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This paper deals with optimization methods solving the generalized Nash equilibrium problem
(GNEP), which extends the standard Nash problem by allowing constraints. Two cases are con-
sidered: general GNEPs where constraint functions are individualized and jointly convex GNEPs
where there is a common constraint function. Most recent methods are benchmarked against new
methods. Numerical illustrations are proposed with the same software for a fair benchmark.

Keywords: Generalized Nash equilibrium problem; Semismooth equation; Fixed-point methods;
Variational Inequality problem
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We consider a generalized game of N players characterized by their objective function 6; : R —
R and their constraint function g’ : R® ~ R™i. The generalized Nash equilibrium problem (GNEP

for short) consists in finding «* such that for all ¢ = 1,..., N, =} solves the subproblem P;
min 6;(z;,2*;) s.t. g'(x,a*,) <0, (1)
x;ER™i
where (z;,2_;) denotes the vector (x1,...,24,...,2n) € R” with n = ), n; the total number of

variables and m = ), m; the total number of constraints. Note that the dependency on z* ; makes
all subproblem P; interconnected. When players have a common constraint function ¢! = -+ =
gV = g and the feasible set {z, g(x) < 0} is convex, the GNEP is called jointly convex GNEP. The
GNEP extends standard Nash equilibrium, since ones’ player strategy depends on the rival players’
strategies. Thus, when each player’s constraint function does not depend on the other players’
strategies g*(x;, z_;) = g*(x;), the GNEP reduces to standard Nash equilibrium problem.

GNEP arises from many practical problems, including telecommunications (power allocation),
engineering (energy market), economics (market model) and environmental (pollution) applications,
see [I8] and the references therein for an overview of GNEPs.

This paper aims to make a survey of computational methods to solve general GNEPs and
jointly convex GNEPs defined in . New computational methods are also identified when doing
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the survey process. A benchmark of these methods are provided using the R statistical software
and the GNE package ([13]). The paper is organized as follows: Section [1| present the different
reformulations of GNEPs. Section [2] describes the numerous optimization methods solving general
GNEPs. Section [3| focuses on optimization methods solving jointly convex GNEPs, before Section
] concludes.

1 Problem reformulations

As presented in , the generalized Nash equilibrium problem is not directly solvable, since each
subproblem P; depends on z*;. This section aims to present the different reformulations of the
GNEP for which optimization methods have been proposed in the literature.

1.1 The KKT system

The first reformulation uses the Karush-Kuhn-Tucker (KKT) conditions of the N optimization
subproblems. Both constraints and objective functions are thus assumed to be twice continuously
differentiable C2. Let x* be a solution of the GNEP. If a constraint qualification holds for all
players, then for all player i, there exists a Lagrange multiplier A* € R™ such that

Vobi(@)+ Y A V,gia) =0 (eR™)
1<j<m;
OS/\“, _gi(x*) >0, gi(x*)T/\i*:O (E Rmi).

Concatening the N subproblems, we get the following “extended” KKT system
Dp(a*, A") =0, A*>0, g(z*) <0, \Tg(z*) =0, (2)
where the functions D, g are defined as

v:le(x:)‘l) )‘1 gl(x)
DL(xv)‘): A= ,g(m): ) (3)
Vay Ly (@, AV) AN g™ (z)

and L; is the Lagrangian function L;(x, \) = 0;(x) + g*(x)” A\’ of the ith subproblem. The following
theorem precises the necessary and sufficient conditions between the original GNEP in and the
KKT system in .

Theorem 1. Let a GNEP with twice continuity and differentiability of objective and constraint
functions.

(i) If x* solves the GNEP at which all the player’s subproblems satisfy a constraint qualification,
then there exists \* € R™ such that z*, \* solve equation [3

(ii) If z*, \* solve equation@ and that the functions 0;’s are player convex and {y;, g*(yi,z—;) <0}
are closed convex sets, then x* solves the original GNEP.



The previous theorem is reported in [18] and [16], respectively in Theorem 4.6 and Proposition 1.
Using Fritz John conditions, see e.g. [52] or [2], the player convexity of 6; in item (ii) can be relaxed
to player-pseudoconvexity, i.e. z; — 6;(x) is pseudoconvex. Now, we present two approaches to
solve the extended KKT system .

1.1.1 The complementarity reformulation
Let us start by the complementarity reformulation, which use complementarity functions as its
name suggests.

Definition 1 (complementarity functions). A complementarity function ¢ : R? — R is a function
verifying the following property

¢(a,b) =0<a>0,b>0,ab=0.

Examples of complementarity functions are ¢ (a,b) = min(a, b), ¢rp(a,b) = Va? + b>—(a+b),
see e.g. [20].

Proposition 1. The complementarity reformulation of the KKT system (@ 18

O(z,\) =0 where <I)($,)\):< bo(— (?;i))‘» (4)

where ¢o 1s the component-wise version of the complementarity function ¢ and D defined in @

This reformulation of the GNEP is given in [16], [18] and [I2]. For a general discussion of
semismooth reformulations of optimization problems, see [25].

1.1.2 The constrained equation reformulation

A second approach proposed by [12] in the context of GNEP to solve the KKT system is the
reformulation via constrained equations of the type

H(z) =0,z € Q.

Proposition 2. Let w € R™ be slack variables (to transform inequality into equality). Let o denote
the component-wise product, i.e. xoy = (x1y1,...,xNYN). The constrained equation reformulation

of the KKT system (@ 18
DL(iU, )‘)
H(zx,\,w)=0, (z,\,w)eQ, and H(x,\w)=[gx)+w], (5)

Aow

where Q = {(z, \,w) € R"*>™ X\ > 0,w > 0}.



1.2 The QVI reformulation

The Variational Inequality (VI) and Quasi-Variational Inequality (QVI) problems have to be in-
troduced in order to present the QVI reformulation.

Definition 2 (Variational Inequality). The Variational Inequality problem consists in finding x €
K such that

Vy € K, (y —2)"F(z) > 0,

where F': K +— R™ and is denoted VI(K, F(z)).

VI problems typically arise in minimization problems, see e.g. [19, 20]. Quasi-variational
inequality problems are an extension of VI problems where the constraint set K depends on z.

Definition 3 (Quasi-Variational Inequality). The Quasi- Variational Inequality problem consists in
finding x such that

Yy € K(z),(y — )T F(z) >0,

where F: R™ — R, K : R — 28" and is denoted by QVI(K (z), F(x)).

Note that a QVI has very complex structure since y must satisfy y € K(z) for a vector x we
are looking for.

Assuming the differentiability of objective functions, the GNEP in can be reformulated as
a QVI problem

Vi, 01(x)
Vy € X(z),(y —x)TF(z) >0, with F(z)= : , (6)

VanOn(2)

and a constrained set X(z) = {y € R™, Vi, ¢*(y;,2z_;) < 0}. The following theorem states the
equivalence between the GNEP and the QVI, see Theorem 3.3 of [I§] or Equation (3) [35] for a
proof.

Theorem 2. If objective functions are C' and player-convez, the action sets X, (x_,) are closed

convez, then z* solves the GNEP if and only if x* solves the QVI(X (z), F(x)) defined in (6)).

Note that [1] also propose a QVI reformulation of the GNEP based on the convex hull of a normal
cone (see Theorems 4.1 and 4.2) and establishe error bounds for the GNEP. For its simplicity, we
restrict our survey to the QVI reformulation given in @

If the KKT conditions for the QVI problem are expressed, we naturally get back to Equation
. According to [I8], methods to solve general QVI problem arising from GNEP are still missing.
We will see in Subsection that QVI simplifies to a VI when dealing with jointly convex GNEP.
In that case, it makes sense to use that reformulation. For the sake of completeness, we present
below two approaches to solve the QVI arising from GNEP.



[24] propose to solve the QVI(X(z), F(z)) as a sequence of penalized variational inequality
problems VI(X, F}), where F}, is defined as

Vxlﬁl(x) Pl(.%')
Fy(z) = z +1 | (7)
VxNHN(x) PN(.CC)
with .
Pofa) =Y (uf +peg! (@) V9! @),
=1

The set X is either R™ or a box constraint set [[,u]™ C R™, (pr)i an increasing sequence of penalty
parameters and (ug)r a bounded sequence. Theorem 3 of [24] shows the convergence of the VIP
solutions x} to a solution of the QVI under some smoothness conditions.

[35] propose to refomulate the QVI problem as a minimization of a (regularized) gap function,
which is still as complex as the original GNEP.

Definition 4 (Regularized gap function). The regularized gap function of the QVI @ 18

Vovi(z) = sup Yavi(z,y),

yeX ()
where Yoy 1S given by
Va,01(z) \ " .
Yavi(z,y) = : (@ =) = Sllz—vll* (8)
VINQN(x)

for a regularization parameter o > 0.

Note that the minimisation problem appearing in the definition of Vgy s is a quadratic problem.
The following theorem of [35] shows the equivalence a minimizer of Vv and the GNEP.

Theorem 3. For each x € X (x), the reqularized gap function Vgyr is non-negative Vgy(x) > 0.
If objective functions are continuous, then x* solves the GNEP if and only if x* is a minimum of
Vovr with

Vovi(z*) =0 and z* € X(z7%). 9)

1.3 Nikaido-Isoda reformulation

We present a last reformulation of the GNEP called the Nikaido-Isoda (NI) reformulation, which
was originally introduced in the context of standard Nash equilibrium problem by [40)].

Definition 5 (Nikaido-Isoda function). For a game with objective functions 0;, the Nikaido-Isoda
function is defined as the function v from R®™ to R by

N

wNI(x’y) = Z[HV(xwx—V> - eV(vax—V)]' (10)

v=1

This function represents the sum of unilateral objective improvements between actions x and y.



In order to emphasize the links with the previous subsection, we introduce the corresponding
gap function for the Nikaido-Isoda reformulation.

Definition 6 (gap Nikaido-Isoda function). The corresponding gap function is defined as

Vni(x) = sup ¥ni(z,y).
yeX (z)

Theorem 3.2 of [18] shows the equivalence between GNEPs and the minimization of the gap
Nikaido-Isoda function.

Theorem 4. The function Vg is such that Vx € X (x),Vnr(x) > 0. If objective functions 6; are
continuous, then x* solves the GNEP if and only if z* is a minimum of V1 with

Vni(z*) =0 and z* € X(z¥), (11)
where the set X () = {y € R",Vi, g'(yi,2—;) <0} and Vy; defined in (@

There is no particular algorithm able to solve this problem for a general constrained set X (z).
As for the QVI reformulation, Equations @D and have a very complex structure due to the
presence of y € X (x) in the definition of the gap function.

1.4 Jointly convex case

In this subsection, we present reformulations for a subclass of GNEP called jointly convex case.
The jointly convex case is such that there exists a closed convex subset X C R” verifying for all 4,

X(z—i) = {z; € R™, (z5,2-;) € X}.
In our context parametrize context, the jointly convex setting requires that the constraint function
is common to all players ¢! = --- = ¢!V = g and

X={xeR"VYi=1,...,N, g(z;,z_;) <0} (12)

is convex. A sufficient condition is to require that g is quasi-convex with respect to all variables.
However, it is generally assumed that ¢ is convex with respect to all variables, e.g. in [59] and
[60]. Therefore, the joint GNEP consists in finding «* such that for all ¢ = 1,..., N, 2} solves the
subproblem

mIiRn Oi(zi,2%;) st gz, zx;) <O0. (13)
z; ER™

1.4.1 KKT conditions for the jointly convex case

In the jointly convex case, the KK'T conditions become
Va,0i(2*) + Vi, g(a)A™* =0, 0 <A™, —g(z*) >0, g(z*)"\™* =0, (14)

since the constraint function is common to all players. Note that there are (still) N Lagrange
multipliers A*. Under the same condition as Subsection a solution of this KKT system is also
a solution of the original GNEP.



1.4.2 QVI formulation for the jointly convex case

As announced in the jointly convex case, the QVI reformulation @ simplifies to a variational
inequality problem VI(X, F')

leel (.’13)
Vye X, (y—2)TF(z) >0, with F(z)= ; , (15)

va On (x)

where X is given in (12). But not all solutions of the GNEP are solutions of the VI(X, F). In order
to understand this feature, we just have to compare the KKT conditions of the VI and the
GNEP (14]). This is summarized in the following theorem, see e.g. Theorem 3.9 of [18], Theorem
3.1 of [15].

