In Section 4, we present some possible generalizations
of the results in this article with further potential applications.
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2 Existence and uniqueness results

2.1 Existence

Throughout the section, we fix arbitrary initial data (y0, y1) ∈ H1
0 (Ω) × L2(Ω). For almost every

x ∈ Ω, we define

ϕγ,T (x) =

∫ T

0

(
γ1‖∇xy(t, x)‖2 + γ2|y(t, x)|2 + γ3|∂ty(t, x)|2

)
dt (3)

where y ∈ C0([0, T ];H1
0 (Ω))∩C1([0, T ];L2(Ω)) is the unique solution of (1) such that y(0, ·) = y0(·)

and ∂ty(0, ·) = y1(·). Note that the function ϕγ,T is integrable on Ω, and that

Gγ,T (χω) =

∫
ω

ϕγ,T (x) dx, (4)

for every measurable subset ω of Ω.

Theorem 1. For any fixed initial data (y0, y1) ∈ H1
0 (Ω) × L2(Ω) the optimal design problem

(Pγ,T ) has at least one solution. Moreover, there exists a real number λ such that ω∗ is a solution
of (Pγ,T ) if and only if

χ{ϕγ,T (x)>λ} 6 χω∗(x) 6 χ{ϕγ,T>λ}(x), (5)

for almost every x ∈ Ω.

In other words, any optimal set, solution of (Pγ,T ), is characterized in terms of a level set of
the function ϕγ,T . Note that (5) means that {ϕγ,T > λ} ⊂ ω∗ ⊂ {ϕγ,T > λ}, this inclusion being
understood within the class of all measurable subsets of Ω quotiented by the set of all measurable
subsets of Ω of zero Lebesgue measure.

Note also that the real number λ is independent on the solution of (Pγ,T ).

Proof. The proof uses a standard argument of decreasing rearrangement (see, e.g., [20, Chapter 1]
or [7, 9]). We consider the decreasing rearrangement of the measurable nonnegative function ϕγ,T ,
which is the nonincreasing function ϕ∗γ,T : (0, |Ω|)→ IR defined by

ϕ∗γ,T (s) = inf {t ∈ IR | |{ϕγ,T > t}| 6 s} .

Recall that, according to the (first) Hardy-Littlewood inequality, we have

Gγ,T (χω) =

∫
ω

ϕγ,T (x) dx 6
∫ L|Ω|

0

ϕ∗γ,T (s) ds,

for every measurable subset ω of Ω such that |ω| = L|Ω|. We are going to prove that the real number∫ L|Ω|
0

ϕ∗γ,T (s) ds is actually the maximal value of Gγ,T over the set of all measurable subsets ω of Ω
such that |ω| = L|Ω|, and thus is the maximal value of (Pγ,T ). We distinguish between two cases.

If |{ϕγ,T = ϕ∗γ,T (L|Ω|)}| = 0, then the (measurable) set ω∗ = {ϕγ,T > ϕ∗γ,T (L|Ω|)} satisfies
|ω∗| = L|Ω| and ∫

ω∗
ϕγ,T (x) dx =

∫ L|Ω|

0

ϕ∗γ,T (s) ds.

If |{ϕγ,T = ϕ∗γ,T (L|Ω|)}| > 0, then clearly there exists a measurable subset ω∗ of Ω such that
|ω∗| = L|Ω| and {ϕγ,T > ϕ∗γ,T (L|Ω|)} ⊂ ω∗ ⊂ {ϕγ,T > ϕ∗γ,T (L|Ω|)} in the sense recalled above.

3



Moreover, we have∫
ω∗
ϕγ,T (x) dx =

∫
ω∗\{ϕγ,T>ϕ∗γ,T (L|Ω|)}

ϕγ,T (x) dx+

∫
{ϕγ,T>ϕ∗γ,T (L|Ω|)}

ϕγ,T (x) dx

= ϕ∗γ,T (L|Ω|) |ω∗\{ϕγ,T > ϕ∗γ,T (L|Ω|)}|+
∫
{ϕγ,T>ϕ∗γ,T (L|Ω|)}

ϕ∗γ,T (s) ds

=

∫ L|Ω|

0

ϕ∗γ,T (s) ds.

At this step, we have proved that (Pγ,T ) has at least one solution, which satisfies (5) with λ =
ϕ∗γ,T (L|Ω|).

Moreover, the computation above also shows that every set ω∗ satisfying (5) with λ = ϕ∗γ,T (L|Ω|)
is a solution of (Pγ,T ).

It remains to prove that, if ω is a solution of (Pγ,T ), then it must satisfy (5), with λ = ϕ∗γ,T (L|Ω|)
(not depending on ω). Assume by contradiction that ω is a solution of (Pγ,T ) such that (5) is not
satisfied. Let f = ϕγ,T |ω be the restriction of the function ϕγ,T to the set ω. We clearly have

|{f > t}| 6 |{ϕγ,T > t}| for almost every t ∈ IR, and since (5) is not satisfied, there exist ε > 0
and I ⊂ (0, |Ω|) of positive Lebesgue measure such that |{f > t}| + ε 6 |{ϕγ,T > t}| for almost
every t in I. We infer that∫

ω

ϕγ,T (x) dx =

∫ L|Ω|

0

f∗(x) dx <

∫ L|Ω|

0

ϕ∗γ,T (x) dx,

where f∗ : (0, |Ω|)→ IR is the decreasing rearrangement of f , defined by

f∗(s) = inf {t ∈ IR | |{f > t}| 6 s} ,

and hence ω is not a solution of the problem (Pγ,T ). The theorem is proved.

Figure 1 below illustrates the construction of the optimal set ω∗, from the knowledge of ϕγ,T
and its decreasing rearrangement ϕ∗γ,T .

