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Low Space Complexity Multiplication over

Binary Fields with Dickson Polynomial

Representation
M. Anwar Hasan∗ and Christophe Negre∗∗

F

Abstract

We study Dickson bases for binary field representation. Such a representation seems interesting when no optimal

normal basis exists for the field. We express the product of two field elements as Toeplitz or Hankel matrix-vector products.

This provides a parallel multiplier which is subquadratic in space and logarithmic in time. Using the matrix-vector formulation

of the field multiplication, we also present sequential multiplier structures with linear space complexity.

Index Terms

Binary field, Dickson basis, Toeplitz matrix, multiplier, parallel, sequential.

1 INTRODUCTION

Finite field arithmetic is extensively used in cryptography. For public key cryptosystems, the size (i.e.

the number of elements) of the field may be quite large, say 22048. Finite field multiplication over such a

large field requires a considerable amount of resources (time or space). For binary extension fields, used

in many practical public key cryptosystems, field elements can be represented with respect to a normal

basis, where squaring operations are almost free of cost. In order to reduce the cost of multiplication over

the extension field, instead of using an arbitrary normal basis, it is desirable to use an optimal normal

basis. The latter however does not exist for all extension fields, in which case one may use Dickson

bases [2], [8] and develop an efficient field multiplier.

In this paper first we consider subquadratic space complexity bit parallel multipliers using the Dickson

basis. To this end, using low weight Dickson polynomials, we formulate the problem of field multiplica-

tion as a product of a Toeplitz or Hankel matrix and a vector, and apply subquadratic space complexity
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algorithm for the product [3], which gives us a subquadratic space complexity field multiplier. Using

the matrix-vector product formulation, we then develop sequential multipliers. For such multipliers, we

consider both bit-serial and bit-parallel output formats.

The article is organized as follows. In Section 2 we present some general results on Dickson poly-

nomials. Then in Section 3 we give a matrix-vector product approach for field multiplication using the

Dickson basis representation. We use low weight Dickson polynomials and present parallel multipliers

of subquadratic space complexity. In Section 4, we develop sequential multipliers that have linear space

complexity. We wind up this article with a brief conclusion in Section 5.

2 DICKSON POLYNOMIALS

Dickson polynomials over finite fields were introduced by L.E. Dickson in [2]. These polynomials have

several applications and interesting properties, the main one being a permutation property over finite

fields. For a complete explanation on this the reader may refer to [7]. Our interest here concerns the use

of Dickson polynomial for finite field representation for efficient binary field multiplication. There are

two kinds of Dickson polynomials, and there are several ways to define and construct both of them. We

give here the definition of [7] of the first kind Dickson polynomials.

Definition 1: [Dickson Polynomial[7] page 9] Let R be a ring and a ∈ R. The Dickson polynomial of the first

kind Dn(X, a) is defined by

Dn(X, a) =

bn/2c∑
i=0

n

n− i

 n− i

n

 (−a)iXn−2i. (1)

For n = 0, we set D0(X, a) = 2 and for n = 1 we have D1(X, a) = X .

In this paper, we will consider only βi = Di(X, 1) the Dickson polynomials in F2[X].

Theorem 1: Let P be an irreducible polynomial of degree n in F2[X]. The system B = {β1, . . . , βn} forms a

basis of F2n = F2[X]/(P ) over F2.

Proof: For a detailed proof we refer to [6], we just give a brief explanation here. Using (1), we can

see that a βi = Xi + terms of lower degree . This implies that the conversion matrix from {β1, . . . , βn} to

{X, . . . ,Xn}, is lower triangular with 1 on the diagonal. The conversion matrix is thus invertible and

since {X, . . . ,Xn} form a basis of F2n then B = {β1, . . . , βn} is a basis of F2n = F2[X]/(P ).

The following theorem will be extensively used for the construction of subquadratic multipliers in the

Dickson basis.

Theorem 2: We denote βi = Di(X, 1) the n-th Dickson polynomial in F2[X]. Then for all i, j ≥ 0 the following

equation holds

βiβj = βi+j + β|i−j|. (2)
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Proof: We will show it by induction on i and j. We can easily check that equation (2) holds for i, j ≤ 1.