Theorem 5. Assuming that 6; and g are C' functions, g is convex and 0; is player-convex, the
subset of generalized Nash equilibria verifying Equation are the solutions of the KKT system
with a common multiplier \' = - = \V = X,

Therefore, GNEs verifying the VI problem are subclass of GNE. They are called variational
or normalized equilibria, see [36] for a detailed discussion of the VI representation of the QVI
reformulation of GNEPs. Furthermore, the regularized gap function also simplifies and becomes

Vavi(z) = sup Yavi(z,y),
yeX

where ¥,y is in . Constrained equation @D simplifies to a nonlinear equation V,y7(x*) = 0
and z* € X. Using two regularization parameters 0 < o < 3, x* is the global minimum of the
unconstrained minimization problem

min VaVI($) — V,BVI(-%')- (16)

zeR?
Furthermore, the VI reformulation leads to a fixed-point problem as shown in the following
proposition.

Proposition 3. Assuming that 0; and g are C' functions, g is convex and 0; player-convex, then
x* solves the VI if and only if x* is a fized point of the function

x — yyr(z) = argmax Yoy r(z,y). (17)
yeX

There is a unique mazimiser of Yoy with respect to y as y — Yavi(x,y) is strictly concave.

Proof. A normalized equilibrium z* verifies Vi ;(z*) = 0 and 2* € X. By definition, for all x € X,

Wi(x) = Yavi(z,yvi(x)). Thus, Yavi(e*,yyr(z*)) = 0. As ¢ayr(z*,a2*) = 0, it follows that
yyr(x*) = x*. O



1.4.3 NIF formulation for the jointly convex case

In the jointly convex case, the NI reformulation simplifies to a minimization problem of Vyr
where

Vni(x) = sup ¥ni(z,y).
yeX

As in the previous subsection, solutions of this problem form a subset of GNEs, called normalized
equilibrium. From [59], we have the following theorem.

Theorem 6. Assuming 0; and g are C' functions and g is convexr and 0; player-convex. x* is a
normalized equilibrium if and only if x* solves Vyi(z*) = 0.

From a mathematical point-of-view, computing Vs is challenging as the supremum may be
attained at more than one point. To deal with this problem, we use a regularized version of the
Nikaido-Isoda function.

Definition 7 (regularized Nikaido-Isoda function). For a game with objective functions 6;, the
reqularized Nikaido-Isoda function is defined as the function v from R?™ to R by

N
woaNI(xay) = Z[QV(xvvx—V) - HV(vax—V)] - %Hx - yH27 (18)

v=1

for a regularization parameter o > 0.

The corresponding gap function is now defined as
Vanr(z) = max Yanr(z,y).
yeX

Since y — Yon1(x,y) is strictly concave as long as objective functions 6; are player-convex, the
supremum is replaced by the maximum. Using two regularization parameters 0 < a < [, the
constrained minimization problem can be further simplified to the unconstrained problem

minVani(z) — Vani(2), (19)

see [59].

As for the VI reformulation, a normalized equilibrium is also a fixed-point, see Property 3.4 of
[59].

Proposition 4. Assuming 6; and g are C' functions and g is convex and 0; player-conver. x* is
a normalized equilibrium if and only if ™ is a fized-point of the function

x = yni(z) = argmax Yani(z,y). (20)
yeX



1.5 Scope of the paper

In this section, we present the four main reformulations of the GNEP : the complementarity re-
formulation and the constrained equation reformulation based on the KKT system, the QVI re-
formulation and the Nikaido-Isoda reformulation. The latter two are particularly useful for jointly
convex GNEP, since in the general setting, no algorithms are yet available to solve optimization

problems given in @ and .

In the rest of the paper, we first focus on algorithms solving general GNEP based on the KKT
system. Secondly, we turn our attention to algorithms solving jointly convex GNEP based on the
QVTI and the NIF reformulations. These two situations differs widely, since in the general GNEP,
we have to solve a nonlinear equation, while for the jointly convex case, we solve a fixed point
equation or a minimization problem.

2 Methods to solve general GNEP

In this section, we study optimization methods solving the KKT system : either the semismooth
(nonlinear) equation or the constrained equation . Optimization methods solving a smooth
equation F'(z) = 0 are first presented in Subsection Then in Subsection we consider the
necessary extensions solving the semismooth equation of the complementarity reformulation.
We continue with specific algorithms solving the constrained equation (|5) in Subsection Finally,
numerical illustrations to compare algorithms for both reformulations in Subsection are carried
out.

2.1 Classical methods for smooth nonlinear equations

As introduced in many optimization books, see e.g. [5 [11l 41], an optimization method to solve
a nonlinear equation is made of two components: a local method and a globalization scheme.
Assuming the initial point is not “far” from the root, local methods use a local approximation
of the function (generally linear or quadratic approximation based on Taylor expansions) that is
easier to solve in order to derive the sequence of iterates. The globalization studies adjustments to
be carried out, so that the iterate sequence still converges when algorithms are badly initialized.
In this subsection, we focus on local methods and refer to Appendix [B|for globalization techniques.
We also give conditions for convergence to better emphasize the issues with the GNEP.

2.1.1 Local methods

Local methods are sequences zx11 = zx + di where dy is a root of a certain equation based on
an approximation of the root function F' : R™ — R"™. The first and the most simple method, the
Newton method, uses a first-order Taylor expansion

F(z4+h)=F(z)+ J(z)h+ o(h),



where J denotes the Jacobian! JacF. Let M} (h) = F(z) + J(2k)h be the model function. At
the kth iterate, the Newton step consists in solving the system M,ﬁv(dk) = 0. We get the following
equation

J(z)dy, = —F(2p). (21)

Note that there is no guarantee that J(z) is nonsingular.

Another method consists in replacing the Jacobian by an approximate matrix, which will always
be invertible. The direction dj solves

Hk:dk: = —F(Zk), (22)

where Hj, is updated by a so-called quasi-Newton scheme. This is equivalent to a model function
M ,?N(h) = F(zx) + Hph. A quasi-Newton scheme needs an iterative process to update the approx-
imate Jacobian from Hj, to Hy1. The choice of the matrix is large, since there are n? terms. We
can assume first that

F(a) = MI?+J\17(ZI<:+1 — 2;) © Hpy186 = Yr,

where s = zp11 — 2 and yx = F(zx41) — F'(2). The latter equation is called the secant equation.
We could have considered a scheme to approximate directly the inverse of the Jacobian by W with
the secant equation sy = Wy 1y;. But still, we have an underdetermined system of n equations for
a n X n matrix.

Having no other property on the Jacobian of F' (e.g. symmetry or positiveness), we generally
consider the matrix that makes the smallest possible change to the preceding Jacobian according
to the Frobenius norm?, see [4I, Chap. 11]. From an implementation point of view, the smallest
possible change feature reduces the linear algebra computation work from (’)(n3) to (’)(nz) cost. If
we consider minimizing ming ||H — Hg||r for all matrix H verifying the secant equation, we get
the (good?®) Broyden scheme

(sk — Wiyk)yt Wi,
T

yr — Hysy
Hyy1 = Hy + =l o Wiy = Wi + -
5}, Sk Sk Wik

using the Sherman-Morrison formula. For a general discussion of quasi-Newton methods, we refer
to [I0] and for details on quasi-Newton methods tailored to nonlinear equations, see [6] or [41],
Chap. 11].

Another way to solve the equation F(z) = 0 requires minimizing the norm f(z) = (|F(z)|[3.
But not all minima of the function f are roots of F because we must have f(z) = 0. A widely
known method for this least square problem is the Gauss-Newton method. With this method, we

minimize the model function & MY (dy)T M} (d,) and get
J(21)" T (z)die = =T (21) " F (2). (23)

To prevent the right-hand side matrix to be nonsingular, the Levenberg-Marquardt method modifies
Equation (23] to
[J(ze)" T (21) + NI | die = —J (21) " F (2), (24)

1 As usual, JacF' denotes the Jacobian whereas VF the tranpose of the Jacobian.
2The Frobenius norm (also called the Euclidean norm) for matrix A is defined as ||A||r = , /2255 lais]?.

31f we minimize minyy ||W — Wy||r for all matrix W verifying the secant equation, then we will obtain the (bad)
Broyden scheme. According to [6], this method appears often unsatisfactory in practice.

10



where I denotes the n x n identity matrix and Ay > 0. Various choices of Levenberg-Marquart pa-
rameter are possible: [22] consider terms A\, = ||F(2)||3 with § € [1,2]. In practice, § = 1, i.e. A =
||F(21)||2, works much better than other §’s. We may also use ||J|| or min(||F (zx) |2, ||JL F(z)]]?).
The Levenberg-Marquart is sometimes referred to as the modified Gauss-Newton method for its
relation to the Gauss-Newton method.

Summarizing this first subsection, local methods consider sequences of the form zx11 = zx + di
where the direction dj is a solution of one of the above equations. Newton direction uses Equation
, quasi-Newton Equation and Levenberg-Marquardt Equation .

2.1.2 Convergence in the differentiable setting

By construction, the Newton and the Levenberg-Marquardt methods require the root function F
to be differentiable, while the Broyden method does not. Let us analyze the convergence conditions
for these methods. We concatenate all theorems in one, see e.g. Theorems 11.2 and 11.5 of [41]
for Newton and Broyden, respectively, Theorem 2.1 of [62] or Theorem 10 of [23] for Levenberg-
Marquardt.

Theorem 7. Suppose that F' is continuously differentiable in a open convexr set O C€ R™. Let
z* be a solution of F(z) = 0 and let (z,iv)k be the sequence generated by the Newton method. If
the Jacobian at the solution J(z*) is nonsingular, then (2 ) converges superlinearly to z*. If in
addition, F is Lipschitz continuously differentiable* near z*, then the convergence rate is quadratic.

Let (zf)k be the sequence generated by the Broyden method. If for the starting points, there
exist §,e€ > 0, such that

125" = 2| < 6, 1|Bo — J(")|| < e,

then (22)) converges superlinearly to 2*.

Let (z,fM)k be the sequence generated by the Levenberg-Marquardt method. If F is Lipschitz
continuously differentiable on O and ||F(z)|| provides a local error bound, then (zFM)) converges

superlinearly to z*.

In other words, convergence theorems require (i) F' is Lipschitz continuously differentiable
(LC) ! in an open convex set around a solution z* and (ii) the Jacobian at the solution .J(z*)
is nonsingular for Newton and Broyden method or the function F' verifies a local error bound.
Moreover, additional conditions may be required to ensure the convergence of globalized sequences,
see Appendix [B:4] These conditions can be weakened as shown in the next subsection.

2.2 Extension to a semismooth setting of SSR

In the two previous subsections, a blanket assumption of differentiability of the root function F' is
assumed. We describe the necessary adjustment for the GNEP context.

“that is F' is continuously differentiable C* and the Jacobian is Lipschitzian.

11



2.2.1 Toward the non-differentiable setting

In the GNEP context (Equation (4) of Subsection |1.1.1)), the root function is defined as

D, )) = <¢O?L;g(:;i)m> |

where the first component Dy (x,\) is composed of N derivatives of the Lagrangian function
Li(z,\") and the second component ¢o(—g(x),)\) is the component-wise application of the com-
plementarity function ¢ on the constraint function g : R™ — R™. Firstly, the top component is
differentiable when objective and constraint functions are C?. Secondly, only the bottom com-
ponent is not everywhere differentiable, because most complementarity functions ¢(.,.) are non-
differentiable at (0,0). In this paper, we use the minimum function ¢ (a,b) = min(a,b) and the
Fischer-Burmeister function ¢rp(a,b) = va? + b — (a + b), which are not differentiable at (0, 0).

To deal with non-differentiability, Clarke ([7]) introduced the generalized gradient. Few laters,
its famous book [J] provides a comprehensive presentation of the nonsmooth analysis. We briefly
present here some elements necessary to our paper and refer to Appendix [C] for further details.

Let G : R" — R™ a function with component G;. By the Rademacher theorem, a locally
Lipschitzian function is almost everywhere differentiable. We define first the limiting Jacobian,
also called B(ouligand) subdifferential, denoted by dpG(z).