α1 α2 α3 α4 π0

ϕ∗
γ ,T(Lπ) ϕ∗

γ ,T(Lπ)

Lπ π0

Figure 1: Ω = (0, π); Graph of a function ϕγ,T (left) and graph of its decreasing rearrangement
ϕ∗γ,T (right). With the notations of the figure, ω∗ = (α1, α2) ∪ (α3, α4).
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Remark 1 (Relaxation). In Calculus of Variations, it is usual to consider a relaxed formulation
of the problem (Pγ,T ). Defining the set of unknowns

UL = {χω ∈ L∞(Ω, {0, 1}) | |ω| = L|Ω|},

the relaxation procedure consists in considering the convex closure of UL for the L∞ weak star
topology, that is

UL = {a ∈ L∞(Ω, [0, 1]) |
∫

Ω

a(x) dx = L|Ω|},

and then in extending the functional Gγ,T to UL by setting

Gγ,T (a) =

∫
Ω

a(x)ϕγ,T (x) dx,

for every a ∈ UL. The relaxed version of (Pγ,T ) is then defined as the problem of maximizing the
relaxed functional Gγ,T over the set UL.

Since a 7→ Gγ,T (a) is clearly continuous for the weak star topology of L∞, we claim that

max
χω∈UL

Gγ,T (χω) = max
a∈UL

Gγ,T (a).

It is easy to characterize all solutions of the relaxed problem. Indeed, adapting the proof of Theorem
1, we get that a is solution of the relaxed problem if and only if a = 0 on the set {ϕγ,T < λ}, a = 1
on the set {ϕγ,T > λ}, and a(x) ∈ [0, 1] for almost every x ∈ {ϕγ,T = λ} and

∫
Ω
a(x) dx = L|Ω|.

2.2 Uniqueness

Let us now discuss the issue of the uniqueness of the optimal set.
Note that the characterization of the solutions of (Pγ,T ) in Theorem 1 enables situations where

infinitely many different subsets maximize the functional Gγ,T over the class of Lebesgue mea-
surable subsets of Ω of measure L|Ω|. This occurs if and only if the set {ϕγ,T = λ}, where λ is
the positive real number introduced in Theorem 1, has a positive Lebesgue measure. In the next
theorem, we provide sufficient regularity conditions on the initial data (y0, y1) of the wave equation
(1) to guarantee the uniqueness of the solution of (Pγ,T ).

We denote by A = −4 the Dirichlet-Laplacian, unbounded linear operator in L2(Ω) with
domain D(A) = {u ∈ H1

0 (Ω) | 4u ∈ L2(Ω)}. Note that D(A) = H2(Ω) ∩ H1
0 (Ω) whenever the

boundary of Ω is C2. Note however that our results hereafter, we do not require any regularity
assumption on the boundary of Ω.

Theorem 2. Let γ ∈ [0,+∞)3 \ {(0, 0, 0)}. We assume that:

(A1) the function ψ defined by

ψ(x) = γ1‖∇xy0(x)‖2 + γ2|y0(x)|2 + γ3|y1(x)|2,

for every x ∈ Ω, is nonconstant;

(A2) there exists R > 0 such that

+∞∑
j=1

Rj

j!

(
‖Aj/2y0‖2L2(Ω) + ‖A(j−1)/2y1‖2L2(Ω)

)1/2

< +∞.
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Then, for every value of T > 0 but some isolated values, the problem (Pγ,T ) has a unique1 solution
ω satisfying moreover the following properties:

• ω is a semi-analytic2 subset of the open set Ω and, thus, in particular, for every compact
subset K ⊂ Ω, the set ω ∩K has a finite number of connected components;

• If Ω is symmetric with respect to an hyperplane, σ being the symmetry operator, and if
y0 ◦ σ = y0 and y1 ◦ σ = y1, then ω enjoys the same symmetry property;

• If γ1 = 0 and γ2 + γ3 > 0, then there exists η > 0 such that d(ω, ∂Ω) > η, where d denotes
the Euclidean distance in IRn. In that case, in particular, ω has a finite number of connected
components.

Proof of Theorem 2. Let us first prove that, under the assumption (A2), the corresponding solution
y of the wave equation is analytic in the open set (0,+∞)× Ω. We first note that the quantity

‖Aj/2y(t, ·)‖2L2(Ω) + ‖A(j−1)/2∂ty(t, ·)‖2L2(Ω)

is constant with respect to t (it is a higher-order energy over the whole domain Ω). Therefore,
using (A2), there exists C1 > 0 such that

+∞∑
j=1

Rj

j!

(
‖Aj/2y(t, ·)‖2L2(Ω) + ‖A(j−1)/2∂ty(t, ·)‖2L2(Ω)

)1/2

= C1 < +∞, (6)

for every time t.
Let U be any open subset of Ω. Using (6) and the well-known Sobolev imbedding theorem (see,

e.g., [1, Theorem 4.12]), it is clear that y(t, ·) and ∂ty(t, ·) are of class C∞ on U , for every time t.
Moreover, since ‖Aj/2u‖L2(Ω) = ‖4j/2u‖L2(Ω) if j is even, and ‖Aj/2u‖L2(Ω) = ‖∇4(j−1)/2u‖L2(Ω)

if j is odd, we get in particular that

+∞∑
j=1

R2j

(2j)!
‖4jy(t, ·)‖L2(U) 6 C1 and

+∞∑
j=0

R2j+1

(2j + 1)!
‖4j∂ty(t, ·)‖L2(U) 6 C1. (7)

Now, it follows from [15, Theorem 7] that y(t, ·) and ∂ty(t, ·) are analytic functions in U , for every
time t. Moreover, following the proof of [15, Theorem 7], we get that there exist C2 > 0 and δ > 0
such that

max
|α|6k

‖∂αy(t, ·)‖C0(U) + max
|α|6k

‖∂α∂ty(t, ·)‖C0(U) 6 C2
k!

δk
,

for every t > 0 and every integer k, and we stress on the fact that C2 does not depend on t. To derive
the analytic regularity both in time and space, we write that ∂2k

t y = 4ky and ∂2k+1
t y = 4k∂ty for

1Similarly to the definition of elements of Lp-spaces, the subset ω is unique within the class of all measurable
subsets of Ω quotiented by the set of all measurable subsets of Ω of zero Lebesgue measure.

2A subset ω of an open subset Ω ⊂ IRn is said to be semi-analytic if it can be written in terms of equalities and
inequalities of analytic functions, that is, for every x ∈ ω, there exists a neighborhood U of x in Ω and 2pq analytic
functions gij , hij (with 1 6 i 6 p and 1 6 j 6 q) such that

ω ∩ U =

p⋃
i=1

{y ∈ U | gij(y) = 0 and hij(y) > 0, j = 1, . . . , q}.

