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INHOMOGENEOUS NAVIER-STOKES EQUATIONS IN THE
HALF-SPACE, WITH ONLY BOUNDED DENSITY

RAPHAEL DANCHIN AND PING ZHANG

ABSTRACT. In this paper, we establish the global existence of small solutions to the inhomo-
geneous Navier-Stokes system in the half-space. The initial density only has to be bounded
and close enough to a positive constant, and the initial velocity belongs to some critical
Besov space. With a little bit more regularity for the initial velocity, those solutions are
proved to be unique. In the last section of the paper, our results are partially extended to
the bounded domain case.

Keywords: Inhomogeneous Navier-Stokes equations, Stokes system, critical Besov spaces,
half-space, Lagrangian coordinates.

AMS Subject Classification (2000): 35Q30, 76D03
1. INTRODUCTION

We are concerned with the global well-posedness issue for the initial boundary value prob-
lem pertaining to the following incompressible inhomogeneous Navier-Stokes equations:

Op + div(pu) =0 in Ry xQ,
O(pu) +div(pu®@u) — pAu+VII =0 in Ry xQ,

(1.1) divu =0 in Ry xQ,
u=20 on R, x0€,
pli=0 = po,  puli=o0 = pouo in Q,

where p = p(t,z) € Ry, u = u(t,z) € R? and I = II(t,z) € R stand for the density, velocity
field and pressure of the fluid, respectively, depending on the time variable ¢ € R, and on
the space variables z € ). The positive real number p stands for the viscosity coefficient.
We mainly consider the case where § is the half-space R%, except in the last section of the
paper where it stands for a smooth bounded domain of R? (d > 2).

The above system describes a fluid that is incompressible but has nonconstant density.
Basic examples are mixture of incompressible and non reactant flows, flows with complex
structure (e.g. blood flow or model of rivers), fluids containing a melted substance, etc.

A number of recent works have been dedicated to the mathematical study of the above
system. Global weak solutions with finite energy have been constructed by J. Simon in [19]
(see also the book by P.-L. Lions [17] for the variable viscosity case). In the case of smooth
data with no vacuum, the existence of strong unique solutions goes back to the work of O.
Ladyzhenskaya and V. Solonnikov in [15]. More recently, the first author [8] established the
well-posedness of the above system in the whole space R? in the so-called critical functional
framework for small perturbations of some positive constant density. The basic idea is to use
functional spaces that have the same scaling invariance as (1.1), namely

(1.2) (p,u, II)(t, ) — (p, Au, N2TI) (A%t Az), (po,uo)(z) — (po, Aug) (Az).

Date: April 11, 2013.



2 R. DANCHIN AND P. ZHANG

More precisely, in [8], global well-posedness was established assuming that

lpo — 1| +p uoll <L
B B

d da
Q%m(Rd)ﬂLoo(Rd) 22,1(Rd)

Above Bg’,,(Rd) stands for a homogeneous Besov space on R? (see Definition 2.1 below).
This result was extended to more general Besov spaces by H. Abidi in [1], and H. Abidi and
M. Paicu in [2], and to the half-space setting in [10]. The smallness assumption on the initial

density was removed recently in [3, 4].
d

Given that in all those works the density has to be at least in the Besov space Bg, 00, ONE
cannot capture discontinuities across an hypersurface. In effect, the Besov regularity of the
1

characteristic function of a smooth domain is only Bﬁ oo- Therefore, those results do not
apply to a mixture of two fluids with different densities.

Very recently, the first author and P. Mucha [11] noticed that it was possible to establish
existence and uniqueness of a solution in the case of a small discontinuity, in a critical
functional framework. More precisely, the global existence and uniqueness was established
for any data (po,up) such that for some p € [1,2d) and small enough constant ¢, we have

1.3 po —1 i +u ol 4 <e
(13) oo =l e 07 Tl

. . . e
Above, | - || d is the multiplier norm associated to the Besov space BID’1 7 (RY),

M(B, )P (D)

which turns out to be finite for characteristic functions of C' domains whenever p > d —
1. Therefore, initial densities with a discontinuity across an interface may be considered
(although the jump has to be small owing to (1.3)). As observed later on in [12], large
discontinuities may be considered if the initial velocity is smoother. In fact, therein, any
initial density bounded and bounded away from 0 is admissible. Let us emphasize that
in both works ([11] and [12]), using Lagrangian coordinates was the key to the proof of
uniqueness.

A natural question is whether it is still possible to get existence and uniqueness in a critical
functional framework where py is only bounded and bounded away from zero. As regards
existence, a positive answer has been given recently by J. Huang, M. Paicu and the second
author in [14], in the whole space setting, and uniqueness was obtained if assuming slightly
more regularity for the velocity field. Let us emphasize that once again using Lagrangian
coordinates is the key to uniqueness. Therefore, assumptions on the initial velocity have
to ensure the velocity u to have gradient in L} (Ry;L>(R%)) in order that Eulerian and

loc

Lagrangian formulations of the system are equivalent. While this property of the velocity
d

.—144 . —144
field holds true if ug isin B,; * (R%), it fails if ug is only in Bp, *(R%) for some 7 > 1. As
a matter of fact, the question of uniqueness in a critical Besov framework for the velocity is
open unless 7 = 1 (this latter case requires stronger assumptions on the density, as pointed
out in [11]).

In the present work, we aim at extending the results of [14] to the half-space setting.
Because we shall consider only perturbations of the reference density 1, it is natural to set
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a=1/p—1 so that System (1.1) translates into

Oa+u-Va=0 in R, xQ,
du+u-Vu+ (14+a)(VII — pAu) =0 in Ry xQ,
(1.4) divu=0 in Ry xQ,
u=20 on R x01,
(a,u)|t=0 = (a0, uo) in Q.

As in the whole space case considered in [14], the functional framework for solving (1.4) is
motivated by classical maximal regularity estimates for the evolutionary Stokes system. In
effect, the velocity field may be seen as the solution to the following system:

(1.5) Ou — pAu + VII = —u - Vu + a(pAu — VII), divu = 0.

In the whole space case, we have for any 1 < p,r < oo and t > 0,
_1
1Dt pV 0, VIL) || oy < C(Ml v ||U0HBQ_% + lu- Vull Ly ey + [la(pAu — VH)HL;(LP))

where we have used the notation ||z|[zr (L) def 121l L ((0,4); L0 (RY)-

Given that ||a(t)||re = ||ao|/z~ for all time, it is clear that the last term may be absorbed
by the Lh.s. if ||ag||ze is small enough. Now, it is standard (see Corollary A.1 below) that

in the simpler case where u just solves the heat equation with initial data ug, having Au in
d

14
L™(0,T; LP) is equivalent to ug € By, * provided -1+ g =2- % This implies that p and
and thus g <p<d.

r have to be interrelated through p = 3r 3

Here we aim at extending this simple idea to the half-space setting, or to C? bounded
domains.

In the half-space case, according to the above heuristics and because homogeneous Dirichlet
boundary conditions are prescribed for the velocity, the natural solution space for (u, VII) is

92
xpr 4 {(u, VII) with u e C([0,T]; Boy™ (RL)) and  dyu, V2u, VII € L' (0, T} Lﬁ)},

22
where L% def 7 (R1) denotes the Lebesgue space over R%, and Bf, " (R%) stands for the set

of divergence free vector fields on Rd with Besov regularity B (Rd ) and null trace at the
boundary (the exact meaning will be given in Definition 2.3 below)

We also introduce the following norm for all 7" > 0:

def 1_1
(16) H(U VH)”Xpr = lul HUH (O,T;Bi;%(Ri)) + H(atu, Mv2u, vH)”L’r(O,T;Li),

and agree that XP" and || - || x»r correspond to the above definition with 7" = +ooc.

Before stating our main results, let us clarify what we mean by a weak solution to (1.4):

Definition 1.1. A global weak solution of (1.4) is any couple (a,u) satisfying:
e for any test function ¢ € C°([0,00) x ), there holds

// (Orp+u-Vo) dmdt—i—/(b Jagdx = 0,
//qbdlvuda:dt—o

(1.7)
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e for any vector valued function ® = (®!,--. &%) € C°(]0,00) x Q), one has
(1.8) / /{u~8t<1>+u®u VO + (1 +a)(uAu—VH)(I>}dxdt+/ ug - ©(0,-) dz = 0.
0 /o Q

Our main statement reads:

—1 —1+4 . def _
Theorem 1.1. Let ag € LY and ug € By, " (R%) nB;, P(RL) with p = S <p< A

and r € (1,00). There exist two positive constants ¢y = co(r,d) and ¢; = c¢1(r,d) so that if

+§(

(1.9) luoll  1ya < cop and |aolre < e
pr ©(RY)
then (1.4) has a global solution (a,u,VII) in the meaning of Definition 1.1 with Q = R%,
satistying |a(t)||L= = |aollLe for all t > 0 and u € XP" N XPT. Moreover, there exist
Cy = C4(r,d) and Cy = Co(r,d) so that
1 1
1.10 w, VI | xpr + =27 || Vu w < Cipt T luo|
10 Tl 4 IV e SOl g
and, if L %1 1
1 _1
(1.11) 1, VID | x5 + ' 72 [Vl e gy 10 < Copt "llwoll  1vg 5
p,T +

If in addition p > d then Vu € LI(R; L) with ¢ = #’7_1)5 and

1
(1.12) pal|Vullpam, sy < Calluoll _ypa
BEn‘ p( i)

and uniqueness holds true.

Remark 1.1. In contrast with the whole space case in [14, 18], it is not clear that one may
improve the isotropic smallness condition (1.9) to an anisotropic one allowing for arbitrarily
large vertical velocity. The reason why is that even for solutions to the linear Stokes system
in the half-space, the horizontal component of the velocity u" depends on both ug and ug
(see the formula in Theorem 2.1 below).

Remark 1.2. We shall extend this statement to a more general critical (or almost critical)
Besov setting, see Theorems 5.1 and 5.2 below. We could also deal with the local well-
posedness of (1.4) with general velocity and small inhomogeneity. For a clear presentation,
we skip the details here.

Let us briefly describe the plan of the rest of the paper. The next section is devoted to the
linearized velocity equation of (1.4) in the half-space, that is the evolutionary Stokes system.
We first derive an explicit solution formula in the spirit of that of S. Ukai in [20], and then
deduce maximal regularity type estimates similar to those of the whole space. We consider
the general situation with prescribed (possibly nonzero) value for divu as it will be needed
when reformulating (1.4) in Lagrangian coordinates. The next two sections are devoted to
the proof of the existence part of Theorem 1.1, first under a stronger assumption on the
density, and next in the rough case corresponding to the hypotheses of the theorem. The
case of more general Besov spaces will be examined in Section 5. The proof of uniqueness
is postponed in Section 6. In the final section, we partially generalize Theorem 1.1 to the
bounded domain setting. Some technical lemmas related to maximal regularity and LP(LY)
estimates for the heat equation in the whole space (or Stokes system in bounded domains)
are presented in Appendix.
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2. THE EVOLUTIONARY STOKES SYSTEM IN THE HALF-SPACE

This section is devoted to the study of following system in the half-space:

Oou — pAu+VII = f in Ry xR,

. . . d

2.1) divu =g in Ry x RJF(}
u=20 on R; x0ORY,
uli=—o0 = uo on ]Ri .

We shall first derive an explicit formula for the solution to this system, and next prove the
key a priori estimates that are needed for getting the main results of our paper.

2.1. A solution formula. This part extends a prior work by S. Ukai [20] (see also [7]) to
the case where there is a source term f in the velocity equation, and where the divergence
constraint is nonhomogeneous. Let us recall that in [20], it was assumed that f = 0 and

= 0 (but u need not be zero at the boundary), and that in [7] nonzero f was considered
(but still u is divergence free and f has trace zero). Furthermore, the gradient of the pressure
was not computed therein, a computation that turns out to be essential for us as VII appears
in the right-hand side of the velocity equation (1.5).

Before ertmg out the formula, let us introduce a few notations. We denote A = Z =1 82
and Ay = E and define |D|*! and |Dy|*! to be the Fourier multipliers with symbol

wg’

d—1

£}
|fh|ﬂEl <Z§Z> and |§\i1 <Z§l> , respectively.

The notations R; and S; stand for the Riesz transforms over R¢ and RZ‘I, namely

R oD for j=1,---,d and  S; %o, Dy for j=1,--- .d—1.
We further set Ry, def (Ry,--+ ,Rq—1) and S def (S1,-+,S4-1).
As in [20], for u = (u”,u?) with u" = (u!,---  u9"1), we define the operators V; and V},
by
(2.2) Vau ©f g uh+u? and thd—e u + Su.

