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We study Dickson bases for binary field representation. Such a representation seems interesting when no optimal normal basis exists for the field. We express the product of two field elements as Toeplitz or Hankel matrix-vector products. This provides a parallel multiplier which is subquadratic in space and logarithmic in time. Using the matrix-vector formulation of the field multiplication, we also present sequential multiplier structures with linear space complexity.

INTRODUCTION

Finite field arithmetic is extensively used in cryptography. For public key cryptosystems, the size (i.e. the number of elements) of the field may be quite large, say 2 2048 . Finite field multiplication over such a large field requires a considerable amount of resources (time or space). For binary extension fields, used in many practical public key cryptosystems, field elements can be represented with respect to a normal basis, where squaring operations are almost free of cost. In order to reduce the cost of multiplication over the extension field, instead of using an arbitrary normal basis, it is desirable to use an optimal normal basis. The latter however does not exist for all extension fields, in which case one may use Dickson bases [START_REF] Dickson | The analytic representation of substitutions on a power of a prime number of letters with a discussion of the linear group[END_REF], [START_REF] Mullin | Dickson Bases and Finite Fields[END_REF] and develop an efficient field multiplier.

In this paper first we consider subquadratic space complexity bit parallel multipliers using the Dickson basis. To this end, using low weight Dickson polynomials, we formulate the problem of field multiplication as a product of a Toeplitz or Hankel matrix and a vector, and apply subquadratic space complexity algorithm for the product [START_REF] Fan | A New Approach to Sub-quadratic Space Complexity Parallel Multipliers for Extended Binary Fields[END_REF], which gives us a subquadratic space complexity field multiplier. Using the matrix-vector product formulation, we then develop sequential multipliers. For such multipliers, we consider both bit-serial and bit-parallel output formats.

The article is organized as follows. In Section 2 we present some general results on Dickson polynomials. Then in Section 3 we give a matrix-vector product approach for field multiplication using the Dickson basis representation. We use low weight Dickson polynomials and present parallel multipliers of subquadratic space complexity. In Section 4, we develop sequential multipliers that have linear space complexity. We wind up this article with a brief conclusion in Section 5.

DICKSON POLYNOMIALS

Dickson polynomials over finite fields were introduced by L.E. Dickson in [START_REF] Dickson | The analytic representation of substitutions on a power of a prime number of letters with a discussion of the linear group[END_REF]. These polynomials have several applications and interesting properties, the main one being a permutation property over finite fields. For a complete explanation on this the reader may refer to [START_REF] Lild | Dickson Polynomials[END_REF]. Our interest here concerns the use of Dickson polynomial for finite field representation for efficient binary field multiplication. There are two kinds of Dickson polynomials, and there are several ways to define and construct both of them. We give here the definition of [START_REF] Lild | Dickson Polynomials[END_REF] of the first kind Dickson polynomials. [START_REF] Lild | Dickson Polynomials[END_REF] page 9] Let R be a ring and a ∈ R. The Dickson polynomial of the first kind D n (X, a) is defined by

Definition 1: [Dickson Polynomial

D n (X, a) = n/2 i=0 n n -i   n -i n   (-a) i X n-2i . ( 1 
)
For n = 0, we set D 0 (X, a) = 2 and for n = 1 we have D 1 (X, a) = X.

In this paper, we will consider only

β i = D i (X, 1) the Dickson polynomials in F 2 [X].
Theorem 1: Let P be an irreducible polynomial of degree n in

F 2 [X]. The system B = {β 1 , . . . , β n } forms a basis of F 2 n = F 2 [X]/(P ) over F 2 .
Proof: For a detailed proof we refer to [START_REF] Hasan | Subquadratic Space Complexity Multiplication over Binary Fields with Dickson Polynomial Representation[END_REF], we just give a brief explanation here. Using (1), we can see that a β i = X i + terms of lower degree . This implies that the conversion matrix from {β 1 , . . . , β n } to {X, . . . , X n }, is lower triangular with 1 on the diagonal. The conversion matrix is thus invertible and since {X, . . . , X n } form a basis of

F 2 n then B = {β 1 , . . . , β n } is a basis of F 2 n = F 2 [X]/(P ).
The following theorem will be extensively used for the construction of subquadratic multipliers in the Dickson basis.