We recall that such semi-analytic (and more generally, subanalytic) subsets enjoy nice properties, for instance they
are stratifiable in the sense of Whitney (see [4, 8]).
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every k ∈ IN, and therefore3

max
|α|6k2

‖∂2k1
t ∂αy(t, ·)‖C0((0,+∞)×U) + max

|α|6k2
‖∂2k1+1
t ∂αy(t, ·)‖C0((0,+∞)×U)

6 max
|α|6k2

‖4k1∂αy(t, ·)‖C0((0,+∞)×U) + max
|α|6k2

‖4k1∂α∂ty(t, ·)‖C0((0,+∞)×U)

6 nk1
(

max
|α|6k2+2k1

‖∂αy(t, ·)‖C0(U) + max
|α|6k2+2k1

‖∂α∂ty(t, ·)‖C0(U)

)
6 C2

nk1

δ2k1+k2
(2k1 + k2)!

The analyticity of y now follows from standard theorems.
Let us now prove that the function ϕγ,T defined by (3) is analytic in Ω. We have ϕγ,T (x) =∫ T

0
f(t, x) dt, with

f(t, x) = γ1‖∇xy(t, x)‖2 + γ2|y(t, x)|2 + γ3|∂ty(t, x)|2.

It follows from the above estimates that, for every t ∈ [0, T ], the function f(t, ·) is analytic in Ω,
and moreover is bounded by some constant on the bounded set Ω. Therefore ϕγ,T is analytic in Ω.

As a consequence, given a value of T > 0, either ϕγ,T is constant on the whole Ω, or ϕγ,T
cannot be constant on any subset of Ω of positive Lebesgue measure. In the latter case this implies
that the set {ϕγ,T = λ}, where λ is defined as in (5), has a zero Lebesgue measure for such values
of T , and therefore the optimal set is unique (according to the characterization of the optimal set
following from Theorem 1).

Let us then prove that the function ϕγ,T is nonconstant for every value T but some isolated
values. According to Assumption (A1), there exists (x1, x2) ∈ Ω2 such that ψ(x1) 6= ψ(x2). Since
f is in particular continuous with respect to its both variables, we have

lim
T↘0

ϕγ,T (x2)− ϕγ,T (x1)

T
= ψ(x2)− ψ(x1) 6= 0.

The function T 7→ ϕγ,T (x2) − ϕγ,T (x1) is clearly analytic (thanks to the estimates above) and
thus can vanish only at some isolated values of T . Hence ϕγ,T cannot be constant on a subset of
positive measure for such values of T , whence the claim above. This ensures the uniqueness of the
optimal set ω.

The first additional property follows from the analyticity properties. The symmetry property
follows from the fact that ϕγ,T ◦ σ(x) = ϕγ,T (x) for every x ∈ Ω. If ω were not symmetric with
respect to this hyperplane, the uniqueness of the solution of the first problem would fail, which is
a contradiction.

Finally, if γ1 = 0 and γ2 +γ3 > 0 then ϕγ,T (x) = 0 for every x ∈ ∂Ω, and hence ϕγ,T reaches its
global minimum on the boundary of Ω. The conclusion follows according to the characterization
of ω made in Theorem 1.

Let us now comment on the assumptions done in the theorem. Several remarks are in order.

Remark 2. In the proof above, the boundary of Ω is not assumed to be regular to ensure the
analyticity of the solution under the assumption (A2). This might seem surprising since one could
expect the lack of regularity (analyticity) of the boundary to possibly interact microlocally with
the interior analyticity, but this is not the case. A complete analysis of the interaction of microlocal

3Here, α = (α1, . . . , αn) ∈ INn is a multi-index, |α| = α1+ · · ·+αn, and ∂αu = ∂α1
x1 · · · ∂

αn
xn u with the coordinates

x = (x1, . . . , xn).

7



boundary and interior regularity is not done, as far as we know, but it is not required to address
the problem under consideration.

We recall however that, if the boundary of Ω is C∞, then the Dirichlet spaces D(Aj/2), j ∈ IN,
are the Sobolev spaces with Navier boundary conditions defined by

D(Aj/2) = {u ∈ Hj(Ω) | u|∂Ω = 4u|∂Ω = · · · = 4[ j−1
2 ]u|∂Ω = 0}.

Analyticity of solutions up to the boundary would require the boundary of Ω be analytic. Under
this condition ω would be a semi-analytic subset of Ω̄ and, thus, in particular, constituted by a
finite number of connected components.

Remark 3. In the case where γ1 = 0 and γ2 + γ3 > 0, the conclusion of Theorem 2 actually holds
true for every T > 0. Indeed, it suffices to note that, if the initial data satisfy (A2), then the
function ϕγ,T is analytic and vanishes on ∂Ω. Hence it cannot be constant, whence the result.

Remark 4. The optimal shape depends on the initial data under consideration. But there are
infinitely many initial data (y0, y1) ∈ H1

0 (Ω)× L2(Ω) leading to the same function ϕγ,T and thus
to the same solution(s) of (Pγ,T ). Indeed, consider for the sake of simplicity, the one-dimensional
case Ω = (0, π) with T = 2kπ, k ∈ IN∗. Expanding the initial data y0 and y1 as

y0(x) =

+∞∑
j=1

aj sin(jx) and y1(x) =

+∞∑
j=1

jbj sin(jx),

it follows that

Gγ,T (χω) = kπ

+∞∑
j=1

(a2
j + b2j )

∫ π

0

χω(x)
(
γ1j

2 cos(jx)2 + (γ2 + j2γ3) sin2(jx)
)
dx, (8)

and

ϕγ,T (x) = kπ

+∞∑
j=1

(a2
j + b2j )

(
γ1j

2 cos(jx)2 + (γ2 + j2γ3) sin2(jx)
)
. (9)

This justifies the claim above. Similar considerations have been discussed in [17, Section 1.2].