We suppose that the equation is true for all i, j ≤ n and we prove that the equation is true for i, j ≤ n+1.

We first prove it for i = n+ 1 and j ≤ n. We have

βn+1βj = (Xβn + βn−1)βj

= X(βn+j + β|n−j|) + (βn−1+j + β|n−1−j|),

by induction hypothesis. Now we have

βn+1βj = (Xβn+j + βn+j−1) + (Xβ|n−j| + β|n−1−j|)

= βn+1+j + β|n+1−j|.

For the other case i = n+ 1 and j = n+ 1, the product βn+1βn+1 is obtained using similar tricks.

3 FIELD MULTIPLICATION USING LOW WEIGHT DICKSON POLYNOMIALS

In this section we consider multiplication of two elements of the binary field F2n = F2[X]/(P ) where the

polynomial P is a low weight Dickson polynomial. In particular we consider two and three-term Dickson

polynomials P , i.e., Dickson binomials and trinomials. Like low weight conventional polynomials the use

of low weight Dickson polynomials is expected to yield lower space complexity multipliers.

In Table 1 we give the degree n ∈ [160, 285] of field F2n = F2[X]/(P ) where P is a low weight Dickson

polynomial. Specifically, since no irreducible Dickson binomials were available, we have looked for Almost

Dickson binomials (ADB) with irreducibible P satisfying P × (X + 1) = βn+1 + 1. We also give Dickson

trinomials (DT) of the form P = βn + βk + 1 with k ≤ n/2. For the purpose of comparison, we mention

also whether for each degree an ONB of type I or II exists (marked as NI and NII).

Our main goal here is to express the product of two elements, represented in the Dickson basis, as

a Toeplitz or Hankel matrix-vector products. Recall that an n × n Toeplitz matrix T = [ti,j ] satisfies

ti,j = ti+1,j+1 and a Hankel matrix H = [hi,j ] satisfies hi,j = hi+1,j−1. We will then use the subquadratic

Toeplitz matrix-vector product of [3] to design a subsquadratic multiplier.

3.1 Irreducible Dickson binomials

In this subsection we focus on finite fields F2n = F2[X]/(P ) where P is a two-term polynomial of the

form P = βn + 1 where a βn is the n-th Dickson polynomial.

The elements of F2n are expressed in the Dickson basis B = {β1, . . . , βn}. Now, our main goal is to

show that the product of two elements A and B in F2n can be computed as a matrix-vector product

MA ·B where MA is a sum of a Toeplitz matrix and an essentially Hankel matrix.
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Table 1

Irreducible Dickson binomials and trinomials

n

163 DT

164

165 DT

166

167 ADB,DT

168

169

170 DT

171 DT

172 DT, NI

173 ADB,DT,NII

174 NII

175 DT

176 DT

177

178 DT,NI

179 DT,NII

180 NI

181 DT

183 DT,NII

184 DT

185

186 NII

187 DT

188 DT

189 DT, NII

190

191 DT,NII

192

193 DT

194 DT,NII

n

195

196 NI

197 DT

198 ADB

199 DT

200 DT

201 DT

202 DT

203 DT

204

205 DT

206

207 DT

208 DT

209 NII

210 NI,NII

211 DT

212 DT

213

214

215 DT

216

217

218 DT

219 DT

220 DT

221 DT,NII

222

223 DT

224 DT

225 DT

n

226 DT, NI

227 DT

228

229 DT

230 NII

231 DT, NII

232

233 NII

234

235 DT

236

237 DT

238 ADB

239 DT, NII

240

241 DT

242 DT

243 NII

244 DT

245 DT,NII

246

247 DT

248 DT

249

250 DT

251 DT,NII

252 ADB

253 DT

254 NII

255 DT

256 DT

n

257

258

259 DT

260 DT

261 DT,NII

262 ADB

263 DT

264

265 DT

266

267

268 ADB,DT,NI

269 DT

270 ADB,NII

271 DT

272 DT

273 DT, NII

274 DT

275 DT

276

277 DT

278 NII

279 DT

280 DT

281 NII

282

283 DT

284

285 DT

ADB=Dickson Binomial,DT=Dickson Trinomial,NI=ONBI and NII=ONBII

If we multiply two elements A and B expressed in B and if we use Theorem 2 we get the following