Theorem 2: We denote

β i = D i (X, 1) the n-th Dickson polynomial in F 2 [X]
. Then for all i, j ≥ 0 the following equation holds

β i β j = β i+j + β |i-j| . (2) 
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Proof: We will show it by induction on i and j. We can easily check that equation (2) holds for i, j ≤ 1.

We suppose that the equation is true for all i, j ≤ n and we prove that the equation is true for i, j ≤ n + 1.

We first prove it for i = n + 1 and j ≤ n. We have

β n+1 β j = (Xβ n + β n-1 )β j = X(β n+j + β |n-j| ) + (β n-1+j + β |n-1-j| ),
by induction hypothesis. Now we have

β n+1 β j = (Xβ n+j + β n+j-1 ) + (Xβ |n-j| + β |n-1-j| ) = β n+1+j + β |n+1-j| .
For the other case i = n + 1 and j = n + 1, the product β n+1 β n+1 is obtained using similar tricks.

FIELD MULTIPLICATION USING LOW WEIGHT DICKSON POLYNOMIALS

In this section we consider multiplication of two elements of the binary field In Table 1 

F 2 n = F 2 [X]/(P )
P = β n + β k + 1 with k ≤ n/2.
For the purpose of comparison, we mention also whether for each degree an ONB of type I or II exists (marked as NI and NII).

Our main goal here is to express the product of two elements, represented in the Dickson basis, as a Toeplitz or Hankel matrix-vector products. Recall that an n × n Toeplitz matrix T = [t i,j ] satisfies t i,j = t i+1,j+1 and a Hankel matrix H = [h i,j ] satisfies h i,j = h i+1,j-1 . We will then use the subquadratic Toeplitz matrix-vector product of [START_REF] Fan | A New Approach to Sub-quadratic Space Complexity Parallel Multipliers for Extended Binary Fields[END_REF] to design a subsquadratic multiplier.

Irreducible Dickson binomials

In this subsection we focus on finite fields 

F 2 n = F 2 [X]
AB = ( n i=1 a i β i ) × n i=j b j β j =   n i,j=1 a i b j β i+j   S1 +   n i,j=1 a i b j β |i-j|   S2 (3) 
Now we express each sum S 1 and S 2 as matrix-vector products. Let us begin with S 1 . We remark that S 1 has a similar expression as product of two polynomials of the same degree. In other words, S 1 can April 16, 2013 DRAFT be computed as Z A • B where

Z A =                  0 0 • • • 0 0 a1 0 • • • 0 0 . . . . . . an-1 • • • • • • a1 0 an • • • • • • a2 a1 0 an • • • a3 a2 . . . . . . 0 0 • • • 0 an                  ← β1 ← β2 . . . ← βn ← βn+1 ← βn+2 . . . ← β2n (4) 
We reduce the matrix Z A modulo P = β n + 1 to get non-zero coefficients only on rows corresponding to β 1 , . . . , β n . We use the fact that β n+i for i ≥ 0 satisfies

β n+i = β i β n + β n-i = β i + β n-i .
This equation is a simple consequence of ( 2) and that β n = 1 mod P . This implies that the rows corresponding to β n+i are reduced into two rows one corresponding to β i and the other to β n-i . After performing this reduction and removing zero rows we get