We shall see later on that both Vyu and Vyu satisfy a heat equation, this is the main
motivation for considering those two quantities.

We also denote = = (xp,z4) with xp = (21, ,24-1). Let r be the restriction operator
from R? to Ri, that is rf def f|Rd+, and eo(f),eq(f),es(f) be the extension operators given
by

| f for xq4>0, | f(x) for x4 >0,
co(f) = { 0 for :EZ <0, ca(f) = { —f(zp, —xq) for x(fi <0,

es(f)_{ f(l') for x4 >0,

| flxp,—zq) for zg <O.

(2.3)
and

When solving (2.1), we shall repeatedly consider the following two equations:

(2.4) (8a+|Dpl)w=|Dp|f in R%L and yw=0 on ORZL.

(2.5) (Ba+|Dpl)v=f in RL, and qv=0 on ORYL.



6 R. DANCHIN AND P. ZHANG

Here and in what follows, ~ stands for the trace operator on 8]1%1 .

Finally we denote by H the harmonic extension operator from the hyperplane GRi to
the half-space R‘i . More precisely, for any given b : 8Ri — R, we set Hb to be the unique
solution going to zero at oo of
(2.6) AHb=0 in R%, and yHb=b on ORL.

Introducing the Fourier transform Fj with respect to the horizontal component xj, the
function Fp,(Hb) is explicitly given by the formula

(2.7) Fn(Hb)(&n, wa) = e M T Fb(&,),  €n € R, 2g > 0,
hence in particular
(2.8) (8a+ |Dp))Hb=0 in R%.

Lemma 2.1. For any smooth enough data f decaying at oo, Equation (2.4) has a unique
solution going to 0 at oo, and Equation (2.5) has a unique solution with gradient going to
0 at infinity. Furthermore, denoting by U and P the solution operators for (2.4) and (2.5),
one has

(29) Uf=rRy-S(By-Sealf) + Racs(f)) and Pflan,zq) = /0 1 U) f (e va) dya

and the following identities are satisfied:

(1) VU =UVy;

(2) 9aU = (I = U)|Dpl;
(3) VuP = SU;

(4) P =1—U;

(5) AP =94 — |Dyl;
(6) [P,04) = —H~v

Proof. If w is a solution to (2.4) then it also satisfies the following Poisson equation:
—Aw = (|Dp| = 9a)| Dn| f
w’mdio = 0)
the unique solution (decaying to 0 at infinity) of which is given by
w = r(=A)""ea((|Dn| = 8a)| Dl f).
As eo(|Dnl*f) = [Dnl?ea(f) and eq(9alDplf) = Oa(es(|Dnlf)) = dalDnles(f), we get the
formula for U f.

It is obvious that U commutes with V. As regards commutation with d;, we notice that,
by definition of U f,

OaUf + |Dp|Uf = |Dalf,
which yields (2).
It is clear that |Dy|Pf satisfies (2.4), hence |Dy|Pf =Uf and V,Pf = SUf. Similarly,
the equation for Pf yields
aPf=[f—|DulPf=f-UFf,

hence integrating with respect to the vertical variable gives the expression for P.
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The next item is a direct consequence of the definition of P (just apply dy — |Dp| to the
equation). Finally, we have by definition of PJ,f,

(Oa + [Du|)POaf = Oaf = (8a+ |Dul)f — |Dpl/f.
Hence, using (2.8),
(Oa + [Du|)(POaf — f+ Hyf) = =|Dplf and (POaf — f + Hvf)|zy=0 = 0.
Therefore, using the definition of U, one may write
POuf — f+ Hyf = —UF.
Because 0;P = I — U, it is easy to complete the proof of the last item. O
Remark 2.1. For functions vanishing at x4 = 0, operator U coincides with the expression
rRy - S(Rp - S+ Ry)ep

that has been introduced in [20] and plays the role of the left-inverse of (Id+|Dy|~10y) for
functions of Ri vanishing at 8]R‘i . Our definition of operator U is slightly more general as
it allows us to consider functions that do not vanish at x4 = 0.

The main result of this subsection reads:

Theorem 2.1. Given smooth and decaying data ug, f and g with g = divQ, the unique
solution (u,VII) of (2.1) is given by

ul :re“tAea(tho) — uSPg — SUe“tAea(Vduo)

t B ¢ N
(2.10) — SU/ eMt=MAe, (Nf+ Gk)dr + 7"/ M)A (M f + SGk) dr,
. ) ;

t ~
u? =pPg + Ue“tAea(Vduo) + U/ elt=m)A (Nf + Gk) dr,
0

and
Vil = r(Ry - S(SRa+ Ry)) (S - ea(f") + es(f4) + S(U — )Gk
+ (Vi — S02)g + S8, (S - UQ" + (I - U)Q? — HYQ?) + SUNf
t ~
2.11) + (r(|Dh| —04)Vh + SUA) <e“mea(Vduo) + /0 ett=T)A¢, (Nf + Gk) dT),

0l = f* + u(04 — |Dul)g — 0:(S - UQ" + (I - U)Q* = HYQ") — U(Nf + Gk)
t o~
— (r(|Dp| = 0a)|Dp| + UA) <e“tAea(Vduo) + / et (N f + GF) d7> ,
0
where Gk, Mf and ]Vf are given by
Gk =—r(Rq— Ryn-S) (R ea(k™) + Rdes(kd)) with k= 0,Q — uVg,
(2.12) Nf=r{[1+ R}~ RaRy - S|es(f) + R3S - ea(f") + RaRn - ea(fM)},

Mf= rS[Rq— Ry, - S| (R - ea(f") + Raes(f%)) + Vi f.
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Proof. We shall essentially follow the arguments in [7, 20]. Note that setting

(2-13) unew(tax) = Muold(ﬂ_ltax)y Hnew(ta$) = Hold(ﬂ_lta 33)7 fnew(t,$) = fold(u_lta J})

reduces the study to the case u = 1, an assumption that we are going to make in the rest of
the proof.

The basic idea is to reduce the study to that of the heat equation for the auxiliary functions
Viu and Vyu. As a first step, let us compute II in terms of div f, g and of its trace at ale_ .
Taking space divergence to (2.1) yields

~All = 0,9 — Ag—divf in R,
J II—-0 as |z|]— oo,
MI=b on ORY
the solution of which is given by
IT=7r(—A)tey(div(k — f)) + Hb with k= 0,Q — Vg,
which along with (2.8) implies that

(04 + D)L = —1r(da + | Du|)(=A)  ea(div(f — k)

(2.14) .
—  Mea(div(f — )
with
(2.15) Mh Y 0y + |Dy)) (~A) .
def def

Let z = (0 + |Dn|)u? and Nf = (04 + |Dp|) f* — 0gMeq(div f). We infer from (2.1) and
(2.14) that

Oz — Az = Nf+0gMey(divk) in Ry xR,

(Z - g)‘zd:(] - 07

Z‘t:() = (8d + |Dh])ug

Note from the definition of M in (2.15) that

(2.16) diMeq(h) = eq(h) — 7| Dy|(a+|Dnl)(=A) " [ea(h)].
Therefore, because
(2.17) ea(divk) = divy, eq (") + ges (k)
and
(2.18) Me,(div k) = Gk,
we get
Nf = |Dp|f* = rdivy ea(f*) + 7| Dp|(04 + [ Dal)(=A) " [divh ea(f) + Oges(f4)]
= |DuIN¥.

Now, using (2.16) with h = 0;g — Ag = divk and (2.17), we thus obtain

O(z—g)—A(z—g) = ]Dh|(]vf—|—Gk) in Ry xR%,
(2 = 9)lzg=0 =0 in R xdRZ,
(2 = 9)li=0 = [Dn[Vauo in RY.
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Taking advantage of the solution formula for the heat equation in Ri with homogeneous
Dirichlet boundary conditions, we deduce that

t ~
(2 = 9)(t) = 7Dy <emea<vduo> " /0 e, (N f 4 GR) d7>.

As z — g = (|Dy| + 0q)(u? — Pg) and u? — Pg vanishes at x4 = 0, keeping in mind the
definition of U, we get the second equality of (2.10).

To derive the solution formula for u”, we look at the equation satisfied by Vju. Thanks
to (2.1), (2.12) and (2.14), we get, observing

Viof — S(IDp| + 8)1 = Vi, f — SMeq(div(f — k)) = M f + SGk,

that
OVhu— AVju=Mf+SGk  in R, xR%,
Vitt|z,—0 = 0 in Ry xR?,
Vihuli=o = Vauo in Ri,

so that

t —
(2.19) Viu = retAea(tho) + T/ e(t="A¢, (Mf + SGk) dr.
0

Because u” = Vju — Su?, combining the above identity and the second formula of (2.10), we

obtain the solution formula for u”.

Let us finally derive (2.11). By virtue of (2.1) and (2.10), we may write
Il = 4 — (8 — A)u?
t ~
= f1— (8, — A)Pg— (9 — A)U(emea(Vduo) + / =R, (Nf + Gk) dT>.
0
However, because
AU = T(ad - |Dh|)|Dh’h,
one may write
(615 — A)Uh = U(@t - A)h + T(’Dh‘ - 8d)‘Dh‘h + UAR.
Note also that, by virtue of Lemma 2.1,
0Py = Oy(P divy, Q" + PO4Q") = 0,(S - UQ" + (I - U)Q" — HYQ")

and that
APg = (04 — |Dul)g,

which ensures that
(2.20) Oull = f4 — 9,(S - UQ" + (I — U)Q? — HYQ?) + (84 — |Dy|)g — U(Nf + Gk)

— (r(IDy| — 84)|Dp| + UA) (etAea(Vduo) + / t =T, (Nf + GE)) d7->-
0

On the other hand, by virtue of (2.14), one has
| Dp|I1 = —0411 4 Meg(div(f — k)),
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and
Mey(div f) = — (9 + | Du|)(—=A) " (divy ea(f) + Oses(f7))
= es(f) = (Ba + | Dal)(=2) ! (divn ea(f") + [ Dales(f9)),
which together with (2.20) gives rise to (2.11). This completes the proof of Theorem 2.1. [
2.2. A priori estimates. Let us first briefly recall the definition of homogeneous Besov

spaces in R?. Let x : R — [0,1] be a smooth nonincreasing radial function supported in
B(0,1) and such that x =1 on B(0,1/2), and let

o(€) ¥ x(€/2) — x(©).

The homogeneous Littlewood-Paley decomposition of any tempered distribution u on R? is

defined by

Apu def (27 D)u = F 1 (p(27%) Fu), keZ

where F stands for the Fourier transform on R?.
Definition 2.1. For any s € R and (p,r) € [1, +0cc]?, the homogeneous Besov space B;T(Rd)

stands for the set of tempered distributions f so that

def || sk i
”fHB;J(Rd) = H2 kHAkaLp(Rd)

and for all smooth compactly supported function 0 over R?, we have

(2.21) Jim O(AD)f =0 in L*®(RY).

@y <X

Remark 2.2. Condition (2.21) means that functions in homogeneous Besov spaces are re-
quired to have some decay at infinity (see [5] for more details). In particular, we have

(2.22) F=Y Apf in S'(RY

keZ
whenever f satisfies (2.21). In this paper, we will only consider exponents s < d/p so that
for f with finite B;T(Rd) semi-norm, (2.21) and (2.22) are equivalent.

The homogeneous Besov spaces on the half-space are defined by restriction:

Definition 2.2. For any s € R, and (p,r) € [1,+00]?> we denote by B;T(Ri) the set of
distributions u on ]Ri admitting some extension u € B;”T(Rd) on RY. Then we set

Il 5, ey " inf ] 5 g
B;,T(R+) B;S),T(R )
where the infimum is taken on all the extensions of u in B;’T(Rd).

We also need to introduce some spaces of divergence free vector fields vanishing at the
boundary BRi . We proceed as follows:

Definition 2.3. For 1 < p < oo and 0 < s < 2, we denote by BZ’T(R‘D the completion
of the set of divergence free vector fields with coefficients in W2P(R%) N VVO1 P(RL) (where
VVO1 P(RY) stands for the subspace of W'P(R%) functions with null trace at OR%) for the

norm || - HBﬁm(Ri)'

It is classical (see e.g. [10]) that spaces (B;J,(Ri))d (with the divergence free condition)
and B;T(Ri) coincide whenever 1 < p,r < oo and 0 < s < 1/p.
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The following result extends Lemma 3.2 of [20] to the context of Besov spaces.

Lemma 2.2. Operators Ry, Rgq and S map Lp(Rd) in itself for any 1 < p < oo, and, with
no restriction on s, p,r, we have

||Rz||Bg’r(Rd) < CHZHB;’T(Rd) for R € {Rh,Rd,S}.