AB = (
∑n

i=1 aiβi)×
(∑n

i=j bjβj

)
=

 n∑
i,j=1

aibjβi+j


︸ ︷︷ ︸

S1

+

 n∑
i,j=1

aibjβ|i−j|


︸ ︷︷ ︸

S2

(3)

Now we express each sum S1 and S2 as matrix-vector products. Let us begin with S1. We remark that

S1 has a similar expression as product of two polynomials of the same degree. In other words, S1 can
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be computed as ZA ·B where

ZA =



0 0 · · · 0 0

a1 0 · · · 0 0

...
...

an−1 · · · · · · a1 0

an · · · · · · a2 a1

0 an · · · a3 a2
...

...

0 0 · · · 0 an



← β1

← β2
...

← βn

← βn+1

← βn+2

...

← β2n

(4)

We reduce the matrix ZA modulo P = βn +1 to get non-zero coefficients only on rows corresponding to

β1, . . . , βn. We use the fact that βn+i for i ≥ 0 satisfies

βn+i = βiβn + βn−i = βi + βn−i.

This equation is a simple consequence of (2) and that βn = 1 mod P . This implies that the rows

corresponding to βn+i are reduced into two rows one corresponding to βi and the other to βn−i. After

performing this reduction and removing zero rows we get

S1 = ZA ·B =


an an−1 · · · a2 a1

a1 an · · · a3 a2
...

...

an−1 · · · · · · a1 an



b1
...

bn


︸ ︷︷ ︸

S1,1

+



0 0 · · · an an−1
...

...

0 an · · · a3 a2

an an−1 · · · a2 a1

0 · · · · · · 0 0




b1
...

bn


︸ ︷︷ ︸

S1,2

Finally, we get an expression of S1 as matrix-vector product where the matrix is a sum of a Toeplitz

and an essentially Hankel matrix.

Now we do the same for S2. We split S2 into two sums

S2 =

 n∑
k=1

n−k∑
j=1

aj+kbjβk


︸ ︷︷ ︸

S2,1

+

 n∑
k=1

n∑
j=k

aj−kbjβk


︸ ︷︷ ︸

S2,2

.
(5)
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We express S2,1 and S2,2 as matrix-vector products

S2,1 =



a2 a3 · · · an−1 an 0

a3 a4 · · · an 0 0

...
...

an 0 · · · · · · 0 0

0 · · · · · · · · · 0 0


·


b1
...

bn

 , (6)

S2,2 =



0 a1 a2 · · · an−1

0 0 a1 · · · an−2
...

...

0 0 · · · · · · a1

0 · · · · · · · · · 0


·


b1
...

bn

 . (7)

So now we have each of S1 and S2 in the required form. We finally write S1,1 + S2,2 = TA · B where

TA is a Toeplitz matrix and S1,2 + S2,1 = HA ·B where HA is an Hankel matrix. We obtain

A×B = TA ·B +HA ·B (8)

as stated at the beginning of the current subsection.

3.2 Dickson trinomials

Now we assume that the field F2n is defined by a three-term irreducible Dickson trinomial P

P = 1 + βk + βn, with k ≤ n/2.

The elements in F2n = F2[X]/(P ) are expressed in the Dickson basis B = {β1, . . . , βn}. Our aim is to

express the product of two elements A and B of F2n as Toeplitz or Hankel matrix-vector product. We use

again the expression of the product C = A× B = S1 + S2 given in equation (3). Similar to the previous

subsection, here we express S1 and S2 as matrix-vector product separately. Specifically

1) The sum S1 is expressed as ZA ·B where ZA is given in (4)
2) For S2 we use the expression of (5) and we put this expression in a matrix-vector product form.

S2 =





a2 a3 · · · an 0

a3 a4 · · · 0 0

...
...

...

an 0 · · · 0 0

0 0 · · · 0 0


+



0 a1 · · · an−1

0 0 · · · an−2

...
...

0 0 · · · a1

0 · · · · · · 0

...
...

0 · · · · · · 0




· B. (9)
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Now we replace S1 and S2 by their corresponding expressions given above in A × B = S1 + S2. We
get 



0 0 · · · 0

a1 0 · · · 0

...
...

an−1 · · · · · · 0

an · · · · · · a1

0 an · · · a2

...
. . .