S 1 = Z A • B =         a n a n-1 • • • a 2 a 1 a 1 a n • • • a 3 a 2 . . . . . . a n-1 • • • • • • a 1 a n              b 1 . . . b n      S1,1 +            0 0 • • • a n a n-1 . . . . . . 0 a n • • • a 3 a 2 a n a n-1 • • • a 2 a 1 0 • • • • • • 0 0                 b 1 . . . b n      S1,2
Finally, we get an expression of S 1 as matrix-vector product where the matrix is a sum of a Toeplitz and an essentially Hankel matrix. Now we do the same for S 2 . We split S 2 into two sums

S 2 =   n k=1 n-k j=1 a j+k b j β k   S2,1 +   n k=1 n j=k a j-k b j β k   S2,2 . (5) 
We express S 2,1 and S 2,2 as matrix-vector products

S 2,1 =            a 2 a 3 • • • a n-1 a n 0 a 3 a 4 • • • a n 0 0 . . . . . . a n 0 • • • • • • 0 0 0 • • • • • • • • • 0 0            •      b 1 . . . b n      , (6) 
S 2,2 =            0 a 1 a 2 • • • a n-1 0 0 a 1 • • • a n-2 . . . . . . 0 0 • • • • • • a 1 0 • • • • • • • • • 0            •      b 1 . . . b n      . ( 7 
)
So now we have each of S 1 and S 2 in the required form. We finally write S 1,1 + S 2,2 = T A • B where T A is a Toeplitz matrix and S 1,2 + S 2,1 = H A • B where H A is an Hankel matrix. We obtain

A × B = T A • B + H A • B (8) 
as stated at the beginning of the current subsection.

Dickson trinomials

Now we assume that the field F 2 n is defined by a three-term irreducible Dickson trinomial

P P = 1 + β k + β n , with k ≤ n/2.
The elements in F 2 n = F 2 [X]/(P ) are expressed in the Dickson basis B = {β 1 , . . . , β n }. Our aim is to express the product of two elements A and B of F 2 n as Toeplitz or Hankel matrix-vector product. We use again the expression of the product C = A × B = S 1 + S 2 given in equation [START_REF] Fan | A New Approach to Sub-quadratic Space Complexity Parallel Multipliers for Extended Binary Fields[END_REF]. Similar to the previous subsection, here we express S 1 and S 2 as matrix-vector product separately. Specifically

1) The sum S 1 is expressed as

Z A • B where Z A is given in (4)
2) For S 2 we use the expression of ( 5) and we put this expression in a matrix-vector product form.

S2 =                              a2 a3 • • • an 0 a3 a4 • • • 0 0 . . . . . . . . . an 0 • • • 0 0 0 0 • • • 0 0            +                   0 a1 • • • an-1 0 0 • • • an-2 . . . . . . 0 0 • • • a1 0 • • • • • • 0 . . . . . . 0 • • • • • • 0                                     • B. (9) 
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                                          0 0 • • • 0 a1 0 • • • 0 . . . . . . an-1 • • • • • • 0 an • • • • • • a1 0 an • • • a2 . . . . . . . . . 0 0 • • • an                      +                      0 a1 a2 • • • an-1 0 0 a1 • • • an-2 . . . . . . . . . 0 • • • • • • • • • a1 0 • • • • • • • • • 0 0 • • • • • • • • • 0 . . . . . . 0 • • • • • • • • • 0                                           • B +                   a2 a3 • • • an-1 an 0 a3 a4 • • • an 0 0 . . . . . . . . . an 0 • • • • • • 0 0 0 • • • • • • • • • 0 0 . . . . . . . . . 0 • • • • • • • • • 0 0                   •       b1 . . . bn       = A × B . (10) 
In [START_REF] Reyhani-Masoleh | Low Complexity Sequential Normal Basis Multipliers over GF(2 m )[END_REF] the addition of two 2n × n Toeplitz matrices results in one single 2n × n Toeplitz matrix. The latter can be horizontally split in the middle to obtain two n × n Toeplitz matrices, say T up and T down , which can be then multiplied separately with vector (b 1 , . . . , b n ) with a total cost of two n × n Toeplitz matrix-vector products.