Definition 8 (limiting Jacobian). The limiting Jacobian of G at x is defined as
0pG(x) = {V,, xk)k € Dg,xx — x, JacG(x) — V. },

where Dg is the differentiability set of G.

For his desirable properties (such as convexity), the Clarke’s generalized Jacobian, based on the
limiting Jacobian, is commonly used.

Definition 9 (generalized Jacobian). The generalized Jacobian 0G(x) of G at x is the convex hull
of the limiting Jacobian OpG(x)°.

Example 1. In the Evample 7.1.2 of [20], a function G : R? — R? is defined with components
G1(z) = min(z1, 22) and Go(z) = |21|® — 2. G is not differentiable at (0,0). By splitting R? into
4 parts, we can compute the limiting Jacobian

0pG(0,0) = {(é _01> : (8 _11)} and 0G(0,0) = {(g‘ 1_‘9) A€o, 1]} .

From a computational point of view, using a component-wise version of the generalized Jacobian
OG(z) C 0G1(z) X - -+ x OGm () might be useful, see Appendiz|[C

Now, we focus on the properties of the generalized Jacobian and a more flexible criterion than
continuous differentiability : the semismoothness. Before introducing the semismoothness, we have
to present directional derivatives.

5Note that if m = 1, the generalized Jacobian reduces to the generalized gradient, see Theorem 2.5.1 of [@] for
this characterization of the generalized gradient.
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Definition 10 (directional derivative). For a locally Lipschitzian function G, the (classical) direc-
tional derivative at x along h € R™ is defined as

/(w1 h) = hmG(ac +th) — G(z)
’ t10 t '

The Hadamard directional derivative is

/ —_
Gho(z:h) = lim G(x +th') G(:n)
h'—h,tl0 t

The difference between classical and Hadamard directional derivatives lies the fact that we look
at all directions A’ — h and not only at h.

Definition 11 (semismooth). A locally Lipschitzian function G is semismooth at x, if for all
d € R™, the following limit exists 3
lim Vd.
VedG (z+td)
d—d,tl0

In this case, this limit equals to G'y(z; h).

Therefore, the semismoothness of function H at z requires the Hadamard directional derivative
at x to exists along any direction converging to h and not only along h. Finally, we introduce
the strong semismoothness, also called 1-order semismoothness, that will be used in convergence
theorems.

Definition 12 (strongly semismooth). A locally Lipschitzian function G is strongly semismooth at
x if for alld — 0 and V € 0G(x + d), we have

Vd—G'(z,d) = O(]|d|]?).

Examples of semismooth functions are smooth, convex and piecewise linear functions. Fur-
thermore, composite, scalar products, sums, minimum, maximum of semismooth functions are
semismooth. Let us study our complementarity functions ¢ and ¢rp.

Example 2. The non-differentiability breakpoint is at (0,0). By standard calculations, the direc-
tional derivate of ¢ at this point is ¢A((0,0); (a,b)) = min(a,b). Futhermore, for all nonzero
vector (a,b), ¢n is differentiable and Voa is given by

Von(a,b) = <‘”“§b)-

ﬂa>b

We deduce that

Dpdn(0,0) = {(é) , G)} and 96 (0,0) = {<1fA> Aelo, 1]}.

Furthermore, for all V € 0¢n(c,d), such that (¢,d) — (a,b), we have
Vv <Z> — oa((0,0); (a,b)) = all.<g + bl .~q — min(a,b) = o((a,b)) . (25)

Using Appendim@ we conclude that ¢, is semismooth at (0,0) but not strongly semismooth.
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Example 3. For ¢pp, the non-differentiability breakpoint is also at (0,0). In fact, by standard
calculations, for all nonzero vector (a,b), we have

I S—
V¢FB(a,b) — <\/a2b+b2 B 1) )
Va?+b?

We deduce that Opprp(0,0) = {Vérp(a,b), (a,b) # (0,0)} and 0¢rp(0,0) = B((—1,—1),1), where

B(x,p) denotes the closed ball at x of radius p.

Furthermore, for all V € 0¢rp(c,d), such that (¢,d) — (a,b), we have

V (Z) = ¢rp(a,b) and ¢rp((0,0);(a,b)) = ¢rp(a,b).

Hence, we get
v () - orn(.05a0) 0.

We conclude that ¢prp is strongly semismooth at (0,0), as proved in [33)].

Now, we can express appropriately the generalized Jacobian of the GNEP. We denote by Jg(z)
elements of the generalized Jacobian 0®(z). Using chain rules and previous definitions, we get

) = JacyDr(x, )  diag [(Ve,9'(2)),]
120 = (et o). 20

where Jac, denotes the Jacobian with respect to x and diag]...] represents a block diagonal matrix.
The diagonal matrices D, and Dy are given by

Dq(z) = diagla (z, A1), ..., a" (@, \V)] , Dy(z) = diag[b' (z, A1),..., 0N (z, \V)],
with a’(z, \?), b (x, \*) € R™ defined by
(2, ALY, b (1, \E)) = ((ﬁ(’l(—g;-(x),A;),¢g(—g§(x),A})) if (—9;(33),)\;) # (0,0),
AL { (5+ i) if (—g5(x), A7) = (0,0),

where ¢/, (resp. ¢y) denotes the derivative of ¢ with respect to the first (resp. second) argument a
(resp. b) and (&5, Gij) € B(pg,cg). See Appendix |Alfor a detailed representation of the generalized
Jacobian Jg.

Let us specify the parameters py and cg4 for the two considered complementarity functions: for
the minimum function, py = (1/2,1/2) and ¢, = 1/2 and for the Fischer-Burmeister function,
pg = (—1,—1) and ¢y = 1. By standard chain rules, we get the following proposition.

Proposition 5. Consider ¢ = ¢n or ¢pp. If functions 0; and g; are C?, then the root function

® defined in (@) is C! except at points (x,\) such that g;(:n) = )\3 = 0. At these points, when
¢ = Pn, ® is semismooth, while for ¢ = ¢prp, O is strongly semismooth.
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2.2.2 Local convergence in the semismooth framework

Now, we get back to the general equation F'(z) = 0. As the Jacobian of the root function is
not available, the direction computation of local methods presented in Subsection [2.1.1] must be
adapted.

The solution consists in replacing the Jacobian by an element of the generalized Jacobian. Let
Ji, € OF (z1,). Considering the Newton method (21I), we now solve

Jkdk = —F(Zk), (27)
whereas for the Levenberg-Marquardt method , the direction solves
[T T+ Al di, = =T F(z). (28)

Corresponding sequences are called respectively the generalized Newton and the generalized Levenberg-
Marquardt methods. For the quasi-Newton framework, there is no modification. Some authors also
use the B-subdifferential 9p F'(z) or the component wise B-subdifferential 0p F1(z) % - - - x OpFy,(2k)
instead of the generalized Jacobian in and .

Now, theorems extending Theorem [7] to semismooth functions are presented. The first extension
is due to [47], cf. Theorem 3.2, for the generalized Newton method. We give below a slightly more
general version® than the original version.

Theorem 8. Let z* a solution of F(z*) = 0. If F is locally Lipschitzian and semismooth at z* and
all elements” J* € OpF(2*) are nonsingular, then the generalized Newton method is well defined and
converges superlinearly to z*. If in addition, F is strongly semismooth at z*, then the convergence
rate is quadratic.

For the quasi-Newton approach, convergence results have been proposed in the literature, e.g.
[27] and [44], where the differentiability is needed at a solution rather than in an open convex.
[38] give a minimal condition (lesser than semismoothness) for a general quasi-Newton method to
converge linearly.

As in the differentiable setting, e.g. [11], the convergence of quasi-Newton methods for semis-
mooth functions is done in two steps: (i) a first theorem gives conditions of local linear convergence
based on the limited difference between approximate Jacobian and elements in the generalized Ja-
cobian, and (ii) a second theorem gives an additional condition for a general quasi-Newton method
to converge superlinearly. We report here Theorems 4.1 and 4.2 of [53].

Theorem 9. Let z* a solution of F'(z*) = 0. If F is locally Lipschitzian in the open convex D C R"
such as z* € D. Consider the sequence zg € D and zpy1 = 2 — Vk_lF(zk) with Vi, a n X n matrix
updated by a quasi-Newton scheme.

Suppose F' is semismooth at z* and for all J* € OpF(x*) are nonsingular. There exist constant
€, A >0 such that if ||z0 — 2*|| < € and there exists W}, € OpF(z) such that ||V, — Wi|| < A, then
the quasi-Newton sequence is well defined and converges linearly to z*.

SA version of the previous theorem exists when the generalized Newton method use the limiting Jacobian Jj €
OpF(zx) (instead of the generalized Jacobian) in Equation (27), see e.g. [53], [32] or [16].

"Originally, [47] use the generalized Jacobian and not the limiting Jacobian. But as mentioned in [45] and [43],
there is a weaker condition for superlinear convergence to hold, that is all elements in the limiting Jacobian are
nonsingular.
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Theorem 10. Let F' be locally Lipschitzian in a open convexr D C R™. Assume F' is semismooth
and VJ* € OyF(2*) are nonsingular. Consider a sequence of nonsingular matrices Vi, and points
Zpi1 = 2k — Vk_lF(zk). If (zi)r converges to z* then (zx)r converges superlinearly to z* and
F(2*) =0 is equivalent to AW}, € O, F (21),

i Ve = W)sill _

0,
k—4o00 ||Sk|’

with Sk = 2k41 — 2k-

Local convergence of the generalized Levenberg-Marquardt method is studied in Theorem 6 of
[17].

Theorem 11. Let z* a solution of F(z*) =0, with F' a locally Lipschitzian, semismooth at z* and
VJ* € OpF(z*) are nonsingular. If the Levenberg-Marquardt parameters (\;), converge to 0, then
the (generalized) Levenberg-Marquardt converges superlinearly to z*. If in addition, F' is strongly
semismooth and locally directionnally differentiable at z*, and A\, = O(||Jkgk|]) or A = O(||gkl]),
then the sequence converges quadratically.

2.2.3 Analysis of assumptions

We analyze in detail the assumptions of preceding theorems. All theorems require the root function
to be semismooth at a solution z*. By Proposition [5, the function ® defined in Equation is
semismooth. If ¢ = ¢pp, ® is even strongly semismooth and thus improving the convergence rate.

The nonsingularity condition is required only for elements J* of the limiting Jacobian at a
solution z*. As analyzed in [16], the limiting Jacobian might have some identical rows at the
bottom part®. Let us investigate first this issue”. As only terms (&;;, ;) in diagonal matrices D?
and D’ change between the generalized and the limiting Jacobian of ®, we study the nonsingularity
condition directly on the generalized Jacobian. In a detailed form, the bottom part has the following
structure

—D{(z, \)Jacs, g*(x) ...  —Df(z,A\")Jacyyg'(z) | Di(z,A!) 0

: (29)

—D%(z,A\N)Jacy, gV (z) ... —D%(z,AN)Jac,,g" (z) 0 Db (z, AN)

where Df and Df are m; X m; diagonal matrices. In the following, we denote by D%-part and
Db-part the left-hand and right-hand sides of Equation .

Proposition 6. For ¢ = ¢, or ¢rp, the bottom part of generalized Jacobian of ® defined in
has two identical rows if and only if there are two shared and active constraints.

Proof. Assume that the generalized Jacobian has two identical rows, say for players i and ¢ and
components j; and j:. The Db-part requires that the jjth row of Df and the j:th row of Dg equals
Zero

8For the top part, there are less problem in general. As shown in Appendix matrices are less sparse: identical
rows implies that the constraint functions are linear and two objective derivatives are identical.
For jointly convex GNEP, [28] avoid this issue by considering only smooth parts of .
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with b;- (z, )\3) = (b;)(—g; (z), )\;) Identical rows in the D®-part is equivalent to the n dimensional
equation ) ) )
aj(w, Aj)Jacagj(x) = aj.(z, A} )Jac.gj (x). (31)

If ¢ = ¢A, then Equation leads to
g;'- (x) < )\; and gi (x) < )\22.