...

0 0 · · · an



+



0 a1 a2 · · · an−1

0 0 a1 · · · an−2

...
. . .

...

0 · · · · · · · · · a1

0 · · · · · · · · · 0

0 · · · · · · · · · 0

...
...

0 · · · · · · · · · 0





· B

+



a2 a3 · · · an−1 an 0

a3 a4 · · · an 0 0

...
...

...

an 0 · · · · · · 0 0

0 · · · · · · · · · 0 0

...
...

...

0 · · · · · · · · · 0 0


·


b1

...

bn

 = A× B

. (10)

In (10) the addition of two 2n × n Toeplitz matrices results in one single 2n × n Toeplitz matrix. The

latter can be horizontally split in the middle to obtain two n × n Toeplitz matrices, say Tup and Tdown,

which can be then multiplied separately with vector (b1, . . . , bn) with a total cost of two n × n Toeplitz

matrix-vector products.

The other 2n × n Hankel matrix in (10) has all zero in the lower n rows, contributing nothing to the

cost of the matrix-vector multiplication. Thus, the total computational cost of (10) is no more than three

n× n Toeplitz or Hankel matrix-vector products.

The reduction:

The resulting expression of C in (10) is an unreduced form of A×B, since it has non zero coefficients ci

on rows i = n+1, . . . , 2n. These coefficients are obtained by multiplying Tdown with vector (b1, b2, . . . , bn),

and must be reduced modulo P = βn + βk + 1, to get an expression of C in B. We have

βi = βnβi−n + β2n−i = (βk + 1)βi−n + β2n−i

= βi−n+k + β|i−n−k| + βi−n + β2n−i.

We reduce the expressing of C =
∑2n

i=1 ciβi by replacing each βi for i > n by the expression given

above. Since we assume k < n
2 this process must be done two times to get a reduced expression of C.

A circuit can be designed to perform this process which requires 6n− k XOR gates and is performed in

time 3TX (see [6] for details).

3.3 Parallel multiplier

We can design multiplier using the expression of the multiplication in F2n as a Toeplitz or Hankel matrix-

vector product (TMVP). Specifically we use the Toeplitz or Hankel matrix-vector multiplier presented
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in [3] to perform these products. In Table 2, we recall the complexity of the TMVP multiplier established

by Fan and Hasan [3].

Table 2

Asymptotic complexity of TMVP multiplier

2-way split method 3-way split method

# AND nlog2(3) nlog3(6)

# XOR 5.5nlog2(3) − 6n+ 0.5 24
5
nlog3(6) − 5n+ 1

5

Delay TA + 2 log2(n)TX TA + 3 log3(n)TX

In the case of Dickson binomials, to compute the matrix-vector products of (8) we need two TMVP

multipliers in parallel. Each of them can use 2-way or 3-way split approach of [3]. We also need ad-

ditionnal 2n XOR gates to compute the coefficient of TA and add the result of the two matrix-vector

products.

In the case Dickson trinomials, as specified in Subsection 3.2, three TMVPs are done in parallel using

2-way or 3-way split approach of [3]. We also need to perform a reduction using the circuit depicted

in [6]. We obtain the complexities of Table 3 below where the second left most column indicates b-way

splits with the value of b being either 2 or 3.

Table 3

Comparison of Subquadratic Space Complexity Parallel Multipliers

b Space Time

# AND # XOR

DB 2 2nlog2(3) 11nlog2(3) − 11n (2 log2(n) + 1)TX

+TA

3 2nlog3(6) 48/5nlog3(6) (3 log3(n) + 1)TX

−11n + 3/5 +TA

DT 2 7
3n

log2(3) 38,5
3 nlog2(3) (2 log2(n) + 6)TX

−6, 5n− k + 2, 5 +TA

3 2nlog3(6) 48/5nlog3(6) (3 log3(n) + 5)TX

−3n− k + 7/5 +TA

ONBI 2 nlog2(3) + n 5.5nlog2(3) (2 log2(n) + 1)TX

−4n− 0.5 +TA

[4] 3 nlog3(6) + n 24/5nlog3(6) (3 log3(n) + 1)TX

−3n− 4/5 +TA

ONBII 2 nlog2(3) 6nlog2(3) − 3n+ (3 log2(n) + 1)TX

[5], [9]† (8n + 2) log2(2n + 1) +TA

ONBII 3 nlog3(6) 72
15n

log3(6) − 7
3n− 1+ (4 log3(n) + 1)TX

[5], [11]‡ (8n + 2) log2(2n + 1) +TA

The row of Table 3 labelled by † (resp. ‡) refers to the method of [5] combined to the polynomial