The other 2n × n Hankel matrix in [START_REF] Reyhani-Masoleh | Low Complexity Sequential Normal Basis Multipliers over GF(2 m )[END_REF] has all zero in the lower n rows, contributing nothing to the cost of the matrix-vector multiplication. Thus, the total computational cost of ( 10) is no more than three n × n Toeplitz or Hankel matrix-vector products.

The reduction:

The resulting expression of C in ( 10) is an unreduced form of A×B, since it has non zero coefficients c i on rows i = n + 1, . . . , 2n. These coefficients are obtained by multiplying T down with vector

(b 1 , b 2 , . . . , b n ),
and must be reduced modulo P = β n + β k + 1, to get an expression of C in B. We have

β i = β n β i-n + β 2n-i = (β k + 1)β i-n + β 2n-i = β i-n+k + β |i-n-k| + β i-n + β 2n-i .
We reduce the expressing of C = 2n i=1 c i β i by replacing each β i for i > n by the expression given above. Since we assume k < n 2 this process must be done two times to get a reduced expression of C. A circuit can be designed to perform this process which requires 6n -k XOR gates and is performed in time 3T X (see [START_REF] Hasan | Subquadratic Space Complexity Multiplication over Binary Fields with Dickson Polynomial Representation[END_REF] for details).

Parallel multiplier

We can design multiplier using the expression of the multiplication in F 2 n as a Toeplitz or Hankel matrixvector product (TMVP). Specifically we use the Toeplitz or Hankel matrix-vector multiplier presented April 16, 2013 DRAFT in [START_REF] Fan | A New Approach to Sub-quadratic Space Complexity Parallel Multipliers for Extended Binary Fields[END_REF] to perform these products. In Table 2, we recall the complexity of the TMVP multiplier established by Fan and Hasan [START_REF] Fan | A New Approach to Sub-quadratic Space Complexity Parallel Multipliers for Extended Binary Fields[END_REF].

Table 2 Asymptotic complexity of TMVP multiplier 2-way split method 3-way split method # AND n log 2 (3) n log 3 (6) # XOR 5.5n log 2 (3) -6n + 0.5 24 5 n log 3 (6) -5n + 1 5

Delay T A + 2 log 2 (n)T X T A + 3 log 3 (n)T X
In the case of Dickson binomials, to compute the matrix-vector products of ( 8) we need two TMVP multipliers in parallel. Each of them can use 2-way or 3-way split approach of [START_REF] Fan | A New Approach to Sub-quadratic Space Complexity Parallel Multipliers for Extended Binary Fields[END_REF]. We also need additionnal 2n XOR gates to compute the coefficient of T A and add the result of the two matrix-vector products.

In the case Dickson trinomials, as specified in Subsection 3.2, three TMVPs are done in parallel using 2-way or 3-way split approach of [START_REF] Fan | A New Approach to Sub-quadratic Space Complexity Parallel Multipliers for Extended Binary Fields[END_REF]. We also need to perform a reduction using the circuit depicted in [START_REF] Hasan | Subquadratic Space Complexity Multiplication over Binary Fields with Dickson Polynomial Representation[END_REF]. We obtain the complexities of Table 3 below where the second left most column indicates b-way splits with the value of b being either 2 or 3. (6) 48/5n log 3 (6) (3 log