Operators Vi, Vg, U, G, M and N map LY in itself if 1 < p < oo, and B;T(Ri) in itself
ifl<p,r<ooand0<s<2.

Proof. The result in the Lebesgue spaces just follows from the fact that all those operators are
combinations of Riesz transforms so that Calderon-Zygmund theorem applies. The result in
homogeneous Besov spaces stems from the fact that the Riesz operators are Fourier multipliers
of degree 0, hence map any homogeneous Besov space in itself. O

We are now ready to establish a first family of a priori estimates for System (2.1).
Proposition 2.1. Let 1 < p,r < oo and the data ug, f, g fulfill the following hypotheses:
.92
o up € By, (RY);
o feL"(Ry;LE);
o Vge L'(Ry; LY), g =divQ with 8,Q € L"(Ry; LX) and the following compatibility
conditions are fulfilled*
(2.23) yul =0, gli—o=0, and 8(yQ% =0.
Then System (2.1) has a unique solution (u, VII) with

9_2
u € Cy(Ry; Byr " (RY)) and  dyu, V2u, VI € L7 (Ry; L2,
with also Vu € LY(Ry; L") whenever q € [r,00) and m € [p,00] satisfy

0§1—2+g§§ and izg—l—i—g—g
r . q p m p r q

Furthermore, the following inequality is fulfilled for all t > 0:

2.94) ;=7
(2.24) 'l

1-141
oo (57 V| o pmy + 1@, VP, VID | gy

2
£

(R%))
1-1
< O(1t Mol o3 g + 1071V, 0Q) 0z )

o (RE
92
Finally, if ¢ =0 then we have u € C(RJF;B;H (RL)).
Remark 2.3. As regards the bounds for Vu, we shall often use the following two cases:
e p= 37‘?12, q=2r and m = 27‘?11,

e p>d, q:apréi"il)p and m = +o00.

Proof. We concentrate on the proof of the estimates in L" (0,7 Lﬁ) for V2u and VII. Indeed,

once the pressure has been determined, u may be seen as a solution of the heat equation
with source term in L"(Ry; L% ), the solution of which is given by

(2.25) utt) = r(entua) + [ =3, (7 - ) i)

3

1The condition on ud is ensured by the fact that uo € Bi;

div @ is quite smooth.

(R%). As for Q, it stems from the fact that
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Therefore combining Corollary A.1, Lemma A.1 and Lemma 2.2 allows to bound wu(t) in
B;;% (R%) in terms of the data and of the norm of VII in L"(0,; LY). In addition, because
any function in L"(Ry; Li) may be approximated by smooth functions compactly supported
in Ry x R%, and because up may be approximated by functions in W2P(R%) N WO1 P(R),
the above formula guarantees that w is continuous in time, with values in BQ;%(Ri) (or in

92
Boy (R4 if divu = 0).

In what follows, we assume that g = 1, which is not restrictive owing to the change of
variables (2.13). Of course, when proving estimates, one may consider separately the three
cases where only one element of the triplet (ug, f,g) is nonzero, a consequence of the fact
that (2.1) is linear.

Step 1. Case uo =0 and f =0. Then the formula for u? given by Theorem 2.1 reduces to
¢
ul = Pg + U/ e8¢, (Gk) dr,
0
and using the algebraic relations provided by Lemma 2.1 thus yields

t
Viul = SUV,g+ U / AV 2e, (GE) dr,
0
t
Vidqud = (I — U)Vpg+ (I —U) / e"DAY, | Dylea(GE) dr,
0

t t
92t = (934 (U—I)|Dp))g + / =20, Dpleq(GE) dr + (I-U) / A ALeq (GE) dr.
0 0

The important fact is that all the terms corresponding initially to Pg may be written AVg
where A stands for some 0-th order operator for which Lemma 2.2 applies. A similar ob-
servation holds for the terms with the time integral so that applying Lemma A.1 eventually
yields

(2.20) 1926 1322y < OVl 22y + 1GR Iz 12):
At this point, we use Lemma 2.2 to bound the right-hand side by ||(Vg, 8tQ)HL%(Li), and we
thus get
(2.27) Hv2ud||L’"T(Lﬂ) < Cll(Vg, Q) sz
It is clear that V2u" also satisfies (2.27): indeed (2.10) gives
t

(2.28) Vi = / AV 2Se, (GE) dr — SVl

0

Let us now concentrate on the pressure. Keeping in mind (2.20) and (2.23), we may write
Ol = (9a — |Dnl)g — S - UOQ" — (I = U)9,Q" — UGk

t
—(+(IDa] - 82)|Dy| + UA) / B () dr.
0

Therefore, combining Lemmas 2.2 and A.1 gives

(2.29) 10alll[ . 12y < Cl(8:Q, V)l 1 (22
Finally, because

(2.30) Vil = —=SGk — So4ll,
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it is clear that V,II also satisfies (2.29).

Step 2. Case f =0 and g = 0. With no loss of generality, one may assume that ug €
W, P(RL) N W2P(RL). From Theorem 2.1 and Lemma 2.1, we readily get

Viut = Ue'®Vieq(Va(uo)),
Vi dqu = (I — U)e" >V |Dpleq(Va(uo)),
Oiu’ = re' 04| Dylea(Va(uo)) + r(I — U)e"ea(AnVa(up)).
Therefore, combining Corollary A.1 and Lemma 2.2,

1V2u oy < O(lealTRValwo)l, 2 0
pT
+H€a(vh‘Dh|Vd(U0)>HB;T%(Rd) + Hes(adeh’Vd(Uo))HB;T%(Rd)>

<
Ol

Note that in order to bound the last term, we used the fact that because Vyjug is null at the
boundary, we have

| Dp|0aea(Va(uo)) = es(dal Dp|Va(uo)) € By, (Rd)
Owing to (2.28), V2u" satisfies the same inequality. Finally,
Oall = — (r(|Dp| — 9a)|Dp| + UA) e e (Vauo)
hence, according to Lemma 2.2 and Corollary A.1,
10211l 5 12y < CIV2e ea(Vauo)l| g (1r)

< Cllu 2
|uoll . 52 @)

Of course, (2.30) implies that V,II has the same bound.

Step 3. Case ug =0 and g =0. As in the previous steps, owing to
U2 — T/t =DAY2e (T f) dr — SV,
Vpll = SG} — SOo4ll,

it suffices to bound V2Zu? and 94II. The formulae for the second spatial derivatives of u?
now read

t
Viul —U/ E=NAG2e,(Nf) dr
0

t ~
Vdgul = (I - U) / DAY, Dy lea(N f) dr
0

t - t .
Pt — ¢ / e=DD 0 Dylea(N ) dr + (I — U) / (DDA, o (N f) dr
0 0

Therefore applying Lemmas 2.2 and A.1,
||V2“d||L;(Lﬂ) < CH@a(Nf)HL;(L{;)
< CHf”L}(Lﬂ)'
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For the pressure, we have

Ol — f1 = ~UNf — (r(|Dy| — 84)| Dy| + UA) /Ot T (N f) dr
therefore, using once again Lemmas 2.2 and A.1, we obtain

|01l — fd||L;(Lﬂ) < C(HUNfHL}(Li) + ||6a(Nf)HLTT(LP))
< COllifllzg ez

Step 4. Estimates for Vu. The starting point is the following classical Gagliardo-Nirenberg
inequality on R?:

(2.31) V2]l gy < CHZH; HV2ZIILP(Rd
p,T
withﬁe((),l},mZp,Ogl—%+29<ganda —14+2-2.

If 0 € (0,1) then this inequality may be easily proved by decomposing u into low and high
frequencies by means of an homogeneous Littlewood-Paley decomposition (see e.g. [5] Chap.
2 for the proof of similar inequalities). The case § = 1 corresponds to the classical Sobolev
inequality. We omit the proof as it is standard.

We claim that this inequality extends to the half-space setting if considering functions
u € WO1 P(RE)NW2P(RL). In effect, we observe that for such functions we have the following
identities:

Vi(equ) = eo(Vpu) and  0Oglequ) = es(Oqu).

As Vj(equ) also has null trace at ORY, one can thus write
Vi(equ) = eq(Viu) and 0qVi(equ) = es(9qViu).

Even though 04(equ) need not be zero at 8]1%1, it is symmetric with respect to the vertical
variable, whence

D% (equ) = eq(d3u).
Applying (2.31) to z = equ, and the above relations for the second order derivatives, we thus
gather
[Vl

IN

19 (eat)l| gty
Clleaul 2?5 IV3(eat)l
p " (RY) )
< Cllll?y IVl

pr+

IN

Lp(R?)?

Hence, taking the L? norm with respect to time of both sides (with ¢ = /), we discover
that

Yl rapm < Cllul/t~?
IVull gz my < C HLT<B§T(R1>

Bounding the right-hand side according to the previous steps leads to the desired estimate

2 110
1A% UHL;(Li)'

In order to solve System (1.4) for more general data, it will be suitable to extend the above
estimates to the case where the index of regularity of ug is not related to r. This motivates
the following statement:



GLOBAL SOLUTIONS TO INHOMOGENEOUS NAVIER-STOKES EQUATIONS 15

Proposition 2.2. Let 1 < p,r < oo and 0 < s < 2. Let (uo, f,g) satisfy the compatibility

conditions of Proposition 2.1, and be such that
. 1
uo € B}, (RY), 1°(f,V9,0,Q) € L' (R %) with a©1-2 -~
’ r
Then System (2.1) has a unique solution (u, VII) with t*(dyu, V*u, VII) € L"(Ry; L") and
for all T > 0,

(232) (%@, V2, VD) g i) < C(lwollsy sty + 120, 99, 0@) g a) )

Furthermore, the following properties hold true:
(1) For any couple (pa,r2) so that

d d 2 2
S<1+*_7<2+7_77 p22p7 TQZT
P P2 T2 T
we have tBVuEL"?(R+;LT) with ﬁz%—%—i—%—%—%, and

B a .
[V ull ro 2y < C(HUOHBsf%% R) + ([t (f, Vgﬁt@)”L;(Li))

p2,7T2

(2) For any couple (p3,rs) so that

d d 2 2
S<7_7<2+7_77 p32p7 r3 2>,
b p3 rsor
we have tVu € L™ (Ry; L%?) With’y:—ﬁ—i-%—%—%, and

Il < Cluoll g, + 1670 V8. 0Q) 50z, )

pgrs o (RE

Proof. Let us first assume that only g is nonzero. Then we start with the formula

t
t°Viut = SUt*V g + Ut® / A2, (GE) dr.
0

From Lemmas 2.2 and A.2, we immediately infer that, if ar’ < 1,
HtaviudHL;(Lﬁ) < C(||tavh9”L;(Li) + ||ta€a(Gk)||L;(Lp(Rd))),
whence
(2.33) HtaV%UdHLg(L{;) < CHta(v.gyatQ)HL{(Lﬁ_)'
Similarly, as
¢
tVy0qut = (I — U)t*Vig + (I — U)t* / A, | Dyleq(GE) dr,
0
and

t
3t = (0 (U = DD +1° [ 80, Dylea(Gh) dr
0
t
+(I = U)t™ / AN eq(GR) dr,
0
it is clear that |[t*V2ud|| Lp(n) 18 bounded by the right-hand side of (2.33). Because

t
V2t = r e / NAG2Se, (GE) dr — t*SV2u,
0



16 R. DANCHIN AND P. ZHANG

the same inequality holds true for t*V2u".

In order to bound the pressure, we use the fact that

t*0401 = t%(0g — | Dp|)g — t*S - UdQ" — (I — U)t*9,Q* — t*UGk
t
—(r(|Dn| — 0q)|Dn| + t eV e, T.
Dyl — 0)|Dp| + UANY | =726, (Gk) d
0

Note that the terms in the right-hand side may be handled by means of Lemmas 2.2 and A.2,
exactly as we did for tO‘V,Qlud. Therefore, we have

”taadHHLf(Lf_) < CHta(v%atQ)”L{(Lﬁ_)'
Owing to (2.30), it is clear that ¢t*VII satisfies the same inequality.