multiplication of [9] (resp. [11]).
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In a recent paper Mullin et al. [8] pointed out that there were some links between the Dickson basis

and the normal basis. In practice, a Dickson basis is interesting when no optimal normal basis exists for

the considered field.

This is the case for NIST recommended binary fields F2163 and F2283 . Using Table 1, we can remark that

NIST fields can be constructed with Dickson trinomials, and thus we obtain a subquadratic multiplier in

each of these cases.

4 SEQUENTIAL MULTIPLIERS

In this section, we present sequential multipliers. Each of these multipliers takes O(n) clock cycles but

has a space complexity of O(n).

4.1 Using irreducible Dickson binomials

4.1.1 Multiplier with bit serial output

In the sequel, we denote the entry at (i, j) of the Toeplitz and the Hankel matrices of (8) as Ti,j and

Hi,j , respectively. We also denote the rows of the Toeplitz matrix as T1,?, T2,?, . . . , Tn,? and those of the

essentially Hankel matrix as H1,?, H2,?, . . . ,Hn,?. Thus we can write

A×B =


c1

c2
...

cn

 =


T1,? +H1,?

T2,? +H2,?

...

Tn,? +Hn,?

 ·B. (11)

We remark that

a) Tn,? consists of the coordinates of input A that are rotated left one position, i.e., Tn,? =
[
an−1 an−2 · · · a1 an

]
.

On the other hand, Hn,? is the all zero row vector and Hn−1,? =
[
0 an−1 an−2 · · · a2 a1

]
.

b) Given Ti,? and Hi,n−1, we can express Ti−1,? for 1 < i ≤ n as Ti−1,? =
[
Ti,2 Ti,3 · · · Ti,n Ti,1 +Hi,n−1

]
.

Furthermore, given the row Hi,? and the entry Ti+1,1 we can express Hi−1,? for 1 < i ≤ n − 1 as

follows

Hi−1,? =
[
Ti+1,1 Hi,1 · · · Hi,n−2 Hi,n−1

]
.

The following diagram (Figure 1) corresponds to a sequential structure to realize the multiplication

C = A×B in accordance with (11). In the initial clock cycle, the left side register (LR) in the diagram is

loaded with Tn,? and the right side register (RR) with Hn,?. In this cycle, rows Tn,? and Hn,? are added

and an inner product is performed to yield cn = (Tn,? +Hn,?) ·B. Also, in this cycle the output of MUX

is a1 (and in other cycles the MUX output is the second right most bit of RR). In the next cycle, RR is

loaded with Hn−1,? and LR is shifted left to generate Tn−1,? eventually yielding cn−1.

For each of the following n − 2 clock cycles, LR is shifted left, RR is shifted right, their contents are

bit-wise added and an inner product is performed to produce one coordinate of C. The space and time

complexity of the architecture of Fig. 1 is given in Table 4.
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Figure 1. Sequential multiplier with bit serial out using Dickson binomials

MUX

LR RR

b1
bn−1

bn

c1, c2, . . . , cn

binary tree
of n− 1
XOR gates

a1

4.1.2 Sequential multiplier with bit parallel output

Referring to (8) we denote the columns of a Toeplitz matrix as T?,i for 1 ≤ i ≤ n and those of an essentially

Hankel matrix as H?,i for 1 ≤ i ≤ n. Thus we can write A×B =
[
T?,1 +H?,1 T?,2 +H?,2 · · · T?,n +H?,n

]
·

B, i.e.,

C =

n∑
i=1

bi(T?,i +H?,i). (12)

We remark that

a) T?,1 =
[
an a1 · · · an−1

]t
and H?,1 =

[
a2 a3 · · · an−1 0 0

]t
b) Given the column T?,i and the entry H1,i−1, we can express T?,i+1 as T?,i+1 =

[
Tn,i +H1,i−1, T1,i, · · · , Tn−1,i

]t
, 1 ≤

i ≤ n, where H1,0 is assumed to be a1.