Remark 5 (Genericity with respect to T ). As settled in Theorem 2, the uniqueness of the optimal
domain holds true for every value of T > 0 but some isolated values (independently on the initial
conditions). For exceptional values of T the uniqueness property may fail. For example, assume
that Ω = (0, π), that T = 2kπ with k ∈ IN∗, and that γ2 = 0. Then, using the notations of Remark
4, we have

ϕγ,T (x) = πj2 (γ1 + γ3)

+∞∑
j=1

(a2
j + b2j ) = 2π (γ1 + γ3) ‖(y0, y1)‖2H1

0×L2 ,

for every x ∈ Ω. Then, obviously, the characteristic function of any measurable subset ω of
Lebesgue measure L|Ω| is a solution of (Pγ,T ).

Remark 6 (Sharpness of Assumption (A1)). If Assumption (A1) does not hold then the unique-
ness of the optimal set may fail. Indeed, assume that Ω = (0, π), that γ = (1, 1, 0), and let
y0(x) = sinx and y1(x) = 0 for every x ∈ Ω. The solution y of (1) is y(t, x) = cos t sinx for all
(t, x) ∈ (0,+∞)× (0, π), and then,

ψ(x) = 1 and ϕγ,T (x) =
T

2
+

sin(2T )

4
,

for every x ∈ (0, π). Since the functions ψ and ϕγ,T are constant in Ω, any subset ω of Lebesgue
measure L|Ω| is optimal.
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Remark 7. Assumption (A2) may look intricate but it is actually standard in the PDE setting,
within the framework of the Dirichlet spaces (Sobolev with Navier boundary conditions). This
assumption guarantees both the analyticity of the initial data and the boundary compatibility
conditions that are required to ensure the analyticity of the solution.

Note that the analyticity of (y0, y1) by itself is not sufficient to ensure the analyticity of the
corresponding solution y of the wave equation since boundary singularities associated to the lack
of boundary compatibility conditions propagate inside the domain according to the D’Alembert
formula.

Indeed, to simplify the explanation assume that we are in dimension one and that Ω = (0, π).
The solution y is analytic inside the characteristic cone, in accordance with the Cauchy-Kowalevska
theorem. Assumption (A2) ensures that the initial data are in the usual Dirichlet spaces and in
particular requires that all their derivatives of even order vanish on the boundary, but this condition
is actually necessary to ensure analyticity. Consider functions y0 and y1 that are analytic on (0, π)
and whose derivatives of even order vanish at 0 and π. Then we first consider the odd extension of
these functions on (0, 2π), and then we extend them by periodicity to the whole real line. It is clear
that the corresponding solution y of the wave equation is analytic. If one of the derivatives of odd
order of y0 or y1 were not equal to zero at 0 or π, then this would cause a singularity propagating
as soon as t > 0, and the corresponding solution would not be analytic. Therefore Assumption
(A2) is in some sense a sharp condition to ensure the analyticity of the solution.

Remark 8 (Further comments on Assumption (A2)). We have seen that the optimal solution may
not be unique whenever the function ϕγ,T is constant on some subset of Ω of positive measure. More
precisely, assume that ϕγ,T is constant, equal to c, on some subset I of Ω of positive measure |I|.
If |{ϕγ,T > c}| < L|Ω| < |{ϕγ,T > c}| then there exists an infinite number of measurable subsets
ω of Ω maximizing (4), all of them containing the subset {ϕγ,T > c}. The set ω ∩ {ϕγ,T = c} can
indeed be chosen arbitrarily.

We do not know any simple characterization of all initial data for which this non-uniqueness
phenomenon occurs, however to get convinced that this may indeed happen it is convenient to
consider the one-dimensional case Ω = (0, π) with T = 2π and γ = (0, 0, 1). Indeed in that case
the functional Gγ,T reduces to (8) and the corresponding function ϕγ,T reduces to (9). Using the
notations of Remark 4, and noting that

π

2

+∞∑
j=1

j2(a2
j + b2j ) = ‖(y0, y1)‖2H1

0×L2 ,

one gets

ϕγ,T (x) =
π

2

+∞∑
j=1

j2(a2
j + b2j )−

π

2

+∞∑
j=1

j2(a2
j + b2j ) cos(2jx),

for almost every x ∈ (0, π). Then ϕγ,T can be written as a Fourier series whose sine Fourier coeffi-
cients vanish and cosine coefficients are nonpositive and summable. Hence, to provide an explicit
example where the non-uniqueness phenomenon occurs, consider any nontrivial even function ψ
of class C∞ on IR whose support is contained in [−α, α] for some α ∈ (0, π/4). The C1 regular-
ity ensures that its Fourier coefficients are summable. To ensure the nonpositivity of its Fourier
coefficients, it suffices to consider the π-periodic function ϕγ,T defined on (0, π) by the convolution

ϕγ,T (x) =

∫
IR

ψ(y)ψ(π − y) dy −
∫

IR

ψ(y)ψ (x− y) dy.

Indeed, the function ϕγ,T defined in such a way vanishes at x = 0 and x = π, is of class C∞ on
(0, π), with support contained in [0, 2α]∪ [π−2α, π], and all its Fourier coefficients are nonpositive.

9



More precisely ϕγ,T has a Fourier series expansion of the form

ϕγ,T (x) =

(∫
IR

ψ(y) dy

)2

−
+∞∑
j=1

βj cos(2jx),

with βj > 0 for every j > 1. To construct an example where the solution of (Pγ,T ) is not unique,
it suffices to define the initial data y0 and y1 by their Fourier expansion, and with the notations of
Remark 4 in such a way that π

2 j
2(a2

j + b2j ) = βj , for every j > 1. Since the function ϕγ,T vanishes
(at least) on [2α, π − 2α], it suffices to choose L > 4α/π and it follows that a is a solution of
the relaxed problem mina∈UL Gγ,T (a) introduced in Remark 1 if and only if the three following
conditions hold:

(i) a(x) = 1 on suppϕγ,T ,

(ii) a(x) ∈ [0, 1] for almost every x ∈ (0, π)\ suppϕγ,T ,

(iii)
∫ π

0
a(x) dx = Lπ.

The non uniqueness of solutions is thus obvious.