Let us now consider the case f =0, g =0 and ug € VVO1 P(RY) N W2P(RY) (with no loss
of generality). As usual, because one may go from u? to u" through

ut = retAea(tho) — Su?,
we concentrate on t*V2u?. We start with the formula
tVEiud(t) = Ut®e® e, (ViVaug) = Ut V2 Vaeq(uo),
which, in view of Lemmas 2.2 and A.5 ensures that

9 d . s 1
Htavhu HL;(L?#) < CHVd@a(UO)”B;T(Rd) < CHUOHB;T(Ri) with a=1— 5 — ;

Similarly, we have
tavhadud = (I - U)taetAvh|Dh‘€a(VdU()),
hence

d
(2.34) 1€V ndau| 1z ) < Clluollgs | ey
Finally, to‘ﬁgud satisfies

t20%u? = rt%ePes(04|Dp|Vauo) + (I — U)tePeq(AnVauo)
= 7ty Dplea(Vauo) + (I — U)t%eeq(AnViuo)

because es(0qVyup) = Ogeq(Vyup) owing to the fact that Vyug vanishes on 8Ri. Hence
t*9%u? satisfies (2.34), too, and we conclude that

(2.35) ”taVQUdHL;(Li) < CHUOHBg’r(Ri)‘
Bounding VII is strictly analogous.

In order to prove the estimate for t*V?u in the case ¢ = 0 and ug = 0, we use the fact
that

t . t .
vyt = Ut / A2 (Nf)dr, t°Vdu® = (I-U)t" / AT, |Dplea(N f) dr
0 0

t ~ ¢ ~
and  t*9%u? = r/ e=A0,|Dplea(Nf) dr + (I —U) ta/ AN e (N f) dr.
0 0

Then combining Lemmas 2.2 and A.2 readily gives
d
[tV ?u leyzy < ClIE iy en)-

Bounding t*V?2u;, and t*VII works the same.
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Let us finally go to the proof of estimates for t*Vu and t7u. By virtue of (2.25) and of
the definition of B (see the appendix), we have

tPVu(t) =r (t5VetAea(uo) +t°Beo(f — VH)) :
Therefore, applying Lemmas A.3 and A.5 yields

”tﬂVUHL?(L{‘f) < C(Hea(UO)HB;g’Q(Rd) + [[t%ea(f — VH)HL;(Lp(Rd))),

whenever py > p, r9 > 1, 3221%_14_57
d(1 1 1 1 1 1 s9 1
e o) R R bt b
and
d d 2 2
s<14+—-———<24 ———.
b P2 rg T

Combining with the fact that e, is continuous on functions of B;;TZ (R‘i) with null trace at
the boundary, and with (2.32), we get

7% ull 72 122y < C(HMOHB;;TQ(M) +[[t*(f, Vg, atQ)HL{(Lﬁ_))'
Finally, in order to bound t”u, we use the formula
tTu(t) = r(t"’emea(ug) +t7Ceo(f — VH))-
Applying Lemmas A.4 and A.5 yields

17l 73 ey < C(lleauo)ll s gty + 1E%€alf = VDl pzraay

d d

Wlthp372p7 T3ZT7 53:}?3_5"_8,
d/1 1 1 1 S3 1
’y:a — _—— — — _— = —— —
2\p p3 T T3 2 r3
and
d 2 2
s<——— <24 ———
p D3 3 r

Combining with the fact that e, is continuous on functions of B;;TB (Ri) with null trace,
and with (2.32), we get

[l sy < C(Iwoll gty + 1€ (£ Vg, B2 )

This completes the proof of the proposition. O

3. EXISTENCE OF SMOOTH SOLUTIONS

As a first step for proving Theorem 1.1, we here establish the global existence of strong
solutions for (1.4) in the case of a globally Lipschitz bounded density. As for the velocity, we
assume that it has slightly sub-critical regularity. Here is our statement (recall that the space
XPT has been defined just above (1.6)):
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d d

144 144
Theorem 3.1. Let ag € WH*(RY) and ug € B,, "(RL) N B;, P(RY) with p = 35112,
r € (l,00) andd <p < %- There exist two positive constants co = co(r,d) and ¢; = ¢1(r, d)

so that if

3.1 U <c and ||ap|lr> <c
(3.1) | 0H£.g;+% Ry oK laollze < a1
then (1.4) has a unique global solution (a,u, VII) with a € L2 (Ry; WL (R1)),
_ dr 2~

(u, VII) € XP" N XP" and Vu € L* (Ry; L7 )N LI(Ry; L) with g = 27p~
In addition, there exist Cy = C1(r,d) and Cy = Ca(r,d) so that

3.2 u, VII 4+ -5 Vu s < C 1-7 ugll . a ,
32) VDl FN e S Ol g

1 11 _1
(33) 100Dl +2 5 (19l bt~ [9ulig) < ool g
p,r +

where « satisfies £ = L 4 r=1.
p a dr

Proof. The general strategy is the same as in [10]: we set (a®,u", VII?) = (0,0,0) and solve
inductively the following linear system:

O™+ -Vt =0,

8tun+1 o ,U,AUn+1 + VH'I‘L+1 — Fn
(3.4) div u"*! =0,

(an+17 un+1)‘t:0 - (CLQ, UO))

with 9 gt (pAu™ — VII™) — u™ - Vu'.

Both the global existence and uniqueness of a solution to (3.4) in the spaces given in
Theorem 3.1 follows from basic results for the transport equation (given that Vu'™ is indeed
in L}, .(RT; L)) and from the solution formula for the evolutionary Stokes system in the half-

space. So, as a first step, we focus on the proof of uniform estimates in L2 (R ; W (R%))
for the density, and in XP" N XP" for (u, VII).

Step 1. Uniform estimates. It is obvious that

(3.5) la" ()2 = llaollLe forall n €N and ¢ € RY,
and that

V| oo d
(3.6) Va1 () < & V1 T

We shall prove inductively that for all n € N,
(B7) W VI xpr + i V] e < Ot o g
t B b

7T
i) Bpr P (RY)

_1 1_ 1
(38) 1", VIP) | oo + 2 (V" | gy + 12|V | 10y)
_1
<Ot THUOH.flJr% 4
D,r R+)

for some large enough constant C.
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Applying Proposition 2.1 we see that the left-hand sides of (3.7) and (3.8) are bounded

(up to some harmless factor) by p' =7 ||uo|| id + I 2y (rr) and 1 || gt
oo P (R B Ry

1E (L) respectively. Now, by virtue of Holder inequality (here we use that p = 375112
A
and the assumption p < rdTT1 comes into play), we have
n Is < 7’L+1 [eS) oo n r n Is n r n i .
IF™ |y ny < Na™ g noey (ll Au™ | Ly )y HIVIT [ Ly )+l IILgr ij)HVu HL?*(L_?_’?—*I)
and

n _ n+1 n N n ~ n n
||F HL{(Lﬂ) < ||CL HL?O(L_OS) (/JHAU HL{(Li) + HVH ”L{(Lﬂ)) + ||’LL HLfr(Lfﬁnl)Hvu ”LfT(Li)

Therefore, using the Sobolev embedding

17L dr_
(3.9) Wy (RY) — LT (RY),
we arrive at
un+1,VHn+1 p,r + 1_2%" V! ar . < C( 1_% ugl| _.d
I Mg+t F IV e < Ol g

+||an+1HL;’°(L‘f)(NHAu”HLg(Lﬁ) + HVH”HLg(Li)) + ||Vu”||i dr )),

Lyt

. 1_1
1" VI |+ 72 (VU 2 ) + 17 2 [V a0y

< 1—% n+1 o/ T o0 n ~ n _
<c(n ol vt g, 1 o) G0y + I8 )

p,r

2r—1

+||Vu™ e [V ;2r a).
191, e 19 i

Now, the induction hypotheses (3.5), (3.7) and (3.8) thus imply
R v [ Tl A Vi .
I I A
< o -1 1—1
< C(1+ |laoll L + p ||u0||B_1+% d))”

D, + Bp,r +)
_1 1_1
II(U"“,VH”“)HXgmJru1 2 (V" e ey + w0 2 (VU | g o)

1-1

< C(1+ [laollzee + /leuolleug Rd))u

p,r + D,

Therefore, if ¢g and ¢; in (3.1) are small enough then we get (3.7) and (3.8) at rank n + 1.

Step 2. Convergence of the sequence. Let p be some real number in (g, 2%1) such that
in addition? p < p < p. We are going to show that (a"),en and (u", VII"),en are Cauchy
sequences in Cp([0, T % Ri) and X%T, respectively, for all T' > 0. Of course, by interpolation,
we easily find out that the bounds for (a", VII"),cn in Xg’r are the same as in X" N Xg’r.

As regards (a™)nen, we use the fact that
Oda™ +u" - Vi = —u" - Va"  with & def ntl _gnand gy Lyt oy,

21t would be natural to take p = p but we do not know how to handle the case r > 2 with this value of p.
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Hence, using standard estimates for the transport equation, we get for all positive T,
T
-1
16a™(T)|| e < /0 10u" | L [IVa™ || L dt.

Now, arguing exactly as in the proof of (2.31), we get the following Gagliardo-Nirenberg
inequality® for functions z vanishing at 8Ri:

d\r
3.10 o < COl2° 2110 with 0% (5 2L
(3.10) 2]l < Clz]] -2 i)HV Al wi 5)5
Hence -

16a™ (T) || L5 S/ IVa™ |l a7, HVQ&L" e gdt
DT +

Taking advantage of Young’s inequality we thus get for all pos1t1ve £,
(BA1) 161 angy < 200 g gy 4 Co [T 18

Next, we use the fact that
O ou" — pAdu™ + VAI™ = 6F"
diviu™ =0
u"|t=0 =0 and u"|8Ri =0
with
SF" 2 (pAu™ — VIIM&™ + a" (pAdu ! — VAT —u™ - Vot — o™t vl
Applying Proposition 2.1, we see that for some constant Cy = Cy(p, d),

def
(n

(3:12) G, Fa) g+ 5 VA 300 < ColF | gy with 5= =142

Therefore, in order to prove the convergence of the sequence, it is only a matter of getting
suitable estimates in L"(0,T; L% ) for the terms in 6F™. We easily get

||5F”||LTT(L3) < (H&lnHLw(o,TxRi)HﬂAun - vHnHUT(LfD

+||an||L°°(O,T><Ri) HMA&Ln_l _ VéHn_IHL;(Li)

n n—1 n—1 n—1
I, e V8 gy 18 gy [V QT(L%)),

with?

d _ d 1
At this point, one may combine (3.9), the following Sobolev embedding
WY ) o L7 (R
and the conservation of the L norm of a". We end up with

195 ey < (18" e ety ™, ) g+ ol e (8, )

2r—1
+ T +

UV e IV e JIVEE i)

31t suffices to apply the corresponding inequality in R? to function ea(2).
1Here P <

dr :
57— comes into play.
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Keeping in mind the estimates that have been established in the previous step and assuming
that the smallness condition over ag and ug in (3.1) is satisfied with small enough constants
co and c1, we eventually get

n 1 n— n— -+ n—
o™ a1 < 51 VAl 4198 )

+C/~L Huo||B277(Rd )ﬂB~ 7(R1)H&Ln”l,°°(0,T><Rff_)‘

Now, plugging (3.11) with suitably small ¢ in the above inequality, and resuming to (3.12)
yields

_ 1 n n— n—
(8™, VO™ || g+ =2 V8™ | par gy < 5 (1", VAT )| pr

e~ w

3 98 g +c/ )00, VAT |t

where A is a continuous function of ¢ that depends only on the norm of the data. Summing
up over n > 1 and remembering that (u°, VII?) = 0, we thus get

n n L n _ 1
S (1", ) |+ ' V86 e ) < N, T g+ 2 [V e )

n>1

T T
+4C / AW|(u!, VI g dt + 4C / A [, VA | e .
0 0

n>1

Hence, using Gronwall lemma implies that

_1 n
S (1, 1) | g+ 3 [ V80" | 30 1)) < (H@%vnl)Hng

n>1
_ 1 T T
+,U/1 2r Hvul ”L%"T(LT) + 40/0 A(t)”(ul, VHl) HXti),r dt) 640 fO A(t) dt

This obviously entails that (u", VII"),cn is a Cauchy sequence in Xé’l’r for all T > 0. Then
resuming to (3.11) implies that (a™),ey is a Cauchy sequence in Cy([0, 7] x R%) for all T > 0.

Step 3. End of the proof of the theorem. Granted with the convergence result of the previous
step, and the uniform bounds of the first step, it is not difficult to pass to the limit in
(3.4): we conclude that the triplet (a,u,VII) with a = lim, 4o a”, v = lim, 4 u”,
and VII = lim,_,4 VII", satisfies (1.4) in the sense of Definition 1.1. In addition, as
(u", VII™) hen is bounded in the space X" N XP" which possesses the Fatou property, one
may conclude that (u, VIT) € XP" N XP" and® that (3.2), (3.3) are fulfilled. Similarly, the
uniform bounds for a" allow to conclude that a € LS (Ry; WH°(R%)). This completes the
proof of Theorem 3.1 O

4. PROVING THE EXISTENCE PART OF THE MAIN THEOREM

This section is dedicated to the proof of the existence part of Theorem 1.1. It is mostly
based on a priori estimates for smooth solutions —the same as in the previous section, and
on compactness arguments.