11n log 2 (3) -11n (2 log 2 (n) + 1)T X +T A 3 2n log 3
3 (n) + 1)T X -11n + 3/5 +T A DT 2 7 3 n log 2 (3) 38,5 3 n log 2 (3) (2 log 2 (n) + 6)T X -6, 5n -k + 2, 5 +T A 3 2n log 3 (6) 48/5n log 3 (6) (3 log 3 (n) + 5)T X -3n -k + 7/5 +T A ONBI 2 n log 2 (3) + n 5.5n log 2 (3) (2 log 2 (n) + 1)T X -4n -0.5 +T A [4] 3 n log 3 (6) + n 24/5n log 3 (6) (3 log 3 (n) + 1)T X -3n -4/5 +T A ONBII 2 n log 2 (3) 6n log 2 (3) -3n+ (3 log 2 (n) + 1)T X [5], [9] † (8n + 2) log 2 (2n + 1) +T A ONBII 3 n log 3 (6) 72 15 n log 3 (6) -7 3 n -1+ (4 log 3 (n) + 1)T X [5], [11] ‡ (8n + 2) log 2 (2n + 1) +T A
The row of Table 3 labelled by † (resp. ‡) refers to the method of [START_REF] Zur Gathen | Efficient multiplication using type 2 optimal normal bases[END_REF] combined to the polynomial multiplication of [START_REF] Paar | A new architecture for a parallel finite field multiplier with low complexity based on composite fields[END_REF] (resp. [START_REF] Sunar | A Generalized Method for Constructing Subquadratic Complexity GF(2 k ) Multipliers[END_REF]).
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In a recent paper Mullin et al. [START_REF] Mullin | Dickson Bases and Finite Fields[END_REF] pointed out that there were some links between the Dickson basis and the normal basis. In practice, a Dickson basis is interesting when no optimal normal basis exists for the considered field. This is the case for NIST recommended binary fields F 2 163 and F 2 283 . Using Table 1, we can remark that NIST fields can be constructed with Dickson trinomials, and thus we obtain a subquadratic multiplier in each of these cases.

SEQUENTIAL MULTIPLIERS

In this section, we present sequential multipliers. Each of these multipliers takes O(n) clock cycles but has a space complexity of O(n).

Using irreducible Dickson binomials

Multiplier with bit serial output

In the sequel, we denote the entry at (i, j) of the Toeplitz and the Hankel matrices of (8) as T i,j and H i,j , respectively. We also denote the rows of the Toeplitz matrix as T 1, , T 2, , . . . , T n, and those of the essentially Hankel matrix as H 1, , H 2, , . . . , H n, . Thus we can write

A × B =       c1 c2 . . . cn       =       T1, + H1, T2, + H2, . . . Tn, + Hn,       • B. (11) 
We remark that a) T n, consists of the coordinates of input A that are rotated left one position, i.e., T n, = a n-1 a n-2 • • • a 1 a n .

On the other hand, H n, is the all zero row vector and

H n-1, = 0 a n-1 a n-2 • • • a 2 a 1 .
b) Given T i, and H i,n-1 , we can express

T i-1, for 1 < i ≤ n as T i-1, = T i,2 T i,3 • • • T i,n T i,1 + H i,n-1 .
Furthermore, given the row H i, and the entry T i+1,1 we can express

H i-1, for 1 < i ≤ n -1 as follows H i-1, = T i+1,1 H i,1 • • • H i,n-2 H i,n-1 .
The following diagram (Figure 1) corresponds to a sequential structure to realize the multiplication [START_REF] Sunar | A Generalized Method for Constructing Subquadratic Complexity GF(2 k ) Multipliers[END_REF]. In the initial clock cycle, the left side register (LR) in the diagram is loaded with T n, and the right side register (RR) with H n, . In this cycle, rows T n, and H n, are added and an inner product is performed to yield c n = (T n, + H n, ) • B. Also, in this cycle the output of MUX is a 1 (and in other cycles the MUX output is the second right most bit of RR). In the next cycle, RR is loaded with H n-1, and LR is shifted left to generate T n-1, eventually yielding c n-1 .