Additionally, given column H?,i and entry Tn,i, we can express H?,i+1 as H?,i+1 =
[
H2,i, H3,i, · · · , Hn−1,i, Tn,i, 0

]t
, 1 ≤

i ≤ n.

In the following diagram (Fig. 2), the column vectors T?,1 and H?,1 are initially loaded into the top

register (TR) and the bottom register (BR) respectively. The one-bit feedback cell F is initialized with

H1,0 = a1. If TR is shifted downward and BR upward with the feedback connections as shown in the

diagram, the new contents of TR and BR will be T?,2 and H?,2 respectively. Note that BR is an n − 1

bits long shift register, since Hn,i = 0 for 1 ≤ i ≤ n. With additional shifts on TR and BR, the remaining

columns of the Toeplitz and the essentially Hankel matrices are generated.

Each corresponding pair of columns (i.e., T?,i and H?,i) are added and the resulting columns are

multiplied with bi (in the diagram these are shown using an array of XOR and AND gates).

The weighted columns are accumulated in accordance with (12) to produce the desired output C in a

total of n clock cycles. The delay and the space complexity of this architecture are given in Table 4.
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Figure 2. Sequential multiplier with bit parallel output using Dickson binomials

F

BR

TR

accumulators (initially zero)

weighting circuits

c1

c2

bn, . . . , b1

cn−1

cn

4.2 Using irreducible Dickson trinomials
From (10) of Subsection 3.2 the coefficients c1, c2, · · · , cn are given by



0 a1 · · · an−1

a1 0 · · · an−2

...
. . .

...

an−2 an−3 · · · a1

an−1 an−2 · · · 0


+



a2 a3 · · · an 0

a3 a4 · · · 0 0

...
...

...

an 0 · · · 0 0

0 0 · · · 0 0




· B, (13)

and 
cn+1

cn+2

...

c2n

 =


an an−1 · · · a1

0 an · · · a2
...

0 0 · · · an

 ·

b1

b2
...

bn

 . (14)

Note that cn+1, cn+2, · · · , c2n can be reduced as explained at the end of Subsection 3.2.

Below we will first present a hardware structure to generate c1, c2, . . . , cn in accordance with (13). Then

we will discuss how to use part of the above hardware to generate cn+1, cn+2, . . . , c2n. In practice, one

can first generate cn+1, cn+2, . . . , c2n. While these n bits are reduced, one can generate c1, c2, . . . , cn. This

overlap of operations will effectively eliminate/hide the extra time for reduction of cn+1, . . . , c2n.

4.2.1 Sequential multiplier with bit serial output

We denote the rows of the Toeplitz and the Hankel matrices of (13) as Ti,? and Hi,? respectively. For

1 ≤ i ≤ n, we can then write the following

Ti+1,? =
[
Hi−1,1 Ti,1 · · · Ti,n−2 Ti,n−1

]
,

Hi+1,? =
[
Hi,2 Hi,3 · · · Hi,n 0

]
,

(15)
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where H0,1 is assumed to be a1 and

T1,? =
[
0 a1 a2 · · · an−2 an−1

]
,

H1,? =
[
a2 a3 a4 · · · an 0

]
.

(16)

In Fig. 3 below, registers RR and LR are initialized with T1,? and H1,?. The feedback cell F is initialized

with a1 = H0,1. Then with the application of a shift to these registers together, the second rows of the

Toeplitz and the Hankel matrices of (12) are formed in RR and LR respectively. This happens due to the

fact that the shift and the feedback connection as shown in Fig. 3 essentially realize (15). The remaining

rows of the two matrices are formed pair by pair with successive shifts.

Note that LR is n− 1 bits long, since the right most bit of each row of the Hankel matrix is zero. The

upper part of Fig. 3 is similar to that of Fig. 1 and is to add the corresponding rows of the Toeplitz and

the Hankel matrices, followed by inner product operations to yield c1, c2, · · · , cn.