5Rigorously speaking we do not get the time continuity for u, but it may be recovered afterward from
Proposition 2.1 by observing that u satisfies an evolutionary Stokes equation with source term in L"(Ry; LA N

- o 2 o 2
L% ) and initial data in Bi,r'" (R4) N B;T'" (R%).
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Step 1. Constructing a sequence of smooth solutions. This is only a matter of smoothing out
the data (ag,ug) so as to apply Theorem 3.1. We proceed as follows:

e Let x € C®(RY) with x(z) =1 for |z| < 1. We extend ag to dp on R? by symmetry
then use convolution of x(z/n)ay with a sequence of nonnegative radially symmetric
mollifiers, then restrict to the half-space. We get a sequence (af})nen in Wl’OO(R‘i)
with the same lower and upper bounds as ag, and satisfying ag — ag a. e. on Ri.

144 ~
e As ug € By, * (]Ri), one may take the zero extension uy = eg(ug) of wuy over the

whole space and then set
ug = T<Z A]a0>

lil<n

It is obvious that each term wug is smooth and ~uy = 0. Furthermore, (uf)nen
.—1+4 .—1+4

converges to ug in By, *(R%)N B, * (RL). Of course, one may find p in (d, rd_—rl)

e

so that each ug belongs to B, " (R%).
Step 2. Uniform estimates. Let us solve system (1.4) with regularized initial data (af,ug)
according to Theorem 3.1. We get a global solution (a",u", VII") in L{S (R ; WH®(RY)) x
(XPT N XPT) satisfying

HanHLoo(ﬂh xR%) = ||a8||Loo(Ri) < HQOHLOO(Riy

and also
1

(4.1) 1™, VI [ o + =2 ||V u”| < Op T luol| 4y
LZT(L p

T By (RY)

In addition, by following the computations leading to (3.8), it is not difficult to see that the
assumption that p > d is not needed if it is only a matter of getting a control on the norm
of the solution in XP". Therefore we also have

_1
(4.2) I1(u", VI [ x5 < Cpt ™ Flluoll 4oy
BP (RY)

p,r

Of course, if p > d, then we also have a bound for Vu™ in LI(Ry; LY).

Step 3. The proof of convergence. Owing to the low regularity of ag, it is not clear that one
may still use stability estimates in order to prove the convergence of the sequence defined
in the previous step. In effect, as pointed out in the previous section, there is a loss of one
derivative in the stability estimates for the density. Therefore, we shall use compactness
arguments instead, borrowed from [14]. For completeness, we outline the proof here.

According to the previous step, (9yu")pen is uniformly bounded in L" (R, ; L% ). Combining
with (4.1), (4.2), Ascoli-Arzela Theorem and compact embeddings in Besov spaces, we con-
clude that there exists a subsequence, of (a", u™, VII"),en (still denoted by (a™, u™, VII™) pen)
and some (a, u, VII) with a € L®(R; x RY),

_dr_ -
Vue L (Ry; L) and  Qpu, VZu, VII € L' (Ry; L N IE)
(and also Vu € LY(Ry; L) if p > d), such that
a" —a weak * in L®°(R; xR%),

(4.3) ) )
VA" = V2 and VII" = VII weakly in L"(R4;L%),
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with in addition for all small enough n > 0,
dr
(4.4) u" —u  strongly in Lin(Ry; L) " 7I(RE‘D),

_dr__
Vu" — Vu strongly in L7 (R ; L2 7I(Ri)).

loc

By construction, (a™,u", VII™) satisfies
/ / a"(Opp +u" - Vo) dx dt + / (0, x)ag(z) de =0,
0 JRrY RY

/ opdivu" drdt =0 and
0 JRY
(4.5) oo
/ /d {u" L@+ (W @u”) : V@) + (1+a™)(uVu" — VII") - @} dx dt
0o Jri
+/ ug - ®(0,2) dz =0,
i

for all test functions ¢, ® given by Definition 1.1.

Putting (4.3) and (4.4) together, it is easy to pass to the limit in all the terms of (4.5),

except in a™(pAu" — VII"). To handle that term, it suffices to show that " — a in

L7 (R4 x RY) for some m > 7.

Now, it is easy to observe from the transport equation that
dr(a™)? 4 div(u"(a™)?) = 0,
from which, (4.3) and (4.4), we deduce that
(4.6) da? + div(ua?) = 0,
where we denote by a2 the weak * limit of ((a”)?)pen.
Thanks to (4.3), (4.4) and (4.5), there holds
Ora + div(ua) =0

dr
in the sense of distributions. Moreover, as Vu € L?" (R, ; Lz—T (Rﬁlr)) and divu = 0, we infer
by a mollifying argument as that in [17] that

(4.7) ora® + div(ua®) = 0.
Subtracting (4.7) from (4.6), we obtain
(4.8) di(a2? — a?) + div(u(a2 — a?)) = 0,

from which and Theorem II.2 of [17] concerning the uniqueness of solutions to transport
equations, we infer

(a2 —a®)(t,z) =0 a. e z€ R‘i and t€R".
Together with the fact that (a™),en is uniformly bounded in L>(R; x R%), this implies that
(4.9) a® — a strongly in L7.(Ry xR?) for all m < oco.
Granted with this new information, it is now easy to pass to the limit in (4.5). Therefore

(a,u, VII) satisfies (1.7) and (1.8). Moreover, thanks to (4.1) and (4.2), there hold (1.10),

(1.11) and (1.12). Besides, as (u, VII) satisfies (1.5) and the r.h.s. is in L"(R4; L5 N LY ), the
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time continuity for u stems from Proposition 2.1. This completes the proof of the existence
part of Theorem 1.1.

5. MORE GENERAL DATA

Until now, we assumed that p and r where interrelated through

d 2
(5.1) —14+-=2-C.
P r
It is natural to investigate whether the inhomogeneous Navier-Stokes equations may still be
—1+4
solved with initial data (ag,ug) in L x By, *(R%) if (5.1) is not satisfied.

The case where 1 < r < 2p/(3p—d) or, equivalently p < 3Td22 is not so interesting because,

—1+-4
by embedding one may find some p* € (p,d) so that ugy € Bp*?: P (R?) and (5.1) is fulfilled

by (p*,r).
The case where r > 2p/(3p—d) is more involved and cannot be solved by taking advantage
of embeddings. In order to explain how this may be overcome anyway, let us first focus on

the toy case where u satisfies the basic heat equation
du—Au=0 in Ry xR?

.—144 L1442 "
with initial data u® € By, ”(R?). Then by using embedding in Bﬁi—kp(Rd) for any p > p
and 7 > r, we easily get (see Lemma A.5 in the appendix) that
(1) toV%u € L"(Ry; LP(RY)) with a =3 — 4L — L if p > d/3,

2p T
(2) t°Vu e L (Ry; LP?(RY)) with =1 — % - i if po >p, ro >1r and py > d/2,
(3) tYu € L™ (Ry; LP3(RY)) with v = 3 — % — % if p3 > p, r3 >r and ps > d.

As pointed out in Proposition 2.2, those properties are still true for the free solution to the
Stokes system in the half-space. Keeping in mind that we want to apply those types of
estimates to System (1.5), we see that we need to be able to handle also the Stokes system
with some source term f satisfying t*f € L"(Ry; L% ). Still in the simpler case of the heat
equation:
dv—Av=f in RyxR? with t*f e L"(Ry;L%),

it has been observed by the second author and collaborators in [14] (see also the Appendix)
that if ar’ <1 then

(1) t*V?0 € L"(Ry; LP(R?)),
(2) Vo € L™(Ry; LP*(RY) with B =a+§(2 — =) —§++—~ if pp >p, 72 > 7 and

. o P P2 r2
p e <t
(3) tTw € L3 (Ry; LP3(RY)) With'y:a—l—%(%—p%)—l—i—%—% if p3 > p, r3 > r and
d d 2 2

In the case we are interested in, owing to the presence of u - Vu in (1.5) and to Holder

inequality, the following supplementary relations have to be fulfilled:
1 1 1 1 1 1

(5.2) - =—+—, —=—+— and a=03+1.

p P2 D3 r r2 T3

Under the first two conditions, if se set

(53) =5 —-5- - ) 621_7_77 Y=5 "5
r 2
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then the relationships above between «, § and ~ are satisfied. Let us emphasize that if
(p,r) with d/3 < p < d has been chosen so that » > 2p/(3p — d) (which is equivalent to
0 <a<1—1/r), then one may take any (p2,72) such that ps > p, ps > d/2, ro > r and

d 2 2 d 2
(5.4) -——1l+-——< —<2—-—
p T o T2 P2 T2
The assumption on (p,r) ensures that such a couple exists. This motivates the following

statement:

Theorem 5.1. Assume that r € (1,00) and p € (d/3,d) satisfy r > 2p/(3p — d). Then for

.—14 4
any data ug € By, *(RL) and ag € LY fulfilling the smallness condition (1.9), System (1.4)

has a global solution (a,u) with [la(t)||r = [laollze for all t € Ry, and
(5.5)  t%(0u, V2u, VII) € L' (Ry; IR), t°Vu € L™(Ry;LR2), '€ L' (Ry; L)
with «, 3,7 defined in (5.3), (p2,r2) satisfying (5.4), and (p3,r3) defined in (5.2).

. .92
Furthermore, for any 1 < o < 17, the fluctuation u — uy, belongs to C(Ry;By»° (R4))

where uj, stands for the “free solution” to the evolutionary Stokes system, namely
(5.6) Owup, — pAuy + VI =0, divur =0, up|i=o0 = ug.

Proof. For simplicity, we just treat the case pu = 1. The usual rescaling gives the result in
the general case.
We smooth out the initial velocity ug into a sequence (uf)nen satisfying the assumptions

144
of theorem 1.1: we take pg so that —1+ p% = 2— 2 and require ug, to be in By ™ (RY)N
JR . ,1+i
Bpr ™ (R%), and to converge to ug in By, " (R%). To construct ug,, one may first consider

the zero extension @y = eg(ug) of ug to R?, then approximate it by compactly supported
divergence free vector-fields by means of the stream function.

Step 1. Uniform estimates. The corresponding solution (a™,u"™, VII™) satisfies in particular
Opu™, V2", VII" € L"(Ry; LE° N LE).

Hence Holder inequality ensures that ¢*(u™, V2u", VII") € L7(0,T;L%) for all T > 0.

A similar argument ensures that t*Vu" and t7u” are in L"2(0,T; L?) and L"(0,T; L%?),

respectively, for all T'> 0. Now, because (a”,u", VII") satisfies

ou” — Au™ + VII" = F def

Proposition 2.2 implies that

def
Za() CNOU 73 g0y + 1PV 72 gy + 116 @™, V2, VI | 0

n (0% n
< C(HUOHB*H%(Rd) + [[t*F ||L§(Li))-

T +

a"(Au" — VII™") —u™ - Vu",

Taking advantage of Holder inequality, of the relationship between (7, p2) and (rs,ps), and
of the conservation of [[a"(t)||Le, we may write

[t F™ |y ry < Nlaollzoe (16" Ay ey + IV |y ip)) + ||t7un||L§3(L1j§)HtﬁvunHL?(Lf’f)-
Therefore taking ¢y small enough in (1.9), we get that
2
20t) < Clwoll vy, + Z300)

p,T +
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so that as long as |lugl| . _,, 4 < ﬁ, we have
b ©(RY)
Zalt) < 20wl _pa
Bpr P(RY)

Step 2. Convergence. Hence sequence (a”,u", VII"),cn is bounded in the space (5.5). In
order to complete the proof of existence, we have to establish convergence, up to extraction,
to a solution (a,u, VII) of (1.4) in the desired functional space. For that, we first notice that

Au™ =t (t*Au"),
Holder inequality guarantees that (Au™),en is bounded in L (Ry; LL) for any o < r/(1+

loc
ar). Note that because a + 1/r < 1, one may take o > 1. Similarly, we have (9;u")nen

and (VII"),en bounded in LY (Ry; L% ). Therefore, setting a" def yn —u} where u} stands

for the solution to (5.6) with uf instead of wg, we conclude that (4")pen is bounded in
.92
C(R+; Bpo” (RY)).