C = A × B in accordance with
For each of the following n -2 clock cycles, LR is shifted left, RR is shifted right, their contents are bit-wise added and an inner product is performed to produce one coordinate of C. The space and time complexity of the architecture of Fig. 1 is given in Table 4.
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H ,i for 1 ≤ i ≤ n. Thus we can write A×B = T ,1 + H ,1 T ,2 + H ,2 • • • T ,n + H ,n • B, i.e., C = n i=1 b i (T ,i + H ,i ). (12) 
We remark that

a) T ,1 = a n a 1 • • • a n-1 t and H ,1 = a 2 a 3 • • • a n-1 0 0 t b)
Given the column T ,i and the entry H 1,i-1 , we can express T ,i+1 as

T ,i+1 = T n,i + H 1,i-1 , T 1,i , • • • , T n-1,i t , 1 ≤ i ≤ n
, where H 1,0 is assumed to be a 1 .

Additionally, given column H ,i and entry T n,i , we can express H ,i+1 as

H ,i+1 = H 2,i , H 3,i , • • • , H n-1,i , T n,i , 0 t , 1 i ≤ n.
In the following diagram (Fig. 2), the column vectors T ,1 and H ,1 are initially loaded into the top register (TR) and the bottom register (BR) respectively. The one-bit feedback cell F is initialized with

H 1,0 = a 1 .
If TR is shifted downward and BR upward with the feedback connections as shown in the diagram, the new contents of TR and BR will be T ,2 and H ,2 respectively. Note that BR is an n -1 bits long shift register, since H n,i = 0 for 1 ≤ i ≤ n. With additional shifts on TR and BR, the remaining columns of the Toeplitz and the essentially Hankel matrices are generated.

Each corresponding pair of columns (i.e., T ,i and H ,i ) are added and the resulting columns are multiplied with b i (in the diagram these are shown using an array of XOR and AND gates).

The weighted columns are accumulated in accordance with [START_REF] Yang | Modified Sequential Normal Basis Multipliers for Type II Optimal Normal Bases[END_REF] to produce the desired output C in a total of n clock cycles. The delay and the space complexity of this architecture are given in Table 4.
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                      0 a1 • • • an-1 a1 0 • • • an-2 . . . . . . . . . an-2 an-3 • • • a1 an-1 an-2 • • • 0            +            a2 a3 • • • an 0 a3 a4 • • • 0 0 . . . . . . . . . an 0 • • • 0 0 0 0 • • • 0 0                       • B, (13) and  
       c n+1 c n+2 . . . c 2n         =         a n a n-1 • • • a 1 0 a n • • • a 2 . . . 0 0 • • • a n         •         b 1 b 2 . . . b n         . ( 14 
)
Note that c n+1 , c n+2 , • • • , c 2n can be reduced as explained at the end of Subsection 3.2.

Below we will first present a hardware structure to generate c 1 , c 2 , . . . , c n in accordance with (13). Then 

Sequential multiplier with bit serial output

We denote the rows of the Toeplitz and the Hankel matrices of (13) as T i, and H i, respectively. For 1 ≤ i ≤ n, we can then write the following

T i+1, = H i-1,1 T i,1 • • • T i,n-2 T i,n-1 , H i+1, = H i,2 H i,3 • • • H i,n 0 , (15) 
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T 1, = 0 a 1 a 2 • • • a n-2 a n-1 , H 1, = a 2 a 3 a 4 • • • a n 0 . (16) 
In Fig. 3 below, registers RR and LR are initialized with T 1, and H 1, . The feedback cell F is initialized with a 1 = H 0,1 . Then with the application of a shift to these registers together, the second rows of the Toeplitz and the Hankel matrices of ( 12) are formed in RR and LR respectively. This happens due to the fact that the shift and the feedback connection as shown in Fig. 3 essentially realize (15). The remaining rows of the two matrices are formed pair by pair with successive shifts.

Note that LR is n -1 bits long, since the right most bit of each row of the Hankel matrix is zero. The upper part of Fig. 3 is similar to that of Fig. 1 and is to add the corresponding rows of the Toeplitz and the Hankel matrices, followed by inner product operations to yield c 1 , c 2 , • • • , c n .