Since at a solution z* both g§ () and )\3'» are nonnegative and (at least) one is zero. Hence, gj- (x) =
g; (x) = 0, i.e. active constraints. For the D%part using ¢/ ,(a,b) = 1,<p, Equation leads
i
g5, g;. are active and shared, then both Equations and are satisfied, i.e. the generalized
Jacobian has two identical (null) rows.

to a;»(x,Aé-) =a (1:,)\5) = 1. Therefore, Jacxg;- and Jacxg;;_ are identical. So if the constraints

If ¢ = ¢rp, then Equation is equivalent to
g;(x) =0 and )\z» > 0,

and the same for j. This is equivalent to g}, gg are strongly active constraints. These conditions

are such that a}(w, )\;) and aéz (z, )\i) are non-zero and expressed as a}(w, )\;) = a?g(x, )\%) =—1.

Equation 1| again requires that the constraint functions gj. and g; have identical derivatives. [

If we exclude the pathological case described above, the nonsingularity of limiting Jacobian'®
(26)) requires that J* has a non-zero determinant. Using the determinant formula for partitionned
matrix and the Schur complement, the nonsingularity condition can be expressed in two different
formulations

(i) that Jac,Dg(z, ) and
Dy(2) + Dq(2)Jac,g(z)Jac, Dy (x,N) " diag [(Va,0'(2)),] (32)
are nonsingular,
(ii) Dy(z) and |
Jac.Dp(x, A) + diag [(Ve,9'(2)),] Dy(2) "' Da(2)Jacag(x) (33)

are nonsingular.

Note, since Dy(z) is a diagonal matrix, its nonsingularity is equivalent to have non-null terms.
We will see in Subsection that is a typical condition. Following the above discussion,
we conclude that both the generalized Newton and the generalized Levenberg-Marquardt method
converge superlinearly to a solution z* if one of the two conditions and are satisfied and
no constraint functions are shared.

Finally, we focus on the convergence of the Broyden method. Theorems |§| and (10| of [53] give
minimal conditions for a quasi-Newton method to converge (superlinearly). In [53] (or also in [45]),

10We do not have to require all elements of F but only elements of dgF.
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the Broyden method is used on smooth parts of the root function F. When applying the Broyden
method directly on F', it is hard to show the convergence for a general semismooth function, e.g.
[31]. The weakest condition seems to be the Lipschitz continuity of B-derivative of F' proved in
[27]. In our GNEP setting, the function F'(z,\) is not differentiable only when )\é = g;(m) = 0.
Otherwise, F' is differentiable for which the convergence is established. So, we expect the generalized
Broyden method to work well in our setting and do not prove the convergence. To our knowledge,
the Broyden method has been not used in the GNEP context.

2.2.4 Global convergence

A merit function is introduced to globalize local methods, as explained in Appendix For a
semismooth equation F(z) = 0, we use the same function as in the differentiable setting : the
residual norm f(z) = || F(z)||?/2. The gradient is given by Vf(z) = VI F(2), where V € 0F(z).
As mentioned in [46], the merit function may be C!, even if F is only semismooth.

In our GNEP context, the root function @ is given in and the merit function is thus defined

fal2) = 5 H <¢OI<D—L§3<:%>A,)A>>

The gradient of fg can be expressed as

- fq)(z)_(_JachL(x,)\) diag[(vzigi(a:))i])T( NG 1 (2, \) )

as
2

(34)

2

Da(Z)JaCmg(-r) Db(z) (x)v)‘)

using and classic chain rules. As mentioned in [I2], the gradient V fg is single-valued since
only the bottom part of the generalized Jacobian 0®(z) contains multi-valued expressions (D, and
Dy, when gj- (x) = )\é. = 0) and the bottom part of ®(z, \) has zero entries. Hence, f is C! as long as
objective and constraint functions are C2. Therefore, both line-search and trust-region approaches
are well defined for our GNEP reformulation and .

As given in Appendix (and as for local convergence), a nonsingularity condition of elements
in the limiting Jacobian dp® is required. Under this nonsingularity condition, sequences generated
by generalized Newton, generalized Levenberg-Marquardt and generalized Broyden converge to a
stationary point of fg. This leads to a new question : does a stationary point of fg solve the
original GNEP? Theorem 3 of [I2] analyzes the additional conditions for a stationary point of f
to be a solution of the nonsmooth equation, hence of the original GNEP. The condition is that
Jacy D (z, A) is nonsingular and the matrix

M = Jac,g(z)Jac,Dr(x, \) diag [(leg’(x))l] (35)
is a Pp-matrix!'!. If diagonal matrices D, and Dj have non zero terms, then Condition implies
that Dy(2) + M Dq(z) is nonsingular, which is Condition (32). Therefore, if we have the nonsingu-
larity assumption of elements of the limiting Jacobian of ®, then Condition can be deduced

and thus ensuring that a stationary point of the merit function fg (defined in ) solves the
GNEP.

A m x m square matrix M is a Py-matrix if for all subscript set o C {1,...,m} the determinant det(Maq) > 0.
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2.3 Tailored optimization algorithms for the CER

This subsection aims to present specific methods solving constrained (nonlinear) equations, first
proposed by [12] in the GNEP context. The KKT system can be reformulated as a constrained
equation, see Equation of Subsection m Techniques to solve such equation may provide
good alternatives to standard optimization procedures. In the context of VI problems, [20] devotes
a chapter to interior-point methods for solving such constrained equations (CE). Here, we focus on
the method of [39] providing a general framework for CE problems.

Definition 13 (Constrained equation). A constrained equation is defined as
H(z)=0, z€Q, (36)

where {2 is a closed subset of R™. Generally, the constraint set Q) has a simple structure, e.g. the
nonnegative orthant Q@ = R’ or a hypercube 2 = [I,u].

As mentioned in [6I], in practice, the root function H has also a partitionned form

16 = (o)

Indeed, the KKT reformulation of the GNEP falls within this framework

Let Q denote the interior of €. In the contrained equation literature, we assume that (i) Qis
a closed subset with nonempty interior So), (ii) there exists a closed convex set S C R™, such that
0 €S, H(S) N is nonempty but H~1(S) N'bd Q is empty and (iii) H is C' function. The
first assumption states that the set S contains zero, so that the set H _1(§ ) contains a solution to
Equation and local points around. The second assumption requires that such points should
not be on the boundary of €2. The third assumption is just differentiability. In the following, these
three assumptions will be referenced as the constrained equation blanket assumptions.

2.3.1 Potential reduction algorithms with line-search
[39] build a framework with potential functions for solving constrained equations. These potential
functions, which play a major role, are first introduced.

Definition 14 (potential function). A potential function S—R satisfies the following properties:

1. For all sequences (uy)y in S such that either ||uy|| tends to infinity or (ug) tends to a point
on the boundary bd S\ {0}, then p(uy) tends to infinity.

2. p is C! function on its domain and the curvature condition u’ Vp(u) > 0 for all nonzero
vectors.

3. There exists a pair (a,5) in R"x]0,1], such that for all u € S, we have ||a||2uTVp(u) >
g(a’u)(aTVp(u)).
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The potential function has the dual objective to keep the sequences (H (zy)), away from the set
bd S\ {0} and to help the convergence to the zero vector. The parameter a, known as the central
vector, will play a crucial role to generate iterates in the constrained set €.

For instance, let us consider S = R’}. A typical potential function for S is

n
p(u) = Clog|lul[3 = Y " logu; for u>0.
=1

[39] prove that this function verifies the above conditions when ¢ > n/2 with the pair (a,5) = (1,,1)

where 1,, being the n-dimensional one vector.

In the GNEP context, we consider the subset S = R™ x Rim' where n. = Zf\i 1 M is the total

number of player variables and m, = Zf\il m; is the total number of constraints, i.e. n =n_+ 2m,
in Definition The function H has components F' and G given by

F(z) = Di(2,)) and G(z) = <9("f) +“’>,

Aow

where z = (z, \,w), see, e.g., [61]. [12] propose the following potential function
2m.
p () = Clog (Il |13 + luzl3) — 3 log(uz),
i=1

where u = (uj,uz) € R™ X Rim'. We choose ¢ > m. so that p is a potential fucntion with
a=(0,,1,,)and o =1.

The difficulty of constrained equations, compared to a classical nonlinear equation, is to ensure
that all the iterates remains in the constrained set . In [39], this is achieved by considering
a modified Newton method globalized with a backtracking line-search. We report below their
potential reduction Newton algorithm, which is divided into two parts: (i) computation of the
direction using the central vector a and (ii) finding of an appropriate stepsize with a geometric
line-search for which the merit function is 1 (u) = p(H (u)). Note that H(u) is valued in R™ x R?™,

Init zo € Q2,0 < p, < 1 and choose o € [0, 5]
Iterate until a termination criterion is satisfied,
e Solve the system to get dj'?

a” H(z)

H(Zk)—f—JaCH(Zk)d:Uk 5
llall3

e Find the smallest integer my such that

Yz + p"dyg) < P(z) + apmkvw(zk)Tdk and zp + p"*dy € Q.

e Set zpy1 = 2z + p"*Fdk.

121 [39], they use the directional derivative along d in the left-hand side of Equation , which is equivalent to
this formulation since H is C' under the blanket assumptions.
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end Iterate

Due to the presence of a non-zero term in the right-hand side of , the modified Newton direction
dy, is different from the Newton direction. For a given problem, the special structure of H = (F, Q)
and a will simplify this term. In this form, the algorithm is defined when the Jacobian Jac H is
nonsingular at z, € . Lemma 2 of [39] shows that the direction computed in the first step is a
descent direction for the merit function 1. So, the line-search is well-defined. Theorem 3 of [39]
shows the convergence of the potential reduction algorithm.

Theorem 12. Assume that p is a potential function, the constrained Equation (@) satisfies the
constrained equation blanket assumptions, the Jacobian JacH(z) is nonsingular for all z € Q and
we have limsupy, o, < 0. Let (z;)r be a sequence generated by the potential reduction Newton
algorithm. We have (i) the sequence (H (zx))r is bounded and (ii) any accumulation point, if there
exists, solves the constrained Equation (@) In particular, if (zx)g is bounded, the constrained
equation has a solution.

In the numerical illustrations, the potential reduction algorithm is benchmarked with the affine-
scaling algorithm of [3], as in [12].

2.3.2 Application to GNEP

As already mentioned, Equation of the GNEP can be reformulated as a constrained equation.
The root function H : R™ x R?™ — R"™ x R?™ is defined as

DL(:’U’)‘)
H(z,\w)=|g(z)+w]|,
Aow

where the dimensions n, m correspond to the GNEP notation and (a,d) is given by ((0,, 1), 1).
The potential function is given by

p (u) = Clog (|[]l3 + [IA3 + [lw]3) = > log(Ar) — ) log(ws),
k=1 k=1

where v = (2, A\,w) € R" x R}, x RY, and ¢ > m. This reformulation of the potential function
emphasizes the three components u = (x, A\, w). For the line-search, the gradient Vp is given by

2¢ z
ELRINEEIE
_ 26y )1
Vp(x, A, w) = |\:zc||§+\\2A|\§+||w||§A A
2w—’w71

[l [3+IA5+w][3

where A and w have positive components and terms A~! and w™! correspond to the component-wise
inverse vector. Compared to the semismooth reformulation, the root function H is now C!. The
Jacobian is given by

Jac,D(x,\) diag [(leg’(x))z] 0
JacH (z, A\, w) = | Jacyg(zx) 0 I
0 diag[w] diag[)]
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As reported in [12], the computation of the direction dy, = (dg i, d &, dw k) in can be simplified
due to the special structure of the above Jacobian matrix. The system reduces to a linear system
of n equations to find d,; and the 2m components dy j,d, ;. are simple linear algebra. Using the
classic chain rule, the gradient of the merit function ¢(.) = p(H(.)) is given by

Vip(x, A, w) = JacH(x, A, w)T Vp(H (x, X\, w)).

Again the computation of this gradient can be simplified due to the sparse structure of Jac H.
Theorem 4.3 of [12] is the direct application of the previous theorem in the GNEP context. We do
not restate here their theorem, but present their nonsingularity result given in Theorem 4.6. The
Jacobian matrix is nonsingular, if the matrix Jac, Dy (z, A) is nonsingular and

M = Jac,g(z)Jac,Dr(x, \) 'diag [(V%g’(m))l] (38)

is a Pp-matrix. This is exactly Condition (35 given in the semismooth setting. So there is no
particular gain in terms of assumptions between the two reformulations.