Similarly, writing that Vu"™ = t=% (t°Va") and that u® = t=7 (£u?), we get (Vu")pen
and (u")pen bounded in L72(Ry; L7?) and L73(Ry; LE?), respectively. As we may choose
o9 and o3 as close to (but smaller than) r9/(1+ fre) and r3/(1+~r3) as we want, one may
ensure that

1 1
(5.7) —+ — <1
o9 O3

Now, combining with the boundedness of (AU™) ey in LY (Ry; LY ) and using Arzela-Ascoli

theorem, we conclude that, up to extraction, sequence (a”, u", VII"),cn converges weakly to
some triple (a,u, VIT) with a € L®(R; x R%),

t*(0pu, V?u, VII) € L"(Ry; LB),  t9Vu € L™ (Ry; LF?),  t'u € L™ (Ry; LE?).
More precisely, we have
a" —a weak x in L®(R; x R%),
V" = V* and VII" — VII weakly in L7(Ry; L),
with in addition for all small enough n > 0,

u™ — u  strongly in L7 (Ry; LP37"(R)),

loc

Vu™ — Vu  strongly in L72(Ry; LP27"(RY)).

loc

Because (5.7) is satisfied, passing to the limit in System (1.4) follows from the same arguments
as in the proof of Theorem 1.1. That the constructed solution has all the properties listed in
Theorem 5.1 is left to the reader. This completes the proof of existence. O

As in Theorem 1.1, assuming just critical regularity for the velocity does not seem to be
enough to ensure uniqueness. At least, the constructed velocity u does not satisfy Vu €
L}OC(R+;L3_°) so that we cannot resort to the Lagrangian approach. This motivates the
following statement.

Theorem 5.2. In addition to the hypotheses of Theorem 5.1, assume that ug belongs to

.—14+4
Bﬁyr+p(R‘i) for some finite p > p. Then (1.4) has a global solution (a,u, VII) fulfilling the

properties of Theorem 5.1 and, in addition,

t(Bpu, V2u, VII) € L'(Ry; LR, t°Vu € I2(Ry; LR), tTu € L'3(Ry; LE?)
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with «, [ and ~ defined as previously in (5.3),
1 1 1 1 1 1 1 1
(5.8) - - — .~ —
p2 p2 p P ps pP3 P P

whenever ps and ry may be chosen so that (5.4) is fulfilled and

2d d d 2 2
il [ E

p P P2 L

If in addition p > d then there exists some positive § < a and s > r so that
(5.10) 'Vu € L¥(Ry; LY),

and the constructed solution is unique in its class of regularity.

I
i

|

[
Q
=
Q

|

|

|

I

[

|

[

(5.9)

Remark 5.1. Despite the appearances, it is always possible to take p > d in the above
statement. At first sight it seems not obvious because a necessary condition for having p > d
dr

in (5.9) is that p > Q;I—ﬁl. However, by embedding, one may always find some p; € (57, d)

144 144
so that ug € By, , " (RL) N By, " (R%) and thus replace p by pi.

Proof. The general scheme for proving existence is exactly the same as in the previous state-
ment. Therefore we remain at the level of a priori estimates. Let Z and Z be defined on R4
by
def
2@) = 7l grsy + HtﬁquL:Q(L’f) + ([, VP, VID) | £y g

def

Z2) 0l gy + 1Tl ) + 1 (D, 97, 9T

:3(Li3 Liz HL{(Li)'
According to the proof of Theorem 5.1 and under Condition (1.9), we have for some constant

C=C(p,rd),
(5.11) 20 < Clluoll vy .

.7 4)
Next, keeping in mind our assumptions on the Lebesgue exponents p, po, r2, p and po,
Proposition 2.2 ensures that for some constant C = C(p,p,r,d),

E(t) < C(lluoll . 4ya
B. P (RZ

DT +)

« _ « . .
11t a(du = VI | 1y ) + 17w Vall gz ).
Because [|a(t)||re is constant during the evolution, under Condition (1.9), the first term of

the right-hand side may be absorbed by the left-hand side. As for the last term, we use
Holder inequality and the fact that
1 1 1 1 1 1
a=08+vy, —-=—+— and == —+ —-
T r2 T3 p D2 P3

We thus end up with
7 B — Nl
20 < (w0l vog o+ 100l 70l )
p,T
whence, if ¢ is small enough in (1.9),

(5.12) Z(t) < CHUOH .—1+4 :
_P(RY)
D, +

In order to prove (5.10), we first have to check whether one may take p > d, knowing that

Conditions (5.4), (5.8) and (5.9) have to be fulfilled. This is in fact equivalent to p > Qfﬁl.
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Assuming from now on that this condition is fulfilled, and taking p > d, we may use the
following Gagliardo-Nirenberg inequality for all functions® of Lp N Wo b (Rd) NW2P(RE):

der 1+ 51
— . €
(5.13) IVullz < CIV2ulis el with 9= — =
+ P2
Then, using Holder inequality and (5.12), we readily get
) 2,110 1—
1V ullcagey < CIEVTull, a8 rg(Lpg) < C'IIUoH ‘) <00
p’l’
with
1 6 1-6
(5.14) 5% g +(1—-0)y and — = -+ :
s T r3

Because r3 > r and v < «, it is obvious that s > r and J < a. This completes the proof of
the second part of the statement. Proving uniqueness is postponed to the next section. [J

6. UNIQUENESS

This section is devoted to proving the uniqueness parts of Theorems 1.1 and 5.2. As in
[11, 14], it strongly relies on the fact that for smooth enough solutions, one may use the
Lagrangian formulation of (1.4), which turns out to be equivalent to (1.4).

6.1. Lagrangian coordinates. Before going into the detailed proof of uniqueness, we here
recall some basic facts concerning Lagrangian coordinates. Throughout, we are given some
smooth enough solution (a,u, VII) to (1.4) (typically we assume that (u, VII) € X7" N X%"
with (p,r) and p > d as in the statement of Theorem 1.1). Then we set

bt,y) Lalt, X(4,y), v(t,y) Lult, X(t,y) and  P(t,y) €I, X (1,y))

where, for any y € RY, X (-,y) stands for the solution to the following ordinary differential
equation on [0,77:

ch(zi W ut, X)), X(Epleo = v.

Therefore we have the following relation between the FEulerian coordinates x and the La-
grangian coordinates y:

(6.2) r=X(ty) =y +/0 v(T,y)dr.

Let Y(t,-) be the inverse mapping of X(t,-), then DY (t,x) = (D,X(t,y))~! with z =
X(t,y). Furthermore, if

(6.1)

T
(6.3) / V0 ()| e dt < 1
0
then one may write
(6.4) DY = (Id+(D,X —1d)) ! = / Dyv(T,y) dT) .
k;:O

6As know usual, this inequality may be deduced from the classical one on R¢, taking advantage of the
antisymmetric extension operator.



GLOBAL SOLUTIONS TO INHOMOGENEOUS NAVIER-STOKES EQUATIONS 29

Setting A(t,y) def (DyX(t,y))™t = D,Y(t,z) for z = X(t,y), one may prove (see the
Appendix of [11]) that

(6.5) Veu(t,z) = TAt, y)Vyo(t,y)  and  divyu(t, =) = divy(A(t, y)v(t, y)).
By the chain rule, we also have’

(6.6) divy (Av) =TA: Vo = Dyv: A= Tr (Dyv - A).

As in [12], we denote

V.74 v,, div, div(4) and A, ¥ div, V..

Note that for any ¢ > 0, the solution of (1.4) obtained in Theorem 1.1 satisfies the smoothness
assumption of Proposition 2 in [12], so that (b,v, VP) satisfies

by =0 in Ry xR%,
ow—(1+b)(Aw—-V,P)=0 in Ry xR%
(6.7) divyv=0 in  RyxR%,
v=20 on R, xORZ,
(b,v)t=0 = (a0, uo) in  RY,

which is the Lagrangian formulation of (1.4).

6.2. Proving uniqueness : the “smooth case”. Here we prove the uniqueness part of
Theorem 1.1. Thanks to the usual rescaling (2.13), one may assume with no loss of generality
that p = 1. Let (a;,u;,11;),i = 1,2, be two solutions of (1.4) satisfying (1.10), (1.11) and
(1.12).

For i = 1,2, let X; be the flow of w; (defined in (6.2)) and denote by (v;, P;) the corre-
sponding velocity and pressure in Lagrangian coordinates. Let

def

&U:'UQ—'Ul, 5P:P2—P1.

Observing that b = ag, we see that (v, VOP) satisfies

(6.8) B0 — Adv + VP = ag(Adv — VoP) + 0f1 +ofs L 6F  in R, xRY,
div v = & = div R in Ry xR%,
where
5 (1 + ag)[(1d —TA2) VP — GAVP] with 64 % 4, — A,
69) 5fa (1 + ag) div[(ATAs — IV + (A5TAy — A TA1)Vay],
09 X (1d —TAy) - Voo — T84 - Vo,
0R 1 (1d — A9) 00 — 84 1.
"Here and in what follows, we always denote by TA the transpose matrix of A, and (Vu), . = (d;u?), _. _ |
i, 1<4,5<d

and Du="TVu = (0;u)

1<i,j<d’
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As vOR? = 0 and &v|;—o = 0, applying Proposition 2.1 with p = and (g, m) = (2r, 5%)

37‘ 2’ » 9r—1
or (g,m) = (r,725) implies that
Vi e Ve o+ [[(8400, V260, VEP) | e
V1, e, VR e, 10 Mizen)

< C(llag(Ad — V8P| uz) + 101, 8f2, Va9, 0u0R) |y 1z )

Of course, the first term in the right-hand side may be absorbed by the left-hand side if the
constant c¢; is small enough in (1.9). So let us now bound the other terms. In what follows,
we will use repeatedly that (see e.g [11])

(6.10) / pavdr)(> 3 Gles ) with cin) & / D dr.
k>10<j<k
Bounds for &g. The definition of d implies that
HVCSQHL{(L{D <[[VA ® Vc?UHLg(Li) + [|(Id —A2) ® V25U||L;(Lﬁ)
+”V5A & VU1||L§(L{D + ||5A X v2U1HL{(Lf’F)'
Therefore using Holder inequality, (6.3) and (6.10), we get
IVogllry ey < C(‘|VA2’L;’°(L1)HV5UHLT( 4732) + [I(1d —A2)HLgO(Lf)”VQ&UHLg(Li)

2r
L+

+IIVEA Lo L2y VULl Ly (£ + HéAHLw

s V01 l17ut))

+

)

Remark that for # being determined by 1 = % 5

_1
IV llrg) < C [ 1920l af < OO Ml IVl

_1
[(Id = A2) || o (120) < Ct' IVval g ree)s
_1
VoAl ey < CE= 7 IV200ll 25,

6A] e <CHTVE| e,
oo(Lir72) LT(L2r72)

V2 UlHLT(Ld < CHV%IHU LP)Hv2 vl Ly LP)

Hence we obtain

IVl ey < Ul(t)(HV(SUHU(LQg_:Z) + Hv25U||L{(Li))a
t

+
with 71(t) — 0 as ¢t goes to 0.

Bounds for 0;6R. First, we see that
10:[(Td=A2)év][| Ly (12 ) < C([|[Vvr ® ol ryrzy + 1(d _AQ)at(sU”L;“(Lﬂ))'

It is easy to check that
Vg @ 0l pyrry < C||VU2”L%

<C[[Vue|
L (L
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and
1(1d —A2)0,bv]| Ly (rry < Cll1d —Aal| oo (122) |10s00] 1y (17 )

< ' [Vva|[Ls( L Hat&J”LT(L

which gives rise to
10:[(1d—A2) 0] Ly 1z ) < m2(t )(HWJH ar A+ |00 pyppzy)  with  limm(t) = 0.

27‘1
+

On the other hand, thanks to (6.10), we have

|0¢[0A UI]HL;(L{;) < C(\Ul ®V5UHL;(L{Q + 164 D || 1

)

where vy o designates components of v or vs.

Applying Holder and Sobolev inequalities gives

v1 @Vl 7rirry <Cllvg Vv dr
s Voligsz) SOl ot V8, e
< C|vu
L7 LF(LI )

Following the computations for bounding dg, we also have
[|6A atUIHL?(Lﬁ) < Cl|oA]| OO(LQ%)H&WlHL{(Li)

Ly (Ly
< OO0 om0, 1980 e
Ly(Li™7)

and, for a so that l + Td_r = 113, one has

| / [Vou]dt|Vora| o] || < OIVaI, e 190129 illgissy

'r LP
1 0
<CU VR a (meu TN L )
LT( + + ) LtT(L-O- )
1-6
Vvlg 2rray||U1 dr .
x (]l L2z )|| H - 1))

As a consequence, we obtain

s < T r i i = U.
ot vllizgizgy < mO IV, ey + 1980 ey ) with  fiman(t) =0

Bounds for f;. We notice that
5fi = (L +ag) ((Id —TA9)VéP — 1AV Py).
Hence, thanks to (1.10), (1.11) and (1.12), we have
10fll py zey < C(I"ad —A2)VEP| prrr) + HT5AVP1HL§(L1))
< OOVl IVoPlgaany 1981, e, I9Pilas)

+

1 1
< C(tq'||VU2HL§(L3>§)HV5PHL;(L¢)+75T’||VP1HLT 17 mLp)||V50|| (LQgr2)>
+

so that
10fullpp(zey < 774(t>(HV5PHL{(L3_) + HV&’HL“L% ) with }i_{f[l)m(t) = 0.