2.3 Numerical simulations

We provide hereafter a numerical illustration of the results presented in this section. According to
Theorem 2, the optimal domain is characterized as a level set of the function ϕγ,T . Some numerical
simulations are provided on Figure 2, with Ω = (0, π)2, γ = (0, 0, 1), L = 0.6, T = 3, y1 = 0 and

y0(x) =

N0∑
n,k=1

an,k sin(nx1) sin(kx2),

where N0 ∈ IN∗ and (an,k)n,k∈IN∗ are real numbers. The level set is numerically computed using a
simple dichotomy procedure.

3 On the complexity of the optimal set

3.1 Main result

It is interesting to raise the question of the complexity of the optimal sets solutions of the problem
(Pγ,T ), according to its dependence on the initial data. In Theorem 2 we proved that, if the initial
data belong to some analyticity spaces, then the (unique) optimal set ω is the union of a finite
number of connected components. Hence, analyticity implies finiteness and it is interesting to
wonder whether this property still holds true for less regular initial data.

In what follows we show that, in the one-dimensional case and for particular values of T , there
exist C∞ initial data for which the optimal set ω has a fractal structure and, more precisely, is of
Cantor type.

The proof of the following theorem is quite technical and relies on a careful harmonic analysis
construction. In order to facilitate the use of Fourier series, it is more convenient to assume
hereafter that Ω = (0, 2π).

Theorem 3. Let Ω = (0, 2π) and let T = 4kπ for some k ∈ IN∗. Assume either that γ1 > γ3 > 0
and γ1 − γ3 − 4γ2 > 0, or that 0 6 γ1 < γ3 and γ1 − γ3 − 4γ2 < 0. There exist C∞ initial data
(y0, y1) defined on Ω for which the problem (Pγ,T ) has a unique solution ω. The set ω has a fractal
structure and, in particular, it has an infinite number of connected components.
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Figure 2: Ω = (0, π)2 with Dirichlet boundary conditions, L = 0.6, T = 3 and y1 = 0. At the top:
N0 = 15 and an,k = 1/[n2 +k2]. At the bottom: N0 = 15 and an,k = [1− (−1)n+k]/[n2k2]. On the
left: some level sets of y0. On the right: optimal domain (in green) for the corresponding choice
of y0.

Remark 9. The generalization to the hypercube Ω = (0, 2π)n of the following construction of a
fractal optimal set is not immediate since the solutions of the multi-dimensional wave equation fail
to be time-periodic.

Remark 10. Theorem 3 states that there exist smooth initial data for which the optimal set has
a fractal structure, but for which the relaxation phenomenon (see Remark 1) does not occur. At
the opposite, the optimal design observability problem for the wave equation settled in [18] admits
only relaxed solutions and, as highlighted in [5, 17], numerous difficulties such as the so-called
spillover phenomenon arise when trying to compute numerically the optimal solutions.

Note that this particular feature cannot be guessed from numerical simulations. It illustrates
the variety of behaviors of any maximizing sequence of the problem (Pγ,T ), and the difficulty
to capture such phenomena numerically. Similar discussions are led in [19] where the problem of
determining the shape and position of the control domain minimizing the norm of the HUM control
for given initial data have been investigated.

Proof of Theorem 3. Without loss of generality, we set T = 4π. The eigenfunctions of the Dirichlet-
Laplacian on Ω are given by

en(x) = sin(nx/2),
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for n ∈ IN∗, associated with the eigenvalues n2/4. We compute

ϕγ,T (x) = 2π

+∞∑
j=1

(a2
j + b2j )

(
γ1j

2

4
cos

(
jx

2

)2

+

(
γ2 +

γ3j
2

4

)
sin

(
jx

2

)2
)

= π

+∞∑
j=1

(a2
j + b2j )

(
j2(γ1 + γ3)

4
+ γ2

)
+ π

+∞∑
j=1

(a2
j + b2j )

(
j2(γ1 − γ3)

4
− γ2

)
cos(jx).

Note that the coefficients j2(a2
j + b2j ) are nonnegative and of converging sum. The construction of

the set ω having an infinite number of connected components is based on the following result.

Proposition 1. There exist a measurable open subset C of [−π, π], of Lebesgue measure |C| ∈
(0, 2π), and a smooth nonnegative function f on [−π, π], satisfying the following properties:

• C is of fractal type and, in particular, it has an infinite number of connected components;

• f(x) > 0 for every x ∈ C, and f(x) = 0 for every x ∈ [−π, π] \ C;

• f is even;

• for every integer n,

αn =

∫ π

−π
f(x) cos(nx) dx > 0;

• The series
∑
αn is convergent.

Indeed, consider the function f introduced in this proposition and choose the initial data y0

and y1 such that their Fourier coefficient aj and bj satisfy

π(a2
j + b2j )

(
j2(γ1 − γ3)

4
− γ2

)
= αj

for every j ∈ IN∗. Let us extend the characteristic function χC of C as a 2π-periodic function on
IR, and let C̃ = [0, 2π] ∩ {χC = 1}. We have

ϕγ,T (x) =

+∞∑
j=1

αj

j2(γ1+γ3)
4 + γ2

j2(γ1−γ3)
4 − γ2

+

+∞∑
j=1

αj cos(jx).

Note that the function ϕγ,T constructed in such a way is nonnegative4, and there exists λ > 0 such
that the set ω = {ϕγ,T > λ} has an infinite number of connected components. In other words it
suffices to choose L = |{ϕγ,T > λ}| and the optimal set ω can be chosen as the complement of the

fractal set C̃ in [0, 2π]. The uniqueness of ω is immediate, by construction of the function ϕγ,T .
Theorem 3 follows from that result. Proposition 1 is proved in the next subsection.

3.2 Proof of Proposition 1

There are many possible variants of such a construction. We provide hereafter one possible way of
proving this result.

Let α ∈ (0, 1/3). We assume that α is a rational number, that is, α = p
q where p and q

are relatively prime integers, and moreover we assume that p + q is even. Let us first construct

4Note also that, as expected, the function ϕγ,T constructed in such a way satisfies ϕγ,T (0) = ϕγ,T (π) = 0
whenever γ1 = 0.
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the fractal set C ⊂ [−π, π]. Since C will be symmetric with respect to 0, we describe below the
construction of C ∩ (0, π). Set s0 = 0 and

sk = π − π

2k
(α+ 1)k,

for every k ∈ IN∗. Around every such point sk, k ∈ IN∗, we define the interval

Ik =
[
sk −

π

2k
α(1− α)k, sk +

π

2k
α(1− α)k

]
of length |Ik| = π

2k−1α(1− α)k.