2.4 Numerical illustrations

In this section, we perform numerical illustrations to compared the different methods for computing
general GNEP. The implementation is carried out in the R statistical software ([48]) and the package
GNE ([13]). We start our benchmarking by considering a simple two-player duopoly for which
there exists a unique Nash equilibrium. Let d; = 20, do = 21, \;y = 4, Ao = 5, p1 = 1.1 and
p2 = 1.25. The objective function (to be maximized) of Player i is 0;(x) = (d; — A\i — pi(z1 + x2))x;
for ¢ = 1,2. One can show that the Nash equilibrium is

(ot %) = (2(d1 ~ M) da— o 2da—X)  dy —/\1>‘

3p1 3p2 3p2 3p1

In Table[l] we benchmark all the root methods of this section : ‘Fct. call’ is the number of function
calls (either ® or H), ‘Jac. Call’ is the number of Jacobian calls (either 0® or Jac H), Code is an
exit code and || finq —x*||2 is the distance between the final iterate and the true NE 2*. Algorithms
always stop after a finite number of iterations with an exit code specifying whether the sequence
converges or not: (1) convergence is achieved ||F(2)||oo < ftol with ftol = 1078, (2) algorithm is
stuck because two consecutive iterates are too close ||(zx — 2k_1)/2k||c0 < wtol with ztol = 1078, (3)
stepsize is too small ¢ < ztol or radius is too small Ay < xtol, (4) the iteration limit is exceeded
k > kmaz with kpee = 300; or generalized Jacobian is either ill-conditionned (5) or singular (6);
see e.g. Chapter 7 of [11].

In Table the first eight rows corresponds to generalized Newton and generalized Broy-
den methods with a globalization scheme (line search or trust-region). From the ninth to the
tenth row, we consider the Levenberg-Marquardt (LM) method with a fixed parameter Ay =
min(||F(z)||, || JE F(2k)|*) (see Subsection and an adaptive parameter \; (see Appendix
B.3). For the complementarity reformulation of Subsection we do not have to choose in this
game a complementarity function as there are no constraints. The last two rows correspond to
the constrained equation reformulation : ‘PR’ stands for potential reduction algorithm and ‘AS’
is the affine scaling. In this game, we observe that all methods converges in few steps, but the
Levenberg-Marquardt iterates are longer to converge.
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method Fct. call Jac. Call Code ||finai —x*||2
Newton - geom. line search 1 4.440892e-16
Newton - quad. line search 4.440892¢-16
Newton - Powell trust region 4.440892e-16
Newton - dbl. trust region 4.440892e-16
Broyden - geom. line search 4.440892e-16
Broyden - quad. line search 4.440892¢-16
Broyden - Powell trust region 4.440892e-16
Broyden - dbl. trust region 4.440892e-16
LM - geom. line search 1.176846e-07
LM - quad. line search 1.176846e-07
LM - adaptive 8.188869e-11
PR - geom. line search 2.979041e-15
AS - Powell trust region 9.930137e-16

W |00 0Ol == R = e
W W 00 Ol = = = = =
I e O S = [y Ser gy RS

Table 1: Benchmark of root methods on the generalized duopoly

Secondly, we consider a more elaborate two-player game for which there are four generalized
Nash equilibria. The objective functions (to be minimized) are given by 61(z) = (21 — 2)?(z2 —
4)* and O9(z) = (v2—3)2(x1)?, for € R?, while the constraint functions are g!(x) = 21 +x9—1 <
0 and g¢*(z) = 2x1 + 22 — 2 < 0. Objective functions are player-strictly convave. This problem
is simple but not simplistic, since second-order partial derivatives of objective functions are not
constant, as the previous game. Due to the simple form of the objective function, we can manually
solve the KKT system for this GNEP. The solutions are listed in Table

xf ay A A3
1 2 2 0 5 x 2°
2*2 2 3 8 0
2% 0 1 4x3t 0
241 0 29 6

Table 2: The four GNE

In Table [3] we report the result with the complementarity function ¢rp and the starting point
20 = (5,5,0,0), while for the constrained equation method, the starting point is zg = (5, 5, 2,2, 2, 2).
Most methods converge to an equilibrium, whose number in Table |2] is indicated the last column
xi of Table 3l Surprisingly, the Newton method with geometric line seach converges to z*? whereas
the trust-region Newton methods converge to z*3, despite using the same initial points. A similar
behavior is found for the Broyden method. Some methods diverge to a local minimum of the merit
function 1/2||F(2*)||3 which is not a root of F', for example the potential reduction algorithm and
the affine scaling method. In overall, there is a clear advantage for classic semismooth methods
solving the extended KKT system on this game. With the minimum complementarity function ¢n,
we get similar results.

To further compare these methods, we draw uniformly 1000 random initial points such that zy €
[~10,10]% x [0,1]? and run algorithms on each of them. For simplicity, we restrict out comparison
to Newton GLS and Broyden PTR methods. Results are summarized in Table [4] the first four
columns store the number of sequences converging to a particular GNE, while the last column oo
contains the number of diverging sequences (under the same termination criterion). On this game
based on the number of diverging sequences, the best method seems to be the Broyden method
with a Powell trust-region globalization.
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Fet. call Jac. call Code [|F(z)]| *i
Newton - geom. line search 28 11 1 6.476053e-09 2
Newton - quad. line search 92 31 3 48.30996
Newton - Powell trust region 63 50 1 5.606129e-07 3
Newton - Dbl. trust region 63 54 1 5.868254e-07 3
Broyden - geom. line search 141 9 1 1.790037e-08 2
Broyden - quad. line search 503 27 3 0.00178784
Broyden - Powell trust region 261 6 1 8.044891e-07 3
Broyden - Dbl. trust region 68 4 1 7.342636e-08 2
LM min - geom. line search 29 29 1 2.936729e-07 2
LM min - quad. line search 29 29 1 2.936729e-07 2
LM - adaptive 44 22 1 7.249862¢-13 2
PR - geom. line search 157 20 3 1830.257
AS - Powell trust region 6 6 2 14.06935

Table 3: Benchmark of root methods on the generalized game

Z*l 2*2 2*3 2*4 00

Newton - geom. line search (GLS) 0 349 236 0 415
Broyden - Powell trust region (PTR) 120 453 45 87 295

Table 4: Number of GNE found for 1000 random initial points

3 Methods to solve jointly GNEP

As explained in Subsections and the GNEP can be reformulated as a minimum problem
and a fixed-point, respectively, which further simplifies for a jointly convex GNEP. In this section,
we start by describing usual methods for solving a minimum problem and a fixed-point problem in
Section and[3.3] Then, we focus on the application of theses methods to the GNEP, respectively
in Sections [3.2] and [3.4]

3.1 Classical methods for solving minimization problem

In this subsection, we present natural optimization methods solving smooth minimization problems
min, f(x). Asin Subsection we first present local methods and then continue with convergence
theorems.

3.1.1 Local methods

Local methods are sequences zy11 = 2 + di where dj is a root of a certain equation based on a
local approximation of f : R” —+ R. Assuming f is C?, the Newton method uses a second-order
Taylor expansion

F(&) + VI Rt GHIV?F )R+ o(1?)

where V2f denotes the Hessian matrix. By finding h minimizing this quadratic (local) approxima-
tion at zp, we get

VQf(Zk)dk = —Vf(Zk) (39)
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As for the Jacobian matrix in non-linear equation, there is no guarantee that the Hessian matrix will
be always invertible. Quasi-Newton methods, i.e. approximating the Hessian V2f by invertible
matrices Hj, is also possible for minimum problem. Therefore, for quasi-Newton methods, the
direction solves the equation

dek = —Vf(zk) (40)

Many schemes can be used to update Hj : we require schemes to verify the secant equation
Hyi1s, = yr with s = zk41 — 2z, and yp = Vf(2k+1) — Vf(2k). The most classical scheme
for updating Hy (BFGS, see e.g. [41l 5]) is a rank-two symmetric scheme that preserves positive
definiteness and is defined as

By the Sherman-Morrison formula, this update can be represented in terms of the approximate
inverse Hessian, which is how it is implemented in practice. In our GNEP context, the function f
is not necessarily twice differentiable. Thus, we present a semismooth generalization of Equation
by using the generalized Hessian'® 9% f. The generalized Newton direction solves

Hydy, = =V f(z1), (41)

where Hj, € 0?f(z;). In the numerical illustrations when solving the minimization problems of
Subsection we consider only the BFGS scheme as the generalized Newton scheme (41))
is heavier to put in place. As for nonlinear equations, a globlalization scheme must be used in
addition to a given local methods, cf. Appendix[B] In our numerical illustration, we use line-search
techniques with the merit function being (directly) f.

We also test two Hessian-free methods, which are particularly attractive in the GNEP context
: the conjugate gradient and the Barzilai and Borwein methods, see e.g. [41] and [49], respectively.
The latter was already tested in the GNEP context by [59]. Let g = Vf(zr). The (nonlinear)
conjugate gradient method builds a sequence of directions starting by dy = —g; and

dy, = —gi + Brdir—1

for kK > 1. Generally, 8y are updated according one of the following schemes : the Fletcher-Reeves
update Br = g1 gk/gi ,gk—1 (the default) or the Polak-Ribiere Sr = g% (gk — gr—1)/9% 1 9Kk—1-
Therefore, there is no equation to solve when computing dj in the conjugate gradient method. In
practice, the conjugate gradient is combined with a backtracking line-search.

The Barzilai and Borwein method was first introduced to deal with large scale optimization
methods. This method is particularly relevant in our context, since it uses only the function and
the gradient to determine the next iterate. The Barzilai and Borwein method has a direction and
a stepsize given by
d%—ldkfl

dl (gk — gr—1)

dy, = =gk, tr, =

In the literature, the following step size is sometimes considered ¢, = di | (gx — gr—1)/(gk —
gk—1)"(gx — gr—1), but we discard it for numerical accuracy reasons. In practice, the method
is also globalized using a nonmonotone line-search, see e.g. [26].

13The generalized Hessian is defined as the generalized Jacobian of the function z — V f(z) for a function f with
a locally Lipschitzian gradient 9% f(x) = co{H € R™*", Jx), — x, with V f(x3) is differentiable and V2 f(xx) — H}.
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3.1.2 Convergence theorems

The convergence theorem for the (classical) Newton method, see e.g. Theorem 3.5 of [4I] and
Theorem 4.1 of [5], are now recalled.

Theorem 13. Suppose that f is C? in a open convex set O C R™. Let z* be a stationary point of
f (i.e. Vf(x*) =0). Let (zY)x be the sequence generated by the Newton method. If the Hessian
V2f is Lipschitz continuous around z* and zy is sufficiently close to z*, then (z,]CV)k converges
quadratically to z*.

Now, we give a generalization by no longer assuming f is C2. We consider functions with
semismooth gradients called SC'. This theorem is an application of Theorem 3.2 of [47] to the
nonsmooth equation Vf(z) = 0.

Theorem 14. Let z* be a stationary point of a SC* function f satisfying Vv # 0,YH € 9% f(z*),vT Hv >
0. The (generalized) Newton method zpi1 = zi + di where dj, solves , converges superlinearly
to z*. If in addition V f is strongly semismooth at z*, then the convergence rate is quadratic.

Note that using the same reasoning as in Subsection [2.2.2] we can replace the nonsingularity of
H € 9% f(2*) to the nonsingularity of H € 0% f(z*).

When combined with a line-search, the global convergence of the generalized Newton method
can be proved. Recalling that for smooth problems, convergence theorems require (at least) the
function f to be C? with a Lipschitz Hessian in a neighborhood of a solution, see e.g. Theorem 3.5
of [41]. This is similar for the convergence of the generalized Newton method, see e.g. Theorem
4.1 of [29] and Theorems 8.3.19 and 10.4.9 of [20]. We present below a version based on [14] and
refer to Appendix for more details on line-search techniques.