To generate cn+1, cn+2, . . . , c2n using the structure in Fig. 3, we initialize RR with [an, an−1, . . . , a1],

which is the first row of the upper triangular Toeplitz matrix of (14). Register LR and cell F are initialized

with all zeros. Then with successive shifts, RR will contain the remaining rows of the Toeplitz matrix

and LR will have all zeros. This will result in cn+1, cn+2, . . . , c2 at the output of Fig. 3.

The time and the space complexities of the structure of Fig. 3 are given in Table 4. These exclude the

cost associated with the reduction of cn+1, cn+2, · · · , c2n.

Figure 3. Bit serial output sequential multiplier for Dickson trinomials

LR

0

RR

F

b1
bn−1 bn

c1, c2, · · · , cn
binary tree

of n− 1

XOR gates

4.2.2 Bit parallel output

For (13), let T?,i and H?,i be the i-th columns of the Toeplitz and the Hankel matrices, respectively.

Then (13) can be re-written as

[
c1 c2 · · · cn

]t
=

n∑
i=1

bi(T?,i +H?,i).
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In order to generate T?,i and H?,i we note that in (13) T?,i = Ti,? and H?,i = Hi,?. In other words, the

i-th column is the same as the i-th row for each of the matrices. Thus columns can be generated using

the same system of feedback registers as shown in Fig. 3 earlier.

To obtain c1, c2, · · · , cn in bit parallel fashion the inner product unit of Fig. 3 can be replaced with an

array unit of weighting AND gates and accumulators (as used in Fig. 2). The complete diagram is shown

in Fig. 4, and its space and time complexities are given in Table 4.

Figure 4. Bit parallel output sequential multiplier for Dickson trinomials

LR

0

F

RR

accumulators (initially zero)

weighting circuits

c1

c2

cn−1

cn

bn, . . . , b1

The coefficients cn+1, cn+2, . . . , c2n from (14) will be computed with the same hardware of Fig. 2.

Specifically, in Fig. 4 RR is initialized with the first column of the above matrix. The accumulators LR and

F are all initialized to zero. Then in n clock cycles with weighting input as bn, bn−1, . . . , b1 the accumulators

will have c2n, c2n−1, . . . , cn+1.

4.3 Complexity and comparison

In Table 4 we put the resulting complexities of the different sequential multipliers based on the Dickson

basis representation. For the purpose of comparison, we also give the complexity of the method of [4]

using ONB of type I and II. We remark that when no ONB is available, a Dickson binomial seems to be

the best choice since Dickson trinomial require an increased number of clock cycles.

5 CONCLUSION

In this paper we have presented new parallel multipliers based on Dickson basis representation of binary

fields. The multiplier for an irreducible Dickson binomial has a complexity similar to the subquadratic

multiplier for ONB II of [4]. For an irreducible Dickson trinomial, the multiplier has a slightly more space

complexity, but can still be used for fields with degree of several hundreds (for example those used in

today’s elliptic curve cryptographic systems).
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Table 4

Complexity of sequential multipliers

Archi. #AND #XOR #FF #MUX #CC Delay

DB n 2n 2n + 1 1 n TA+

Fig 1 (1 + dlog2(n)e)TX

DB Fig 2 n 2n 2n + 1 1 n TA + 2TX

DT n 2n− 2 2n 0 2n TA+

Fig 3 (1 + dlog2(n)e)TX

DT Fig 4 n 2n− 1 3n− 1 0 2n TA + TX

DG[1] 2n 4n− 3 3n 0 n 2TX + TA

ONBI[10] n 3n
2 2n 0 n TA + 2TX

ONBII[12] n 3n−1
2 3n 0 n TA + 2TX

DB=Dickson Binomial, DT=Dickson Trin., DG=General Dickson , CC=Clock Cycle.

In this paper, we have also presented sequential multipliers using the above mentioned Dickson

representation. The sequential multipliers have a space complexity of O(n). We have considered both

bit-serial and bit-parallel output formats for the sequential multipliers. Compared to the sequential

multipliers with bit-parallel output format presented in [1] and [8], the sequential multipliers presented

here with the same output format reduce the number of XOR and AND gates by a factor of two or more,

while keeping the number of flip-flops and clock cycles about the same.
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