Lemma 1. We have the following properties:

• inf I1 > απ;

• sup Ik < inf Ik+1 < π for every k ∈ IN∗.

Proof. Since α < 1/3 it follows that inf I1 = π − π
2 (α + 1) > απ. For the second property, note

that the inequality sup Ik < inf Ik+1 is equivalent to

α(1− α)k−1(3− α) < (α+ 1)k,

which holds true for every k ∈ IN∗ since α(3− α) < α+ 1.

It follows in particular from that lemma that the intervals Ik are two by two disjoint. Now, we
define the set C by

C ∩ (0, π) = [0, απ] ∪
+∞⋃
k=1

Ik.

The resulting set C (symmetric with respect to 0) is then of fractal type and has an infinite number
of connected components (see Figure 3).

We now define the function f such that f is continuous, piecewise affine, equal to 0 outside C,
and such that f(sk) = bk for every k ∈ IN, bk being positive real numbers to be chosen (see Figure
3).

Let us compute the Fourier series of f . Since f is even, its sine coefficients vanish. In order to
compute its cosine coefficients, we will use the following result.

Lemma 2. Let a ∈ IR, ` > 0 and b > 0. Let g be the function defined on IR by

g(x) =


2b
` (x− a+ `

2 ) if a− `
2 6 x 6 a,

2b
` (a+ `

2 − x) if a 6 x 6 a+ `
2 ,

0 otherwise.

In other words, g is a hat function, i. e. its graph is a positive triangle of height b above the
interval [a− `

2 , a+ `
2 ]. Then∫

IR

g(x) cos(nx) dx =
4b

`n2
cos(na)

(
1− cos

n`

2

)
,

for every n ∈ IN∗.
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Figure 3: Drawing of the function f and of the set C

It follows from this lemma that∫ απ

0

f(x) cos(nx) dx =
b0

απn2
(1− cos(nαπ)), (10)

and∫
Ik

f(x) cos(nx) dx =
2k+1bk

α(1− α)kπn2
cos
(
nπ − nπ

2k
(α+ 1)k

)(
1− cos

(nπ
2k
α(1− α)k

))
, (11)

for every k ∈ IN∗. Note that ∣∣∣∣∫
Ik

f(x) cos(nx) dx

∣∣∣∣ 6 4bk
απn2

(
2

1− α

)k
, (12)

for every k ∈ IN∗. Formally, the nth cosine Fourier coefficient of f is given by

αn =

∫ π

−π
f(x) cos(nx) dx = 2

∫ απ

0

f(x) cos(nx) dx+ 2

+∞∑
k=1

∫
Ik

f(x) cos(nx) dx.

Our next task consists of choosing adequately the positive real numbers bk, k ∈ IN, so that the
series in the above formal expression αn converges, αn being nonnegative.

Let us first consider the integral (10) (first peak). It is clearly nonnegative for every n ∈ IN∗,
and is positive except whenever n is a multiple of 2q. Taking advantage of the rationality of α, we
can moreover derive an estimate from below, as follows. Set

σ0 = min

{
1− cos(n

p

q
π) | n = 1, . . . , 2q − 1

}
.
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One has σ0 > 0, and there holds ∫ απ

0

f(x) cos(nx) dx >
b0σ0

απn2
, (13)

for every n ∈ IN∗ \ (2qIN∗). At this step, assume that

bk 6

(
1− α

2

)k
1

2k
σ0b0

8
, (14)

for every k ∈ IN∗ (b0 > 0 is arbitrary). Under this assumption, using (12) it follows that the formal
expression of αn above is well defined, and that∣∣∣∣∣

+∞∑
k=1

∫
Ik

f(x) cos(nx) dx

∣∣∣∣∣ 6 1

2

b0σ0

απn2
6

1

2

∫ απ

0

f(x) cos(nx) dx,

for every n ∈ IN∗ \ (2qIN∗), ensuring therefore αn > 0 for such integers n.
If n = 2rq, with r ∈ IN∗, then the integral (10) vanishes. We then focus on the second peak,

that is, on the integral (11) with k = 1. Since n = 2rq, its value is∫
I1

f(x) cos(nx) dx =
4b1

α(1− α)πn2
cos

(
2rqπ − rqπ(

p

q
+ 1)

)(
1− cos

(
rqπ

p

q
(1− p

q
)

))
.

Since p+ q is even, it follows that cos
(

2rqπ − rqπ(pq + 1)
)

= 1. Hence, we have∫
I1

f(x) cos(nx) dx =
4b1

α(1− α)πn2

(
1− cos

(
rπ
p

q
(q − p)

))
> 0.

Moreover, since the integers p and q are relatively prime integers and q − p is even, in this last
expression one has cos(rπ pq (q − p)) = 1 if and only if r is multiple of q, that is, if and only if n is

multiple of 2q2. As before we derive an estimate from below, setting

σ1 = min

{
1− cos

(
rπ
p

q
(q − p)

) ∣∣ r = 1, . . . , 2q − 1

}
.

One has σ1 > 0, and there holds∫
I1

f(x) cos(nx) dx >
4b1σ1

α(1− α)πn2
, (15)

for every n ∈ (2qIN∗) \ (2q2IN∗). At this step, additionally to (14), assume that

bk 6

(
1− α

2

)k−1
1

2k+1
b1σ1, (16)

for every k > 2. Under this assumption, using (12) it follows that∣∣∣∣∣
+∞∑
k=2

∫
Ik

f(x) cos(nx) dx

∣∣∣∣∣ 6 1

2

4b1σ1

α(1− α)πn2
6

1

2

∫
I1

f(x) cos(nx) dx,

for every n ∈ (2qIN∗) \ (2q2IN∗), ensuring therefore αn > 0 for such integers n.
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The construction can be easily iterated. At iteration m, assume that n = 2rqm, with r ∈ IN∗.
Then the integrals over the m first peaks vanish, that is,∫ απ

0

f(x) cos(nx) dx =

∫
Ik

f(x) cos(nx) dx = 0

for every k = 1, . . . ,m− 1. We then focus on the (m+ 1)th peak, that is, on the integral (11) with
k = m. Since n = 2rqm, its value is∫

Im

f(x) cos(nx) dx =
2m+1bm

α(1− α)mπn2
cos

(
2rqmπ − rqmπ

2m−1

(
p

q
+ 1

)m)
×
(

1− cos

(
rqmπ

2m−1

p

q

(
1− p

q

)m))
.