Theorem 15. Let x* be a stationary point of a SC! function f satisfying Vv # 0,YH € 0 f(2*), v Hv >
0. The (generalized) Newton method with line search xj11 = x + tid where dy, solves and tg,
satisfies the Armijo condition, converges superlinearly to x*. If in addition V[ is strongly semis-
mooth at x*, then the convergence is quadratic.

Proof. By Theorem 3.6 of [14], we have 3p > 0,Vf(zr)Tdy < —pl|ldk|/*>. And by Theorem 3.3
of [14], there exists a k such that the Armijo condition is always satisified for a full Newton step
t; = 1. Theorem [14] completes the proof. O

Now we turn our attention to the convergence of quasi-Newton methods. In the differentiable
setting, e.g. [41] or [5], the convergence of the BFGS method when assuming f is C? and a condition
on the deviation ||(Hy — V2 f(zx))sk||/||sk]| — 0. Extensions of those convergence theorems when f
is only SC! have yet to be found. Theorems@ and applied to the semismooth equation V f(z) = 0
provide criteria for a general quasi-Newton method. The resulting condition on the deviation is
[[(Hy, — Vi)skll/||sk]| — 0, where Vi € 02f(zy). It is still an open problem if the BFGS scheme
satisfies this condition. However, as the BFGS method does not need the Hessian matrix, we test
it without knowing the convergence.

Finally, we give two convergence theorems for the conjugate gradient (with Fletcher-Reeves)
and the Barzilai-Borwein method, respectively Theorem 5.7 of [41] and Theorem 2.1 of [49].
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Theorem 16. Let (z}'1), generated by the Fletcher-Reeves update. Assume the level set L =

{2, f(2) < f(20)} is bounded and f is C' with Lipschitz gradient on L. If the line search satisfies

the strong Wolfe conditions with ¢; < ca < 1/2, then the sequence (z}:R)k either terminates to a

stationary point or converges in the sense that lki:m inf ||V f(zk)|| =0.
——+o00

Theorem 17. Consider (zx)r the sequence of the globalized Barzilai-Borwein method. Assume
the level set L = {z, f(z) < f(20)} is bounded and f is C! in some neighborhood of L. Then,
the sequence (zx)y either attains to a stationary point in a finite number of step or converges to a
stationary point if there are in a finite number of steps.

3.2 Application to the VI and NI reformulations

All necessary tools for the study of the GNEP have been presented : we focus on the two
reformulations of Subsection L4l

3.2.1 The VI reformulation

Let us start by the VI reformulation of Subsection [[.4.2 We recall that the merit function of the
GNEP is Vi r(z) = maxy v i(x,y) where 1,y is defined as

1

Urvi(a,y) = F(@) (v —y) = 5z —y) H(z —y),

and F(x) = (Vy,0i(x));. In order to derive the gradient of Vi1 in terms of 1,y 1, we apply the
Dankins theorem, see e.g. [4]. Since ¥,y is concave in y, we get

VWi(z) = JacF(2)" (x — yu(2)) + F(x) — H(z — yg (),

where yp is the unique maximizer of y — 1,y 7(x,y). This formulation requires F' to be differen-
tiable, i.e. objective functions 6,’s to be C2.

3.2.2 The NI reformulation

We continue with the NI reformulation of Subsection[1.4.3] The regularized Nikaido-Isoda function
is defined

N
a
%N}(SE, y) = zjl |:(91,(l‘,/,33,,/) - 91/(?/1/,3771/) - 5”151/ - yl/H2 >
v=
with which the merit function is Viny(x) = maxy¢¥,nr(x,y). Again by applying the Dankins
theorem, we get the gradient V.

N
VV;N](x) = Z [Vzel/<$l/7 x—u) - vl‘all(ya,l/(x)v 113_1,>]

v=1

V:p191(ya,1(9€),$71)
+ : — ar — ya (7)),
VﬂEN On (ya,N (x)’ x—N)
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where 3, is the unique maximizer of y +— ¥, n7(z,y). In this case, 6, needs only to be C*.

3.2.3 Analysis of assumptions

We turn our attention to the analysis of assumptions of Theorems [14] and [15] for Hessian-based
methods, and then Theorems and for Hessian-free methods. For Hessian-based methods,
convergence theorems require the function to be SC'. For the NI reformulation, Theorem 3.6 of
[58] (recalled below) shows that the regularized Nikaido-Isoda function is SC! in a neighborhood
of a GNEP z* under certain conditions.

Theorem 18. Let x* be a solution of the GNEP . Assume that functions 6, are C° and
player-conver, and function g is C* and convex. If for all active constraints (i.e. i,g;(y*) = 0) of
maxy Yrn1(z,y) Vgi(y*) are linearly independent with y* = ya(z*), then Vynr is an SC!-function
in the neighborhood of x*.

The semismoothness of the gradient VV,.nt is proved by showing that VV,.y is a composition
of C! functions V.6, and a semismooth function y,. Thus, the difficulty lies on the latter part.
Firstly, they show that a semismooth reformulation of the KKT conditions of maxy v, nr(z,y) is
locally Lipschitzian and has an explicit form for its generalized Jacobian. Secondly, the condition
of linear independence of active gradients and the concavity of y — ,n7(z,y) guarantee the
nonsingularity of elements of the generalized Jacobian. Finally, the semismoothness is derived by
the implicit function theorem.

For the VI reformulation, we can derive the same result since the regularized gap function
y +— pvr(z,y) is also concave but we have to assume F is a C? function. We get the following
theorem.

Theorem 19. Let x* be a solution of the GNEP . Assume that objective functions 0, are C°,
and constraint function g is C? and convex. If for all active constraints of maxy Yrvr(x,y), ie.
i,9:(y*) =0, Vgi(y*) are linearly independent with y* = yy (x*), then Vyvy is an SC!-function in
the neighborhood of x*.

Proof. Same proof as Theorem 3.6 of [58] for the problem maxy ¥,y (z,y). O

A second assumption for Hessian-based methods in convergence theorems is the nonsingularity
of elements in the generalized Hessian : V € 9*V,ny;(2*) and V € 9*V,y;(z*). So, a natural
question raises about the expression of 92V, ;. Lemma 4.1 and 4.2 of [58] gives an expression
0?V,.n1, which can be easily adapted to 9?V,y . The expression of the generalized Hessian can be
derived using the chain rule and is given by

where V' equals to V,y 1 or VN1, ¥ equals to ¢,y or ¥,.n5, and y equals to yg or yo. With the
same assumption of nonsingularity (of H € 92V (2*)), we can apply Theorems (14 and [15]to get the
global convergence. This is done in Theorem 4.3 of [58] where they apply Theorem [14] and requires
the nonsingularity of V' € 92V, yr(z*). Similarly, we can apply those theorems to the function V;y/7.

28



Regarding the Hessian-free methods presented in the previous subsection, the conditions for
convergence are lesser than for Hessian-based methods. In Theorems |16| and |17 (for min, f(z)),
they require the differentiability of f and the boundedness of the set L = {z, f(z) < f(z0)}. We
already know that V,y; and V,n; are C! functions, while the boundedness of L is generally not a
problem.

3.3 Classical methods for solving fixed-point problem

We deal with methods solving the fixed-point problem of Propositions [3] and @] As seen in Subsec-
tions [1.4.2] and [1.4.3] the GNEP can be reformulated to a fixed-point problem. Therefore in this
subsection, we present main algorithms to solve the fixed-point equation

z = F(z), (42)

where F' : R” — R”. By Banach’s fixed point theorem, we know that the fixed point is unique if
F is contractive, i.e. 30 < L < 1,Vz,y, ||F(z) — F(y)|| < L||z — y||. The two main approaches for
computing fixed points are polynomial methods and epsilon algorithms, see e.g. [55]. We focus on
the former one.

A first method to solve uses the pure fixed-point iterates z,11 = F(z,), starting from
zp, which is also known as the Picard iteration. In the case of contractive function, the Picard
iteration converges to the fixed point from any starting point at a geometric rate. Applying the
Newton method to the equation z — F'(z) = 0 leads to the following sequence of iterate z,4; =

— (I — JacF(zn))(zn — F(2n)). In practice, the Newton method is slow to converge and needs
the computation of the Jacobian. In the following, we deal with extensions of the Picard method.

Polynomials extrapolation methods aim to accelerate the Picard method by considering poly-

noms of the function F., Let F stands for the ith composition of F' (and F° the identity function).
Polynomial methods are based on the general scheme

21 = Z VWF (2

where % are constants and d i is the order of the polynom such that ZZ -0 % = 1. Let A% be the
forward differences A%z, = 37 (—1)!~ JC’J F*i(z;,) with C’J the binomial coefficients for positive
integers i, j. For first-order methods, i.e. d = 1, the next iterate computation reduces to

k
Rk+1 = 2k — N Tk

where 7, = F(z),) — 2 is known as the residual and 7f is the. We only have to determine 7} since
fyé“ =1- fyf. Relaxation methods consider a decreasing stepsize independent of the current iterate
21, but more advanced methods can be used to determine yf’ .

d-order extrapolation methods propose a set of equations for coefficients yf to satisfy

d
> BfaE =0, (43)
i=0
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where ﬁf,j are expressed in terms of forward differences A%Jz;. The reduced rank extrapolation
(RRE) method uses B’fj = (Ab12)TAJ22; whereas the minimal polynomial extrapolation (MPE)

method assumes Bk = (A% 2,)T Al 2. In the special case of d = 1, the coefficients ’yf have a
simple explicit form From ., we get

T T
k . Uk_ ’rk k . Tk Tk

Y1,RRE = "7 and MN,MPE = ~7__ > (44)
Vg, Uk T Vk

where 1, = A%lzp = F(21) — 2z and vy = A%22, = F(F(z1)) — 2F(21) + 2. The corresponding
methods, resp. RRE1 and MPEL, are thus defined as z;4+1 = 21, — vf‘rk. Note that RRE1 method
is also called the Richardson method, while the MPE1 is called the Lemaréchal method, see e.g.
[50].

For a general d, there is a close-form formula for the system which involves matrix transpose
and inverse. For RREd, we have

2kl = 2k — AZk(AZZAQZk)_lAZ,?rk, (45)
and for MPEd,
2kl = 2k — AZk(A2ZgA2Zk)_1A2Zng, (46)

where AZ;, and A2Z;, are d x d matrices given by
A]Zk = (Al,jzka s 7A1’jzk+d—1)7

for j = 1,2. When d is small, 211 can be reasonably computed by and . But for
large values of d, extrapolation methods RREd and MPEd have to be implemented by a recursive
algorithm, e.g. [51].

Let uf = F'(2;). In the previous polynomial methods, the next iterate is computed as zp —
ulg, . ,ug — 2zg+1. The sequence (uf)i’s, called a cycle or a restart, is used to extrapolate the next
point with interpolation point (ui’“)Z Squaring extrapolation methods consist in applying twice a

cycle step to get the next iterate, see e.g. [64] and [50]. Therefore, the next point have the general

form
2 = ZZ%’“ FE ().
=0 j=0
When d = 1, the squaring 1st order method are such that zp,; can be rewritten as zpy1 =

2 — 2’7ka + (7{‘3 )2u, where the coefficient 'y]f is given in depending wether we choose the RRE1
or the MPE1 sequence. The corresponding squared version are denoted SQRRE1 and SqMPEIL,
respectively. The squared RRE and MPE methods are obtained with the same arbitrary vectors.

Finally, we focus on convergence results for RRE and MPE methods. In some papers, there is a
blanket assumption that F' is a contraction. We present Theorem 6 of [51] based on their Remark
1. To our knowledge, there is no convergence result for squared methods SQRRE1 and SqMPE1.