72)



32 R. DANCHIN AND P. ZHANG

Bounds for dfa. We may write
18F2ll g2y < C (1l div((A2Az = 1) V) | iz + Il div((A27Az = 4 7A1) Vo)l gz )-
Therefore Holder inequality and (6.10) imply that

10fallryeny < C(HV(A2TA2)||L;>°(L1)||V50”L: %) +[[(A2T Ay — Id)HLgO(Lf)”V2&||Lg(Li)

or—
(LY

+H[Vorlly 2oy [V (A2 Az = Ay TAY) || oo 1) + HVQUl||L;(L1>|!A2TA2—A1TA1HL ar ))7

oLl
which leads to
1
16621l zgn) < C (87 (19201l gty + 19702l ) + 1

1
v (”VUlHLg(Lff)

+ ||w2\|Lg(Lf>))(||wvuL: L V20l ))

(LF7)
< ., 2 , . . -0
SO, ey + IV lzaz)) itk Jiy () =0

Therefore, one may conclude that

Vév . 4+ ||V .+ |80, V20, VP)|| ;s

[ ”Lgr(ﬁ*—l) | HL;(L?L_Q) (0 Mz ey
2

< n(t)(HVf?vlngr(L 23, +11(8dv, V200, VoP)|| 1y 1z))

+

dr
=T
+

+ Vo]
) Ly (L

where 7(t) = S2°_, ;(t), which goes to zero as t — 0. This yields uniqueness on a small time
interval. Then a standard continuation argument yields uniqueness on the whole interval
[0,T]. The proof of Theorem 1.1 is now complete.

6.3. Proving uniqueness : the “rough case”. We now assume that we are given two
solutions (a;,u;, I1;),7 = 1,2, satisfying the properties of the last part of Theorem 5.1. Of
course, the difference (dv, VOP) between the two solutions in Lagrangian coordinates still
satisfies System (6.8). In order to prove uniqueness, we shall derive suitable bounds for the
following quantity:

def | ,a
6z (T) = It (at&vv25UaV5P)||L;(Lﬁ) + HtﬁV&UHLTT?(Li?) + ||t75UHLTT3(Lﬂ3)-

To start with , let us apply Proposition 2.2 with regularity exponent —1 + %. We get for all
positive T':

(6.11) 6Z(T) < C([lag t*(Ad — VoP) ||z + [1t%(0f1, f2, Vg, 0i0R) | 1 (17 )

Again, the first term of the right-hand side may be absorbed if the constant c¢; is small
enough in (1.9).

Bounds for Vdg. From the definition of g, we readily have
1tV Ly () < 187V A2 ® Vvl (o) + 162 (1d —A2) @ V20| 1 (1)
+H[t*VOA @ V| py pr) + [[170A @ V3o g2z
Using Holder inequality and (6.3), we get

T
1699 42 © Vil ) < 10008l ey [ 1920l
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where p* def dp/(d — p) stands for the Lebesgue exponent in the critical Sobolev embedding

(6.12) WhP(RY) — LV

Therefore, remembering that o+ 1/r < 1 and that Li — L:i N Li,
1699 42 @ Vil ) < O3 V2l gy 16570l 10

Next, using the fact that
T
_1_
013 J0d=A)Dloz <C | Vol dt < O [0y 0

where s and § are defined in (5.14), we easily get
o -1 e
167 (1d = A2) @ V260l 1y (1) < OT' =72tV 02 | g () V200 g 12
In order to bound the third term of Vg, we notice from (6.10) that
1
(6.14) 964l 1y < CH 29200 e g
Therefore, setting % = % — %,
—1_aja a—
[t°VOA @ Vur|[pp 1) < CT' =it v26UHLTT(Li)HT *[lzm o) 1V orl| L 13e)
1 _apa
S CTI s ||t VQ&UHL}(L{L)||t5vvl||L%(Lf)
Finally, we have from (6.10) and Sobolev embedding (6.12),
—1_aa
(6.15) 641 g < OT* -2Vl 1,
Hence we obtain
I _aa e
Hta5A®v2U1”LTT(Li) <CT' 7ot v25“||LTT(L{‘;)||75 V2U1HLTT(L1)'

Putting together the four above estimates, we conclude that

1 a;a
(6.16) HtaV@JHL;(Lﬁ)SCHtQVQ&JHL;(Li)<T1 Tt (VQUlaV21)2)HL5;(LimLi)

p——
+ 715 \|t5(Vv1,V1)2)||L;(Lf))’

Bounds for 0;0R. Recall that

0:0R = —(8tA2)6U + (Id —Az)at(?l} — (8,5514) v1 — 0A Oyvq.
Now, using the expression of 9;As and Hoélder inequality, we get

[£ (Br A2)vl| ) < C"tﬁvz)?”L;?(L’f)ny&UHL?(LT)‘
Next, we have, using (6.13)

[t%(1d = A2) s 1y 1p) < Cll1d —Ag|pge (o) 1" Dedvl| 12
_1_ o

CTI s 6||t6VU2||L%(LiO)Ht at&JHL}(Li)

In order to bound the third term of 9,0R, we differentiate (6.10) with respect to time and
easily find that

IN

1#(2604) vl 1y < C (1701 © Vol 2z +

t
o v /v
! /0‘ ol d| UI’QHMHL;(L?Q)

where v 2 designates components of vq or vs.
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On the one hand, applying Holder inequality gives
[£% 01 @ Vool (2 < CHt’yleL?(LT’)HtﬁV&}HLTTQ(L?)'

On the other hand, we have, by virtue of (6.12)

t T
@ / «@
Ht /0 |Vév| dt {Vv1,2‘|vl|HLTT(Li)§C||t vm,z®v1uUT(Ld+)/O HV&;HLT dt

1
<CT'"re Htav250||LTT(Li) [0l s 2y [#7V 12 Iz ey

with % = é — piz. Given that p < d < p, we have py < a < P2, hence L% — L? N L?f.
Finally, arguing as for bounding the last term of Vdg yields

—l—oé (07 (0%
[£%0A Opvn || 17y < CT' ==t atUIHLrT( |t VQ&)HLTT(Liy

L’imLf_)|
Putting all those estimates together, we conclude that

(6.17) 10:0R | 5 (1) < 0(T)0Z(T)

for some function 1 going to 0 at 0.

Bounds for f;. We notice that
oft = (L +ag) ((Id —TA9)VéP — 1AV Py).

Hence it suffices to follow the computations leading to the bounds for the second and fourth
terms of Vdg: we just have to change V2&% and V?v; into VP and VP;. We end up with

« _1_ o
(618) 11°0f1llzs, 2z < O (T 210V 0s | g 1) 1£°VOPl 15 1)

1
it O‘HtavplHLg(LimLi)”taV?&UHLTT(Lﬁ))-

Bounds for dfy. As we may write
[£%0f2l g 22y < C<||tav(A2TA2) @ Vol ey + [t (Ag" A2 — 1d) ® V250||L;(L{;)
+t9V (ATAy — A1TA) ® Vil r) + [(AxTAy — AlTAl)V%luL;(Lﬂ)),

one may repeat the computations leading to (6.16): this only a matter of replacing everywhere
Ay and Ay by A;TA; and ApTAs, respectively. We conclude that |[tdfs|| L5(L2) is bounded

by the right-hand side of (6.16).
Conclusion. Plugging (6.16), (6.17), (6.18) and the above inequality in (6.11), we conclude
that whenever both v; and vy satisfy (6.3), we have

S(T) < n(T)52(T)

for some function n going to 0 at 0. This implies uniqueness on a small time interval. Then
a standard continuation argument yields uniqueness on the whole interval where the two
solutions are given.
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7. REMARKS ON THE BOUNDED DOMAIN CASE

This section aims at extending partially our main theorem to the initial boundary value
problem (1.4) in a C2? bounded domain © of R?. Before we present the main result, let us
introduce a few notation. We set

X1Q) d:ef{ u € (Lq(Q))d\ divu=0 and u-7=0 on 90 },

where 77 stands for the unit normal exterior vector at 9. Denoting by P, the projection
operator from L%(Q2) onto X?(2), the Stokes operator on L4(£2) is the unbounded operator
(see e. g. [13])

A, _PA with domain  D(A,) ' W29(Q) N W (Q) N X9(Q).

Definition 7.1. Let 1 < g < oco. For aw € (0,1) and s € (1,00), we set

def o0 _ —tA dt é
Jullogs @ all+ (| 167 A Aoul )
a 0

where et stands for the analytic semigroup generated by A,. We then define the inhomo-
geneous fractional domain Dj’qs as the completion of D(A,) under HUHDf"S-
q

Remark 7.1. Let o € (0,1) and 1 < ¢,s < oo. Let Bg,s be the completion of C2°()) in
Bg s(R%). Then we have

Bi5(Q) N XU(Q) — DY — Bi(Q) N X4(Q).
If moreover 2a < 1/q then the three sets coincide.
The main result of this section reads:

Theorem 7.1. Let Q be a bounded domain with C? boundary. Let r € (1,00), ag € L>(f)

_1
and ug € Di‘p“r with p = 3;112' There exists a positive constant ¢y so that if
(7.1) tllaoll Loo (@) + [luol| 1-1, < Cofh,

D,

then (1.4) has a global weak solution (a,u, VII) in the sense of Definition 1.1, which satisfies

_1

1t ) 1 1O, pVPu, VID)|| 1o (s 1r(92))
L?O(RJHDAPT )
(7.2) 1 1-1
+ p2r || Vul i o SO uoll i

=,r)
L) D,

L2 (Ry; L2
for some sufficiently large positive constant C'.

Remark 7.2. Uniqueness would require our using Lagrangian coordinates, hence investigat-
ing the evolutionary Stokes system in a bounded domain with non homogeneous divergence.
We leave this interesting issue to a future work.

The proof of the theorem mainly relies on the following result (see Theorem 3.2 of [9]):
Proposition 7.1. Let Q be a C? bounded domain of R% and 1 < ¢, s < co. Assume that
_1
ug € Di‘q =% and f € L*(Ry; L9(Q)). Then the system

Ou — pAu+ VII = f in Ry xQ,
divu =20 in Ry xQ,
u|aQ =0 on R+ X@Q,
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with initial data uo has a unique solution (u,II) satisfying fQ I[MIdz =0 and for all t > 0,
_1
p'es Hu(t)Hle% o 10w, 1V, VID)|| s (L)) < C ('~ ||U0HD171 A I s o))

5
Aq Aq

Now we are in a position to prove Theorem 7.1.

Proof of Theorem 7.1. We first solve System (1.4) with regularized data, according to e.g.
[9]. We get a sequence (a”,u", VII"),en of smooth solutions to (1.4). In particular, as

Ou" — pAu" + VII" = F def a(pAu™ — VII") — u™ - Vu",
Proposition 7.1 implies that

def -1
Z(t) S " Ol -1 + 10 ey + pll AWy ey + VI g 2r)

Ap
< C (ol St F Iy n)-
Ap
By interpolation and embedding we have for all z € WP(Q) the following Gagliardo-
Nirenberg inequality:

Applying this inequality to z = Vu'™ and takmg advantage of Poincaré inequality (here we
use that u" vanishes at the boundary), we discover that

ter gy SCVIL g 1oy

1 1
V| a < Cfu"? V"2
[Vu ”Lzﬁj(ﬂ) < Cllu ”BQ;%(Q)H U HLP(Q)

P,
Therefore, using Remark 7.1,

) n . < 1—% n . .
(7.3) V6 e gy S O Mol g D lzgen)

Now, taking advantage of Holder inequality and of the Sobolev embedding

dr

1,55 _dr
Wy T Q) = L3 (Q),
we may write

IE™ | Ly ey < lla™[lpos (oo ) (I AU |y (2r ) + IVIT | Ly (Lr()))

I e o 198t )

n n ni2
< laoll oo ) (I Au™ | Ly (o () + VI | (2o (0))) + ClIVu HL2 75T ()

Therefore taking ¢y small enough in (7.1), we get by using (7.3) that
Zu(t) < O uoll Ly, + 0" ®7DZ2(0),

Ap
so that as long as Hu0|| < 402 i, we have

1. S
Ap

1
Za(t) < 2014 uol| -

Ap

1,..
77

Granted with this estimate, we can follow the lines of the proof of Theorem 1.1 to complete
the proof of Theorem 7.1. 0
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APPENDIX A

Here we establish several LP — L9 or maximal regularity type estimates involving the heat
semigroup in the whole space, or the Stokes semigroup in a bounded C? domain €. Although
those estimates belong to the mathematical folklore (as a matter of fact the heat semigroup
case in R? has been treated in [14]), we did not find any reference where they are proved
with this degree of generality.