Since p+ q is even, it follows that

cos

(
2rqmπ − rqmπ

2m−1

(
p

q
+ 1

)m)
= 1,

and hence, ∫
Im

f(x) cos(nx) dx =
2m+1bm

α(1− α)mπn2

(
1− cos

(
rπ

2m−1

p

q
(q − p)m

))
> 0.

Moreover, since the integers p and q are relatively prime integers and q−p is even, it follows easily
that q and ( q−p2 )m are relatively prime integers, and therefore this last expression vanishes if and
only if r is multiple of q, that is, if and only if n is multiple of 2qm+1. Setting

σm = min

{
1− cos

(
rπ

2m−1

p

q
(q − p)m

) ∣∣ r = 1, . . . , 2q − 1

}
,

one has σm > 0 and ∫
Im

f(x) cos(nx) dx >
2m+1bmσm

α(1− α)mπn2
,

for every n ∈ (2qmIN∗)\ (2qm+1IN∗). Additionally to (14), (16) and the following iterative assump-
tions, we assume that

bk 6

(
1− α

2

)k−m
1

2k−m+2
bmσm, (17)

for every k > m+ 1. Under this assumption, using (12) it follows that∣∣∣∣∣
+∞∑

k=m+1

∫
Ik

f(x) cos(nx) dx

∣∣∣∣∣ 6 1

2

2m+1bmσm
α(1− α)mπn2

6
1

2

∫
Im

f(x) cos(nx) dx,

for every n ∈ (2qmIN∗) \ (2qm+1IN∗), ensuring therefore αn > 0 for such integers n.
The construction of the function f goes in such a way by iteration. By construction, its Fourier

cosine coefficients αn are positive, and moreover, the series
∑+∞
n=0 αn is convergent. We have thus

constructed a function f satisfying all requirements of the statement except the fact that f is
smooth.

Let us finally show that, using appropriate convolutions, we can modify f in order to obtain a
smooth function keeping all required properties. Set f0 = f[−απ,απ] and fk = fIk for every k ∈ IN∗.
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For every ε > 0, let ρε be a real nonnegative function which is even, whose support is [−ε, ε],
whose integral over IR is equal to 1, and whose Fourier (cosine) coefficients are all positive. Such
a function clearly exists. Indeed, only the last property is not usual, but to ensure this Fourier
property it suffices to consider the convolution of any usual bump function with itself. Then, for
every k ∈ IN, consider the (nonnegative) function f̃k defined by the convolution f̃k = ρε(k) ? fk,

where each ε(k) is chosen small enough so that the supports of all functions f̃k are still disjoint
two by two and contained in [−π, π] as in Lemma 1. Then, we define the function f̃ as the sum of
all functions f̃k, and we symmetrize it with respect to 0. Clearly, every Fourier (cosine) coefficient
of f̃ is the sum of the Fourier (cosine) coefficients of f̃k, and thus is positive, and their sum is
still convergent. The function f̃ is smooth and satisfies all requirements of the statement of the
proposition. This ends the proof.

4 Conclusions and further comments

4.1 Other partial differential equations

The study developed in this article can be extended in several directions and in particular to other
partial differential equations.

Indeed, to ensure the existence of an optimal set for the problem

sup
|ω|=L|Ω|

∫
ω

ϕγ,T (x) dx,

it is just required that ϕγ,T ∈ L1(Ω). Then the conclusion of Theorem 1 clearly holds true for
other evolution PDE’s, either parabolic or hyperbolic.

Theorem 2 holds true as soon as one is able to ensure that the function ϕγ,T is analytic on Ω.
Depending on the model under consideration it may however be more or less difficult to ensure
this property by prescribing suitable regularity properties on the initial conditions. Let us next
provide some details for two examples: the Schrödinger equation and the heat equation. In these
cases, and since these equations are of first order in time, it is definitely more relevant to replace
the cost functional Gγ,T with

G̃T (χω) =

∫ T

0

∫
ω

|y(t, x)|2 dx dt.

Then, the function ϕγ,T defined in Section 2.1 becomes

ϕγ,T (x) =

∫ T

0

|y(t, x)|2 dt.

We then have the following results.

Schrödinger equation. Consider the Schrödinger equation on Ω

i∂ty = 4y, (18)

with Dirichlet boundary conditions, and y(0, ·) = y0(·) ∈ L2(Ω,C). The conclusion of Theorem
2 (including the uniqueness of the optimal set) holds true for every T > 0 when replacing the
sufficient condition (A2) with

+∞∑
j=0

Rj

j!
‖Aj/2y0‖L2(Ω,C) < +∞.
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Indeed, the function ϕ is then analytic, and cannot be constant since it vanishes on ∂Ω, whence
the conclusion (see Remark 3).

As concerns the complexity of the optimal set, it is clear that the construction of C∞ initial
data for which the optimal set ω has a fractal structure, made in Theorem 3 can be applied to this
case as well.

The generalization of the fractal optimal set in several space dimensions is simpler in this case.
Indeed, by considering Cartesian products of this one-dimensional fractal set constructed in the
proof of Theorem 3, it is immediate to generalize the construction to Ω = (0, π)n since any solution

of (18) remains periodic in this case, which ensures that G̃T does not involve any additional crossed
terms. As mentioned above, the problem is more complex for the multi-dimensional wave equation
due to the lack of periodicity and, accordingly, due to the nondiagonal terms in the expansion of
the functional.