Theorem 20. For a fized point problem F(z) = z, we assume F is differentiable, JacF is Lipschitz.
Let z* be a fized point of F. If JacF(z*)—1 is nonsingular and if the stepsize given by or (@
1s bounded after a finite number of iterations, then there exists a neighborhood U of z* such that for
all initial points zy € U, the sequence (zx)r generated by MPE and RRE converges quadratically to

z*.
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3.4 Application to the VIR and NIR

As given in Subsections [[.4.2] and [1.4.3] generalized Nash equilibria of jointly convex games solve
a fixed-point problem

y(z) =z,

where y denotes either the NI reformulation or for the VI reformulation. Those two
fixed-point functions are defined as a solution of a maximization problem

y(x) = argmax (z,y),
yeX
where 1) is either ¥, 1 or ¥,yy. Since the function y +— 1(z,y) is strictly concave in our GNEP
setting, maximizers of v satisfying the first-order KKT condition Vi (z,y) = 0, are global max-
imizers. Let F' : R" x R" = R" be the mapping F(z,y) = Vy¢(x,y) : Fyr and Fny are defined
similarly. By definition, F'(z,y(z)) = 0. Using the differentiability of objective and constraint func-
tions, we get that F is C! with respect to both variables. Furthermore, JacyF(x,y) is a positive
definite matrix (i.e. hence invertible), since

JacyFyi(xz,y) = —H and Jac,Fni(z,y) = —diag[ViGi(yi,x_i)] —al

are positive definite. Therefore, by the implicit function theorem, see e.g. Chapter 8 of [63], we con-
clude that y is a differentiable function with Jacobian given by Jac,y(z) = —(Jac, F(z,y(z))) " Jac, F (z, y(z)).
Hence, we get

Jacgy(z) = —(Jacy (Vy9)(z, y(x)))_lJacz(Vy¢)(x, y(z)).

The Lipschitzness of Jacy is guaranted by further differentiability of objective and constraint func-
tions.

3.5 Numerical illustrations

We consider the three-player river basin pollution game of [34], where players engaged in an eco-
nomic activity must meet environmental constraints. The profit of Player j is assumed to be
quadratic in player variable as 0;(z) = (di — da(x1 + 22 + x3) — c1j — c25x5)x; while the common
constraint function is defined as g(z) = (g1(2))1<i<2 With g;(z) = uperz1+wzeszo+wzesrs—K; <0
for [ = 1,2. Constants of this game are listed in Table [5| The normalized Nash equilibrium has no
close-form formula but [59] found a value of z* = (21.1467103,16.0278207, 2.724244725).

Player j ¢y 25 ej uy; ug; |Index! K d;
1 0.10 0.01 050 6.5 4.583 |1 100 3
2 0.12 0.05 0.25 5.0 6.250 | 2 100 0.01
3 0.15 0.01 0.75 5.5 3.750

Table 5: Constants of the river basin pollution game

As in Subsection an exit code of a given algorithm is provided: (1) indicates successfull
convergence ||m(z*)|| < ftol with ftol = 1e7%, (2) algorithm is stuck and (4) the iteration limit
is exceeded k > kmazx with kmax = 100. For both reformulations, we carry out a double-level
optimization since the minimization of the function V' or the fixed-point function y require the
computation max, (z,y), i.e. for one outer iteration, there are multiple inner iterations. This
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constrained system is solved by an augmented Lagrangian method ([37]) implemented in the al-
abama package ([56]). We set the maximum number of iteration to kmax with the same tolerance
ftol.

3.5.1 Minimization reformulation

Firstly, results for the minimization reformulation are presented. As explained in Section the
GNEP is reformulated as an unconstrained minimization problem for NIR and for VIR.
As in [59], we set a = 0.02 and 5 = 0.05. In Table @, we report the number of calls to the function
Vag(.), the gradient function VV,3(.), the regularized gap function ¢(.,.) and its gradient Vi (., .),
the termination criterion at final iterate and the code, where the algorithms are denoted as follows:
‘BB’ for the Barzilai-Borwein method, BFGS for the quasi-Newton BFGS method and ‘CG’ for
the conjugate-gradient method. For both reformulations NIR and VIR, we consider as termination
critertion the merit function m(x) = V,3(z). The initial point is o = (1,1, 1).

V()call VV(.)call (,.)call V¢(.,.)cal [[m(z*)|] Code

BB-NIR 19 19 61,457 15,504 1.08e-06 2
BB-VIR 25 25 85,826 24,424 1.07e-06 2
BFGS-NIR 74 62 215,628 54,702 8.04e-07 1
BFGS-VIR 40 19 100,128 28,531 1.47e-07 1
CG-NIR 201 101 479,382 120,231 0.0194 4
CG-VIR 123 52 295,865 85,110 0.00194 2

Table 6: Results for the minimization reformulation

As shown in Table [0 only the BFGS method converge, while the BB and the CG methods
remains stuck except for the CG-NIR which exhausts the maximum number of iterations. So,
there is a clear advantage of the BFGS method. The best estimation of the normalized NE of the
river-basin pollution game is z* = (21.46060005, 16.00840374, 2.53209932).

3.5.2 Fixed-point reformulation

The results for the fixed-point reformulation are now presented. As described in Section
the GNEP is reformulated as an unconstrained fixed-point problem for NIR and for
VIR (as in [59], we set @ = 0.02). The different algorithms of Sections and are denoted
as follows: ‘pure’ for the Picard method, 'relax’ for the relaxation method developped in [34],
‘grelax’ for a line-search-globalized relaxation method developped in [57], 'RRE’ and "MPE’ for
extrapolation methods RRE1 and MPE1, ’SqRRE’ and ’SqMPE’ for the corresponding squared
version. There are two reformulations either Nikaido-Isoda reformulation (NIR) or Variational
Inequality reformulation (VIR).

For both reformulations, we consider as termination criterion either the merit functions m(z) =
¥(z,y(x)) (either NI or VI) evaluated at current iterate zj or no merit function (FP) so that the
termination criterion is ||xx — xx_1||. The initial point is chosen as z¢p = (1,1,1) (similar results
are obtained z¢ = (25,25,25)). Table [7| report the number of calls to the function y(.), the merit
function m(.), the regularized gap function (., .) and its gradient V¢ (., .), the termination criterion
at final iterate and the code.
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y(.) call m(.)call (.,.)call Vy(.,.)call |Im(z*)|| Code

pure-NIR-NI 29 29 23,490 5,355 6.41e-07 1
pure-NIR-FP 61 0 48,881 11,278 21.1 2
pure-VIR-VI 20 20 16,239 4,132 9.86e-07 1
pure-VIR-FP 100 0 79,542 20,435 21.1 4
relax-NIR-NI 101 101 158,369 36,838 0.172 1
relax-NIR-FP 101 101 79,126 18,474 0.00395 4
relax-VIR-VI 101 101 160,869 41,195 0.131 4
relax-VIR-FP 101 101 80,855 20,677 0.00363 4
grelax-NIR-NI 101 580 600,597 142,395 0.0907 1
grelax-VIR-VI 101 3,042 2,609,630 666,968 0.0443 4
RRE-NIR-NI 11 21 49,025 11,473 -1.47e07 1
RRE-NIR-FP 29 0 23,555 5,368 21.1 2
RRE-VIR-VI 13 7 16,245 4,138 5.52-07 1
RRE-VIR-FP 101 0 81,503 20,882 21.1 4
MPE-NIR-NI 13 22 52,048 11,980 2.61e-08 1
MPE-NIR-FP 38 0 30,557 7,031 21.1 2
MPE-VIR-VI 21 11 25,905 6,617 1.56e-08 1
MPE-VIR-FP 101 0 81,331 20,819 21.1 4
SqRRE-NIR-NI 15 g 18,565 4,229 5.14e-07 1
SqRRE-NIR-FP 74 0 59,015 13,639 21.1 2
SqRRE-VIR-VI 15 8 18,572 4,765 1.94e-07 1
SqRRE-VIR-FP 101 0 81,567 20,848 21.1 4
SqMPE-NIR-NI 15 8 18,710 4,259 6.21e07 1
SqQMPE-NIR-FP 71 0 56,809 13,108 21.1 2
SqMPE-VIR-VI 19 10 23,666 6,015 9.38¢-07 1
SgMPE-VIR-FP 104 0 83,959 21,494 21.1 4

Table 7: Results for the FP reformulation

As given in Table [7] relaxation methods 'relax’ and ’grelax’ do not converge within 100 (outer)
iterations, leading to a high number of calls to ¥ and V. The pure fixed-point iteration performs
relatively well compared to its simplicity, then comes the extrapolation methods MPE and RRE,
and finally their squared version. As described in [50], squared methods outperform the simple
extrapolation methods whatever the problem is when the merit function is specified (i.e. not for
FP). Our best estimation of the normalized NE is z* = (21.12806751, 16.03599004, 2.736678647).

4 Conclusion

The generalized Nash equilibrium problem (GNEP) is of particular importance when modelling
concrete applications, e.g. in economics, in computer science and in biology. The demand for
effective computational methods of the GNEP in general form is increasing. This survey paper
provided a large panel of optimization methods available for the general GNEP and the jointly
convex GNEP. Our numerical experiments showed an advantage for the KKT reformulation of the
GNEP compared to the constrained equation reformulation, yet, in [I2], the constrained equation
reformulation was better. A method working for any general GNEP has yet to be found and its
convergence to be proved. Regarding jointly convex GNEP, there is a clear advantage to use the
fixed-point reformulation especially solved with extrapolation techniques. In this paper, we also
propose new optimization methods solving the GNEP by considering quasi-Newton methods (the
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Broyden method for general games and the BFGS method for jointly convex games), as well as
extrapolation methods when solving the GNEP as a fixed-point.

This work was partially funded by the AXA research fund and the Swiss National Science

Foundation Project 200021-124635/1.
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A The KKT system

The generalized Jacobian J(z) of the complementarity formulation has the following form

Jacy, Li(x,AY) ... Jacg,Li(z, Ab) Jac,, g'(z)7" 0
Jacy, Ly(x, \V) ... JacgyLn(z,A\V) 0 Jacg g™ (z)T
—D¢(z,\)Jac,, gt (x) ... —D¢(z,A\)Jac,,g'(v) Db (z, A1) 0
—D% (2, \M)Jacy, g™ (z) ... —D%(x,A\V)Jac, gV (z) 0 DY (z, AV)

B Globalization techniques

Globalization schemes are briefly presented. There are mainly two frameworks: line search and
trust-region methods.

B.1 Line-search techniques

Line-search techniques are a refinement of the local sequence by considering the sequence zx1 =
2k + trdy where t;, €]0,1] is the stepsize!? in direction dj, at the current iterate z. Overall, an
(outer) iteration is done in two steps : the computation of the direction dj and the computation
of the stepsize t;. Line-search techniques propose criteria to choose t; in a certain number of
iterations called inner iterations. As the stepsize may reduces the (full) step from zj to zxy1,
line-search version of an algorithm is sometimes called the damped version of that algorithm.

Let f be a merit function. We define the function ¢ — ¢y (t) = f(zx + tdx). We want to find a
good minimizer of ¢. However, it is useless to find the global minimizer arg min ¢(t), because we
want to solve the outer problem F(z) = 0, and not the inner problem min ¢(¢). In the following,
we assume we have a descent direction dj for the merit function f, as a minimal condtion to choose
tr is f(zr41) < f(2x). This descent direction condition translates to ¢} (0) < 0. We are focused on
two things, t; should be big enougth to ensure a sufficient decrease of ¢, and also t; should not be
too small to guarantee a sufficient big step.

One could think that requiring f(zx+1) < f(zk) is enough to show convergence, but unfortu-
nately not. In literature, see, e.g., [11l 4], [5], two typical conditions are used to determine an
appropriate stepsize. Let 0 < ¢; < 1/2 < ¢a < 1. The Armijo condition ensures a decrease of f

or(t) < ¢r(0) + te1d),(0) & fag +tdy) < flay) + ter Vi (og) T dg.

The curvature condition ensures an increase of V¢, implying a decrease of f,

D) > c20},(0) < Vf (g + td) dy, > oV f(zx) T dy.