To generate c n+1 , c n+2 , . . . , c 2n using the structure in Fig. 3, we initialize RR with [a n , a n-1 , . . . , a 1 ],

which is the first row of the upper triangular Toeplitz matrix of (14). Register LR and cell F are initialized with all zeros. Then with successive shifts, RR will contain the remaining rows of the Toeplitz matrix and LR will have all zeros. This will result in c n+1 , c n+2 , . . . , c 2 at the output of Fig. 3.

The time and the space complexities of the structure of Fig. 3 are given in Table 4. These exclude the cost associated with the reduction of c n+1 , c n+2 , • • • , c 2n . 

Bit parallel output

For (13), let T ,i and H ,i be the i-th columns of the Toeplitz and the Hankel matrices, respectively. Then (13) can be re-written as

c 1 c 2 • • • c n t = n i=1 b i (T ,i + H ,i ).
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In order to generate T ,i and H ,i we note that in (13) T ,i = T i, and H ,i = H i, . In other words, the i-th column is the same as the i-th row for each of the matrices. Thus columns can be generated using the same system of feedback registers as shown in Fig. 3 earlier.

To obtain c 1 , c 2 , • • • , c n in bit parallel fashion the inner product unit of Fig. 3 can be replaced with an array unit of weighting AND gates and accumulators (as used in Fig. 2). The complete diagram is shown in Fig. 4, and its space and time complexities are given in Table 4. 

Complexity and comparison

In Table 4 we put the resulting complexities of the different sequential multipliers based on the Dickson basis representation. For the purpose of comparison, we also give the complexity of the method of [START_REF] Fan | Subquadratic Computational Complexity Schemes for Extended Binary Field Multiplication Using Optimal Normal Bases[END_REF] using ONB of type I and II. We remark that when no ONB is available, a Dickson binomial seems to be the best choice since Dickson trinomial require an increased number of clock cycles.

CONCLUSION

In this paper we have presented new parallel multipliers based on Dickson basis representation of binary fields. The multiplier for an irreducible Dickson binomial has a complexity similar to the subquadratic multiplier for ONB II of [START_REF] Fan | Subquadratic Computational Complexity Schemes for Extended Binary Field Multiplication Using Optimal Normal Bases[END_REF]. For an irreducible Dickson trinomial, the multiplier has a slightly more space complexity, but can still be used for fields with degree of several hundreds (for example those used in today's elliptic curve cryptographic systems).

April 16, 2013 DRAFT In this paper, we have also presented sequential multipliers using the above mentioned Dickson representation. The sequential multipliers have a space complexity of O(n). We have considered both bit-serial and bit-parallel output formats for the sequential multipliers. Compared to the sequential multipliers with bit-parallel output format presented in [START_REF] Ansari | Revisiting Finite Field Multiplication Using Dickson Bases[END_REF] and [START_REF] Mullin | Dickson Bases and Finite Fields[END_REF], the sequential multipliers presented here with the same output format reduce the number of XOR and AND gates by a factor of two or more, while keeping the number of flip-flops and clock cycles about the same.

  where the polynomial P is a low weight Dickson polynomial. In particular we consider two and three-term Dickson polynomials P , i.e., Dickson binomials and trinomials. Like low weight conventional polynomials the use of low weight Dickson polynomials is expected to yield lower space complexity multipliers.

Figure 1 . 2

 12 Figure 1. Sequential multiplier with bit serial out using Dickson binomials

Figure 2 .From ( 10 )

 210 Figure 2. Sequential multiplier with bit parallel output using Dickson binomials

  we will discuss how to use part of the above hardware to generate c n+1 , c n+2 , . . . , c 2n . In practice, one can first generate c n+1 , c n+2 , . . . , c 2n . While these n bits are reduced, one can generate c 1 , c 2 , . . . , c n . This overlap of operations will effectively eliminate/hide the extra time for reduction of c n+1 , . . . , c 2n .