As in [14], the key to the proof of maximal regularity estimates is the following proposition
(see e. g. Th. 2.34 of [5]) enabling us to characterize Besov spaces with negative indices by
means of the heat semigroup.

Proposition A.1. Let s be a negative real number and (p,r) € [1,00]2. A constant C exists
such that for all 4 > 0, we have

CH 113y, ety < 12 2 £l o)

gty S O fllsy @)
We shall often use the following consequence of the above proposition:

Corollary A.1. For any (p,r) € [1,00]? with r finite, there exists a constant C' so that for
all p >0,

_ 1
cIs) < 1 €A fll e spoqay < OIS 2

L_2 _2
By (RY) o (RY)

Besides, for all T > 0, we have

e T2l 2 < OISl 2

E4 3 9
By L (RY) B, I (RY)

and, if in addition p < oo then the map T — e*T2f is continuous on R, with values in

.9_2 L9_2
Boo 7 (RY), whenever f is in Bay ' (RY).

Proof. The first item corresponds to the previous proposition with s = —2/r. Given that
(eMB),50 is a contracting semigroup over LP(R?), we readily get the second item. The

. . . . .22 .
continuity result is a consequence of the density of smooth functions in By, " (Rd) if both p
and r are finite. O

To prove Theorem 1.1, we also need the following result:

Lemma A.1. The operator A defined by
¢

(A.4) A fr—s {tH/ VQe“(t_T)Ade}
0

is bounded from L' (0,T; LP(R%)) to L7(0,T; LP(R%)) for every T € (0,00] and 1 < p,r < oo.
Moreover, there holds

MHAfHL’"T(Lp(Rd)) < CHfHLTT(Lp(Rd))
and for all T > 0,

B2 7 (RY < Clif oy o (e

T
,ul_% / eN(T_t)Af dt‘ ]
0

. . . . p2-2
Furthermore, the map T — f(;[ eMT=DAf dt is continuous on R, with values in By, " (R%).
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Proof. The first part of the statement is Lemma 7.3 of [16]. For establishing the second
inequality, we just have to notice that

I

Using that (/') is contracting over LP(R?), and Corollary A.1, we may write

<C T
1 oy S OIS

1
Af(D) ;; Ré) = CMTHAfHLT(RJr;Lp(Rd))'

By changing f to fljg 7}, one gets the desired inequality. The continuity result follows by
density. O

From now on, to simplify the presentation, we agree that A, denotes either the Stokes
operator on LP(Q) with Q a C? bounded domain (see just above Definition 7.1), or the heat
operator on LP(R?). Lemma A.1 extends as follows:

Lemma A.2. Let 1 < p,r < oo and Operator .Zp be defined by

_ t
Ay f— [t — / Ape= DA £ () dr
0
Then for all real number « € [0,1 — 1/r) there exists a constant C' so that for all T > 0,
1t Ap 5 2o () < CIE Fll s (o))

Proof. As regards the heat semigroup in R, this result has been established in [14]. We here
propose another proof that also works for the Stokes semigroup in bounded domains (and,
more generally, whenever maximal regularity estimates are available). Let

(A.5) o(t) & /0 Ly F(r)dr

Because
Oy (t*v) + Ay (t*) = tf + at* 1w and  (t"v)|4=0 = 0,
we readily have

(A.6) Htav‘TpUHLTT(LP(Q)) < C(I1t fll . ze @) + allt* 0llze (o))

From the definition of v and the fact that (e™*7),< is contracting on LP(Q), we infer that

o) 2o / o

o LAEN® dr def | o
o Ole < [ (L) FOT with £ @) E e £l

Therefore,

T

that is to say,

1
e o(Ollne < [ () F ) dr
0
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Hence taking the norm in L"(0,7"), and using Minkowski inequality and a + 1/r < 1,

1 T 1
||to‘_l'U||LTT(Lp(Q)) < /O(T’)—a</ FT(tT’)dt> dr’

0

1 T'T %
/ (T/)fafl/r (/ Fr(t/) dt/) d+'
0 0

< ClFzr o)

IN

Plugging this inequality in (A.6) completes the proof. O

Remark A.1. Applying the above result in the Stokes case implies that the function v
defined in (A.5) and the corresponding gradient term VII satisfy

(A7) 1t (0w, V20, VID | 21 (1)) < CIE*FllLr (o)
The next lemma provides estimates on the gradient.

Lemma A.3. Let 1 < p,q,r < oo with p < q. Let Operator B be defined by
t
B:fr— [t —>/ Ve D4 £(7) dr|-
0

(1) If in addition % — g <1 then for all real numbers o and (B satisfying

df1 1 1
A. = — _ = = [ / 1
(A.8) 16} Oé—|—2<p q) 5 and ar' <
there exists a constant C' so that for all T > 0,
(A.9) 1#°Bfl Ly oy < CIE* Fllze Lr(e)-
(2) If in addition g — g <1l- % then for all real numbers o and B satisfying
1 1 1 1
(A.10) ﬁ:a+62i<p_q)_2+r and ar’ <1
there exists a constant C' so that for all T > 0,
(A.11) 17BNl Los Loy < ClIE FllLr. o )-
(3) More generally, for any s € [r,o0], if % — g <1l- % —i—% and (o, 3) satisfy
1 1 1 1 1
(A.12) 5:a+d()+ and ar’ <1
2\p ¢ 2 r s
then there exists a constant C so that for all T > 0,
(A.13) 1£° Bl s zaey) < CIE fllzr ro())-

Proof. The limit case 8 = « of the first inequality is a consequence of Lemma A.2 and
Sobolev embedding. To treat the case 8 < «, the starting point is the following inequality

_ _ . detd (1 1 1
(A.14) Ve ™™ fllpa) < Ct0 | fllr@) with 6= (= ——) +=
2\p ¢ 2
which holds true whenever 1 < p < ¢ < co. It has been proved in [13] for the Stokes operator
in bounded domains, and follows from an explicit computation for the heat operator in RY.
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This inequality obviously implies that

def

t
(A15)  IBS(t)llLe(e) < Ctﬁ/o (t =) 7 F(r)dr with F(7) = [|7%f(7)l|r0)-

Therefore, making a change of variables, and using the relationship between « and g,

1
PIBF(®) oy < C / (1 - ) 5() @ F(e't) dr.

Now, taking the L7 norm of both sides and applying Minkowski inequality implies that

1 T %
188 ey <€ [ <1T'>—5<T'>—a< / Frm)dt) o
0 0

Then arguing exactly as in the proof of the previous lemma, we get Inequality (A.9) whenever
(A.8) is satisfied.

In order to establish (A.11), we start from (A.15) and apply Hélder inequality. We obtain
for all ¢ € [0,T],

t 3
B () oo < ctﬂ( [ e=nyrore dT) 1Fll o).

Then making the usual change of variable and taking advantage of the relationship between
a and (3, and of the definition of F, we get for all ¢t € [0,7],

1

t o
BUBS ()l 00 sc( / <1—T’>—”<T'>—M) 14 1L oo

It is now clear that we get Inequality (A.11) under the constraints of (A.10) and 67" < 1.

In order to treat the general case, we have to combine the methods for proving (A.9) and
(A.11). Starting from (A.15), we write

T t s
LB g (1oco) sc( /0 tﬂs( /0 (t—r)70 <t—7>5<w>F<T>Tadr) dt)

where ¢ is a parameter in [0, 1], to be fixed hereafter.

Applying Holder inequality to the inner integral, we get (with obvious notation)

T t r t s—r
r<c / 7 < / (t—71) % F(r)r m) ( / (t — 1) 0= F(r)r—a d¢> dt-
0 0 0

Applying again Hoélder inequality, in the last integral only, we thus find that the above r.h.s.
is bounded by

T t r t %_1 t S\/,./ ! ST;/T
/ t0s (/ (t—T)_&’D%F(T)T_a dT) (/ F"(1) dT) </ (t—T)_‘S(l_‘P)(?) e dT) dt-
0 0 0 0

Then we perform the same change of variables as above to get

s—r

T/ 1 s —
I’ < CI!F||SLTZO,T)/() (/o (1 —7) % Ftr)r— dT) (/0 (1 — 7)) )7 dT) dt
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where we have used the fact that 5 = a+0—1/r" —1/s. If we assume that ar’ < 1 and that
6(1—)(3)'r" <1 then the last integral is bounded. Then applying Minkowski inequality to
swap the integrals on [0,7] and on [0, 1], we eventually get

1 T % s
I< CHFHLT(OT </0 (1— 7')*5%0%7-*& </0 F"(tr) dt> dT> ,
whence

1
HtﬁBf(t)HL%(Lq( )<CHFHLT(0T)</O (1—7- &PTT i(/ FT dt) dT) s

which implies Inequality (A.13) provided a+ 1/r < 1 and d¢s/r < 1. In order to complete
the proof, it is only a matter of taking ¢ = ——"— so that the conditions §(1 — ¢)(3)"r" <1
and dps/r < 1 are equivalent. O

Finally we need a lemma involving the following operator

C:fr— [t — /t e_(t_T)APf(T) dT:|'
0

Lemma A.4. Let 1 < p,q,r < oo with q¢ > p.
(1) If in addition % — g < 2 then for all real numbers o and ~y satisfying

df1 1
(A.16) 'y:a—i—(—)—l and ar' <1
2\p ¢
there exists a constant C' so that for all T > 0,
(A.17) 1CFl e o)y < ClE* Flls Lo ))-
(2) If in addition g — g <2- % then for all real numbers a and ~y satisfying
df1l 1 1
(A.18) 'y:a+<—>—/ and ar’ <1
2\p q T
there exists a constant C' so that for all T > 0,
(A.19) 1E7C fllLse(acey) < ClE fllzr o))
T
(3) More generally, for any s € [r, 0], zf ¢_ 2 < 2—= —|— 2 and (o, 7y) satisfy
df1 1 1 1
(A.20) 'y:a+<—>—1+— and ar' <1
2\p gq T S
then there exists a constant C so that for all T > 0,
(A.21) 1E7C fll s race)) < CIE* fllor. e )

Proof. The limit case v = « of the first inequality is a consequence of Lemma A.3 and
Sobolev embedding. To treat the case 7 < a, the starting point is the following inequality

d 1
(A.22) le fll ey < CE ) Flluoey  with 5d—ef2(p—q)

whenever 1 < p < ¢ < oo, which has been proved in [13] for the Stokes operator in bounded
domains, and follows from an explicit computation for the heat operator in R?.
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This inequality obviously implies that

def

t
(A23)  YICf(®)ll Lo SCW/O (t =) 7 F(r)dr with F(7) = [|7%f(7)l|Lo(0)-

Therefore, making a change of variables, and using the relationship between « and =,

1
OUBS Ol < C [ (1= ) () Pt dr
0
Now, taking the L7, norm of both sides and applying Minkowski inequality as in the above
lemmas yields Inequality (A.17).

In order to establish (A.19), we start from (A.23) and apply Holder inequality. We obtain
for all t € [0,T],

t 71/
OIBF Oy < €0 ( [ =) ar) I,
0
Then arguing as in the previous lemma easily leads to (A.19) under the constraints of (A.18).
The general case s > r follows from similar arguments. The details are left to the reader. [J

We finally want to establish decay estimates for the free solution to heat equation in the
whole space.

Lemma A.5. Assume that ug € B;T(Rd) with 1 < p,r < oo. The following inequalities hold
true:

(1) If s <2 then
a . def S 1
(A.24) [tV 2 B uol| e, ooy < Clluolly, ey with a = 12—~
(2) If s <1 then
A . def 1 S 1
(A25) OV ol oy < Cluollgy oy with 525 -5~
(3) If s <O then
. def s 1
(A.26) 17" %ol gy gty < Cllwoll gy gy with ¥ = =5 =

Proof. The assumption ensures that VZuy € Bf,f(R‘l). Because s — 2 < 0, Proposition A.1
yields

1-2-1 A2 1—-2 | tAT2 2

[t 27 e 2V UOHLT(RJF;LP(Rd)) = [tz fle"V u0||Lp(Rd)”Lr(R+;%) ~ ||V UOHB;;?(Rd)-
The proof of the other inequalities is totally similar. O
Remark A.2. In this paper, we mainly consider the case where s = —1 + % The corre-

sponding values of («, 3,7) are
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