" Considering the stepsize i to ]0, 1] is not too restrictive since the direction dj is not unitary, i.e. ||di|| >> 1.
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These two conditions are referred to the Wolfe conditions. In this paper, we use a backtracking
algorithm, for which the curvature condition is always satisfied. Let ;o = 1 be the initial guess of
the stepsize. The backtracking algorithm is defined as follows

Repeat until f(xy + tdi) < f(zr) + tk7i01Vf(:Uk)Tdk satisfied,
® propose a new ty ;1 using tx;, ... 0.

end Repeat

This algorithm always tests a full step with ¢, 0 = 1. For the backtracking line search, a classic
result shows that the full step will be eventually satisfied as 2 tends to a solution. In practice, we
test two stepsize proposal algorithms. The geometric line search uses

tkit1 = P X Ty,

with 0 < p < 1, whereas the quadratic line search uses a quadratic approximation of ¢ using the
information ¢y, (tr,i), dx(tri—1), ¢ (tri-1). We get

1 o (tri-1)th
2 Op(tei) — Sr(tri-1) — O (thi1)thi

Other proposal, such as cubic approximation, are e.g. given in [5] and [I1].

tiv1 =

Until now, we do not specify the merit function f. For nonlinear equation, we generally choose
f(z) = 3||F(2)||3, sometimes referred to the residual function. This merit function has some
defficiencies, since a local minimum is not necessarily a root of the function F. We will see later
in the GNEP context, that f has still some interesting properties. Line-search methods require to
a tractable formula for the gradient V f(z) = JacF(2)T F(z), when testing the Armijo condition.
However, in a quasi-Newton framework, we do not necessarily have a tractable Jacobian. A typical
way to deal with this is to use a numerical Jacobian, e.g., based on the forward difference. We use

[11]’s algorithm A5.4.1 defined by

F(z + hye;) = F(2)

J

e R,

where e; is the jth unit vector and h; a small step, typically, h; = \/ez; where € is the epsilon
machine (e = 1le~19).

B.2 Trust-region approach

Trust-region strategies relaxe the constraint that dj is a descent direction. Line search assumes the
“best” point from zj lies on the half-line 2z + R;d,. Quoting [5], “what is magic in this half line?
answer: nothing”. Trust-region approach will look for appropriate steps hy in a “small” region
around zg. Such regions are not the half-line as in line search.

To find the root of F(z) = 0, trust-region methods minimizes a local quadratic approximation
my, of a merit function f : R” — R on a bounded subset: the trust region {z, ||z — zx|| < Ag}. The
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name comes from viewing Ay as providing a region in which we can trust m; to adequately model
f. Classic trust region methods consider the following model function

my(h) = f(zk) + g(zp) h+ %hTﬁkh,

with g(z;,) the approximate gradient of f and Hy, a (ideally) positive definite matrix approximating
the Hessian of f.

To adapt the trust region radius A, we define the following ratio

 fla) — fla B
pelh) = = T ey

pr(h) is the ratio of the actual reduction and the predicted reduction of the merit function for a
step h. The higher is pi(h), the higher is the reduction of the merit function f for a given h. Now,
we can define a generic algorithm for a model function my, see e.g. [41] for a recent survey.

Init Ag=1,170>0,0<m <m<land 0<y <1<7s.
Iterate until a termination criterion is satisfied,

e get hy, = argmin my(h) (approximately),
lIh]|<Ak

e compute pg(hy),

— if pr(hg) < m then Ak = ~v1A (unsuccessful),
— else if pg(hy) > n2 and ||hg|| = Ak then Agiq = min(y2Ak, Apmaz) (very successful),
— else Agyr1 = Ay,

e next iterate

— if pk(hk) > 1o then xp 1 =z + hi,

— else xx11 = xk.

end Iterate

Typical values of parameters are Ag = 1 or ”%H, Apaz = 10'0 for radius bounds, 179 = 1074,
m= iv N2 = % for ratio threshold, v; = % and v = 2 for radius expansion coefficients.

If readers have been attentive, then they should have noticed that the algorithm cannot be
used directly. In fact, we have to determine how to compute the approximate solution hj of the
following minimization problem

min  mg(h).
1Rl <Ak )

As for line search techniques, this problem has to be solved approximately as this problem is not
our primary concern. There are two heuristic methods to achieve this: Powell’s dogleg and double
dogleg methods. The Powell dogleg method uses a linear approximation of the model function
my(h), see e.g. Chapter 6 of [42]. Let pf be the scaled steepest descent direction and pi be the
Newton point defined as
91 9k

9% Higr
The Powell dogleg method is as follows.

P = gk and py = —H gy

p
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o If ||pV]|| < Ay, then h* = p'.
e Else if |[p°|| > Ay, then h* = Ay /||p°|| x p°.

e Else, we choose a convex combination between the two points p® and p~. That is we find a
A € [0,1] such that ||[p% + XY — p%)|| = Ar. We get h* = M*pV + (1 — A\*)p® with

— < p%pN —p% > +/<pS,pN — p% > —[]pN — pS|12(|]p%]]2 - A)
lpN — pS||2 ’

where < .,. > denotes the scalar product and ||.|| denotes the Euclidean norm.

At =

[41] also propose a “simple” dogleg method which remove the step ||p®|| > Ay, see Algorithm 11.6.
The double dogleg method finds an approximate solution of the model function myg(h) assuming
the Hessian matrix is Hy = LTL. The double dogleg method is a variant Powell dogleg method
using a forcing parameter 7. [11] propose the following procedure.

o If ||pVV]|| < Ag, then h* = p?.
e Else if ng|[p"|| < A, then h* = pV x i /Ay
e Else if ||p°|| > Ay then h* = p® x Ap/|[p%]|.

e Else, we choose A such that |[p® + A(nrp™ — p¥)|| = Ax. We get back to the Powell dogleg
case with np" instead of p™.

where the parameter n;, < 1 is defined as n = 0.2+ 0.8¢%/(B|gL d™|), with a = ||gx||?, B = || Lgx|[*.
As for line-search techniques, we use the merit function f(z) = %||F(z)|[3. We recall that the
gradient is given by

g(z) = JacF(2)TF(2).

Therefore, the approximated Hessian Hj, is JacF(z;,)"Jac F(2;) as in the Gauss-Newton model.
Hence, the steepest descent point and the Newton point have the following expression

s 9o

=

— kY g and pi = —JF g

P
gt I T

As in the previous subsection, when working a quasi-Newton method, the Jacobian is numerically
approximated by a forward difference.

B.3 The special case of the Levenberg-Marquardt method

Until now, all globalization methods are adapted for the Newton or the Broyden direction defined in
Equations and . We need to precise how to globalize the Levenberg-Marquardt direction.
This method was introduced in the context of the least-square problem min §||F(z)[|3. In fact,
there is a relation between the trust-region approach and the Levenberg-Marquardt method. The
solution to the quadratic problem

1 -
i + Th+ ZhTHih
i, f(z) + g(xp) 5 k
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is equivalent to the problem of finding A*, h* such that
(Hy, + X D)h* = —g(z1) and X*(Ag — [|h*]]) =0, (47)

with the condition that Hy + A\*I is a positive semidefinite matrix. We note in Equation that
variable \* has the same role as in the Levenberg-Marquardt method.

We can easily interpret Equation . If h* lies strictly inside the trust-region then parameter
A* is zero. Otherwise, h* hits the radius A, and then parameter \* is set to a positive value. With
this interpretation, the use of a trust-region approach with the Levenberg-Marquardt method is
redundant.

However, we still consider a globalization strategy for the Levenberg-Marquardt method. Firstly,
we test the geometric line-search strategy, defined in Subsection which is proposed in [22], [62].
Secondly, we use the adaptive Levenberg-Marquardt method discussed in [2I]. The method consists
in adjusting the parameter Ay based on A\ = ug||F(z;)||2, where puy is udpated at each iteration
depending on the value of the ratio py. Their Algorithm 2.2 updates pi as in the generic algorithm
of the previous Subsection So, we do not restate here the updating scheme.

B.4 Convergence criteria in the differentiable setting

Let f be the merit function. The global convergence of line-search techniques is guaranteed when
we have the following conditions: (i) the set £ = {z, f(z) < f(z0)} is bounded, (ii) the Jacobian
is bounded in an open convex set around a solution z* and (iii) line-search always satisfies the
Wolfe conditions with a descent direction, see, e.g. Theorem 11.6 of [41]. We have seen that the
backtracking algorithm satisfies the Wolfe conditions at each step.

The convergence of trust-region strategies is proved with similar conditions and requires also
that the set £ and the Jacobian are bounded. Furthermore, the approximated solution of the
quadratic local problem min my(h) such that ||h|| < A must verify two conditions: (i)

my(0) — mi(h*) > er|| T Fi|| min(Ap, || JEFel /11T T]])

for some ¢; > 0 and (ii) ||h* || < yAj for some v > 1.

B.5 Global convergence in the semismooth setting

Let us study the global convergence starting by line-search techniques. The merit function used is
the same function as for the differentiable setting the residual norm.

£(2) = 3l FR)IP

The gradient is given by Vf(z) = VT F(z), where V € 0F(z). As mentioned in [46], the merit
function may be C!, even if F is only semismooth.

[32] and [46] show the convergence of the Newton method globalized with a backtracking (ge-
ometric) line search. When using the generalized Jacobian, [29] shows the convergence of the
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corresponding algorithm. All proofs rely on the fact that after a large number of iteration, the full
Newton step is accepted, i.e. we get back to local convergence.

Theorem 21. Suppose that the root function F is a semismooth function and the merit function
f is C'. Then any accumulation points z* of the line-search generalized Newton method is a
stationary point of f, i.e. Vf(z*) = 0. If z* is a solution of F(z) = 0 and all matrices in OpF (z*)
are nonsingular, then the whole sequence converges superlinearly (resp. quadratically) to z* (if F
is strongly semismooth at z*).

To our knowledge, the global convergence of general quasi-Newton methods for nonsmooth
equation is not established. However, for the Levenberg-Marquardt with a backtracking line-search
technique, [32] and [29] show the convergence. We present below a light version of their theorem.

Theorem 22. Let (z;)r be a sequence of the generalized LM method globalized with a backtracking
line search to solve F(x) = 0 for a semismooth function F and a C' merit function f. Assuming
the direction step is solvable at each iteration, we denote by z* an accumulation point. If A\ =
min(f(z), ||V f(zk)||) and elements in OpF (2*) are nonsingular, then (zx), converges superlinearly.
If in addition F is strongly semismooth at z*, then it converges quadratically.

Now, we focus on the second globalization strategy: the trust-region approach. We present first
a convergence result of [32], based on a result of [30] in the context of complementarity problems.

Theorem 23. Consider F(z) = 0 with F semismooth and a C' merit function f? Let (2;) be
generated by the trust-region algorithm with the submodel given my(h) = JIF(zy)h + 3T JL Jyh.
If z* is an accumulation point of the sequence, then z* is a stationary point of f. If for all element
of OpF(z*) are nonsingular, then the entire sequence converges to x* superlinearly. If in addition,
F is strongly semismooth at z*, then the convergence rate is quadratic.

C Nonsmooth analysis

Definition 15 (locally Lipschitzian). G is locally Lipschitzian (onR™) if Ve € R",3U € N (x),Vy, z €
U,3ks > 0,||G(y) = G(2)]| < kelly — z]]-

Theorem 24 (from [§]). Let f : R™ +— R be a locally Lipschitz function. Then f is almost
everywhere differentiable.

From [9, Cor 2.2.4, Chap. 2], for a function f : R™ — R locally Lipschitzian at x, we have that
the generalized gradient df(y) is a singleton for all y € B(z,€) is equivalent to f is C! on B(z,€).
From [9, Prop 2.6.2, Chap. 2|, we have the following properties of the generalized Jacobian.

Proposition 7. e 0G(x) is a nonempty, convex, compact subset of R™*™ while OpG(x) is
nonempty and compact.

e OG is upper semicontinuous and closed at x and OgG is upper semicontinuous.

e 0G(z) C 0G1(x) X - -+ X OGy,(x), where the right-hand side is a matriz set where the ith row
1s the generalized gradient.
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The term 0G1(x) X -+ X OGy(x) is sometimes denoted by OcG(x). But it is not Clarke’s
subdifferential, which seems to refer only to real-valued function, i.e. 0G(x) = 0cG(x).

Proposition 8 (From Theorem 2.3 of [47]). e G is semismooth at x.
o VWV € 0G(z + h),h — 0,Vh — G'(x; h) = o(||h]]).
e Vz € Dg,G'(z+ h;h) — G'(z;h) = o(||h]])-

From Lemma 2.2 of [47] and Lemma 2.1 of [53], we have the following properties

Proposition 9. If G is semismooth at x, then d — G'(x;d) is a Lipschitz function; Yh,3V €
G(z),Vh =G'(z;h) and Yh — 0,G(z + h) — G(z) — G'(z;h) = o(||h]]) -
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