Figure 3 . 1 , c 2 ,

 312 Figure 3. Bit serial output sequential multiplier for Dickson trinomials

Figure 4 . 1

 41 Figure 4. Bit parallel output sequential multiplier for Dickson trinomials

  we give the degree n ∈ [160, 285] of field F 2 n = F 2 [X]/(P ) where P is a low weight Dickson polynomial. Specifically, since no irreducible Dickson binomials were available, we have looked for Almost

	Dickson binomials (ADB) with irreducibible P satisfying P × (X + 1) = β n+1 + 1. We also give Dickson
	trinomials (DT) of the form

  /(P ) where P is a two-term polynomial of the form P = β n + 1 where a β n is the n-th Dickson polynomial.The elements of F 2 n are expressed in the Dickson basis B = {β 1 , . . . , β n }. Now, our main goal is to show that the product of two elements A and B in F 2 n can be computed as a matrix-vector product M A • B where M A is a sum of a Toeplitz matrix and an essentially Hankel matrix.

				Table 1			
		Irreducible Dickson binomials and trinomials
	n		n		n		n	
	163	DT	195		226	DT, NI	257	
	164		196	NI	227	DT	258	
	165	DT	197	DT	228		259	DT
	166		198	ADB	229	DT	260	DT
	167	ADB,DT	199	DT	230	NII	261	DT,NII
	168		200	DT	231	DT, NII	262	ADB
	169		201	DT	232		263	DT
	170	DT	202	DT	233	NII	264	
	171	DT	203	DT	234		265	DT
	172	DT, NI	204		235	DT	266	
	173 ADB,DT,NII	205	DT	236		267	
	174	NII	206		237	DT	268 ADB,DT,NI
	175	DT	207	DT	238	ADB	269	DT
	176	DT	208	DT	239	DT, NII	270	ADB,NII
	177		209	NII	240		271	DT
	178	DT,NI	210	NI,NII	241	DT	272	DT
	179	DT,NII	211	DT	242	DT	273	DT, NII
	180	NI	212	DT	243	NII	274	DT
	181	DT	213		244	DT	275	DT
	183	DT,NII	214		245	DT,NII	276	
	184	DT	215	DT	246		277	DT
	185		216		247	DT	278	NII
	186	NII	217		248	DT	279	DT
	187	DT	218	DT	249		280	DT
	188	DT	219	DT	250	DT	281	NII
	189	DT, NII	220	DT	251	DT,NII	282	
	190		221	DT,NII	252	ADB	283	DT
	191	DT,NII	222		253	DT	284	
	192		223	DT	254	NII	285	DT
	193	DT	224	DT	255	DT		
	194	DT,NII	225	DT	256	DT		
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ADB=Dickson Binomial,DT=Dickson Trinomial,NI=ONBI and NII=ONBII If we multiply two elements A and B expressed in B and if we use Theorem 2 we get the following

Table 3

 3 Comparison of Subquadratic Space Complexity Parallel Multipliers

		b	Space	Time
			# AND	# XOR
	DB	2	2n log 2 (3)

Table 4

 4 Complexity of sequential multipliersDB=Dickson Binomial, DT=Dickson Trin., DG=General Dickson , CC=Clock Cycle.

	Archi.	#AND	#XOR	#FF	#MUX #CC	Delay
	DB	n	2n	2n + 1	1	n	T A +
	Fig 1						(1 + log 2 (n) )T X
	DB Fig 2	n	2n	2n + 1	1	n	T A + 2T X
	DT	n	2n -2	2n	0	2n	T A +
	Fig 3						(1 + log 2 (n) )T X
	DT Fig 4	n	2n -1	3n -1	0	2n	T A + T X
	DG[1]	2n	4n -3	3n	0	n	2T X + T A
	ONBI[10]	n	3n 2	2n	0	n	T A + 2T X
	ONBII[12]	n	3n-1 2	3n	0	n	T A + 2T X
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