Heat equation. Consider the homogeneous heat equation on Ω

∂ty = 4y,

with Dirichlet boundary conditions, and y(0, ·) = y0(·) ∈ L2(Ω). Let (φj)j∈IN∗ be a Hilbert basis
of L2(Ω) consisting of eigenfunctions of the Dirichlet-Laplacian operator on Ω, associated with the
negative eigenvalues (−λ2

j )j∈IN∗ . We expand y0 as

y0 =

+∞∑
j=1

ajφj(·)

with aj = 〈y0, φj〉L2 . We claim that the function ϕγ,T is analytic provided that the initial datum
y0 satisfies the condition

∞∑
j=1

λ
n
2−1
j |aj | < +∞. (19)

Indeed, using the well-known estimates ‖φj‖L∞(Ω) 6 Cλ
n−1
2

j , it follows that, for almost every
x ∈ Ω,

ϕγ,T (x) 6
∫ T

0

+∞∑
j,k=1

|ajak|e−(λj+λk)t|φj(x)φk(x)| dt

6
+∞∑
j,k=1

|ajak|
(λjλk)

n−1
2

λj + λk

6
1

2

+∞∑
j,k=1

|ajak|(λjλk)
n
2−1 =

1

2

+∞∑
j=1

|aj |λ
n
2−1
j

2

.

Here above, we used the inequality (λjλk)
1
2 6 1

2 (λj + λk). The claim then follows from standard
analyticity results by noting that for a given t > 0, the function |y(t, ·)|2 is analytic in Ω. As a
consequence, if the condition (19) holds, then the conclusion of Theorem 2 holds true for every

T > 0 when replacing the cost functional GT,η with G̃T , the function ϕγ,T with ϕ, with arguments
similar to the ones used for the Schrödinger equation.
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4.2 Other boundary conditions

Throughout the paper, for the clarity of the exposition we restricted our study to the wave equation
with Dirichlet boundary conditions. With minor changes, our results can be extended to the case
of other boundary conditions. For example, in the Neumann case, it is necessary to consider initial
data (y0, y1) in H1(Ω) × L2(Ω). In this frame, it is still relevant to consider the cost functional
Gγ,T defined by (2).

Denoting now by A the Neumann-Laplacian, the theorems 1 and 2 still hold true in this case
(except the last claim, that is, the fact that there is a positive distance between the optimal set
and the boundary of Ω, which is specific to the Dirichlet case).

Theorem 2 is still valid for more general choices of boundary conditions such as Neumann, mixed
Dirichlet-Neumann, or Robin boundary conditions for the wave equation, and the corresponding
appropriate functional spaces are discussed in [18].

4.3 Perspectives

In this paper, given fixed initial data, we have solved the problem of determining the best shape
and location of a subdomain of a given measure maximizing the energy of the corresponding
solution of the wave equation with Dirichlet boundary conditions, restricted to the subdomain and
over a certain horizon of time. We have discussed the question of the uniqueness of an optimal
solution. We have also investigated the complexity of the optimal set, showing that it depends on
the regularity of the initial data. In particular, we have constructed an example where the optimal
set is fractal.

We have considered the problem of optimally observing solutions. The dual problem of opti-
mally controlling the solutions to zero can also be considered. Similar results have been established
in [14, 16] and [19] in the context of optimal design of the control support.

We have considered the problem of choosing the optimal observation set for fixed initial data.
But, in engineering applications this problem can be viewed as a first step towards modeling the
problem of optimizing the shape and location of sensors or actuators location problems. Recall
that the equation (1) is said to be observable on ω in time T if there exists a positive constant C
such that the inequality

C‖(y0, y1)‖2L2(Ω)×H−1(Ω) 6
∫ T

0

∫
ω

y(t, x)2 dx dt, (20)

holds for every (y0, y1) ∈ L2(Ω)×H−1(Ω). This is the so-called observability inequality (see [12]).
It is well known that within the class of C∞ domains Ω, this observability property holds if the
pair (ω, T ) satisfies the Geometric Control Condition in Ω (see [2, 3]), according to which every ray
of Geometric Optics that propagates in Ω and is reflected on its boundary ∂Ω intersects ω within
time T . We denote by CT (χω) the largest constant in the observability inequality above, that is

CT (χω) = inf

{
Gγ,T (χω)

‖(y0, y1)‖2L2(Ω)×H−1(Ω)

∣∣ (y0, y1) ∈ L2(Ω)×H−1(Ω)\{(0, 0)}

}
. (21)

An a priori natural way of modeling the problem of optimal shape and placement of sensors or
controllers for the wave equation consists of maximizing the functional CT (χω) over the set of all
measurable subsets ω of Ω of Lebesgue measure |ω| = L|Ω|. Moreover, it can be argued that the
observability constant CT (χω), appearing in the observability inequality (20), gives an account for
the quality of some inverse problem consisting of reconstructing the initial data (y0, y1) from the
observed variable χωy over [0, T ]. This optimal design problem, settled as such, is a difficult one.
We refer to [17, 18] for a study of a simplified version in which the criterium to be optimized is
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reduced to a purely spectral one by some randomization procedure or by some time-asymptotic
procedure.

It can be also of interest in practice to address a variant of the above criterion by considering
suitable class of initial data:

J(χω) = inf
(y0,y1)∈V

Gγ,T (χω)

‖(y0, y1)‖2L2(Ω)×H−1(Ω)

,

where V is a set of initial data. In the criterion above (observability constant), one has V =
L2(Ω) ×H−1(Ω), that is the set of all possible initial data, but it may be interesting to consider
subsets of L2(Ω)×H−1(Ω), such as:

• The subset of initial data having a certain number of nonzero Fourier components. This is the
case in practice when the measurement devices can only measure, say, the first N frequencies
of the solutions of the wave equation. Note however that there is then an intrinsic instability
feature called spillover (see [17, 18]).

• A set of data in a neighborhood of a given fixed datum in L2(Ω)×H−1(Ω). It may happen
in practice that only such initial data be relevant for physical reasons.

• A set of initial data which is defined as a parametrized (finite- or infinite-dimensional) sub-
manifold of L2(Ω) × H−1(Ω), appearing in the model of some physical experiment. For
instance the works in [10, 11, 13, 22] consider a finite number of possibilities for the unknown
domains and run the optimization over this finite-dimensional manifold.

A systematic and complete analysis of all these issues is still to be done.
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