Christophe Dutang 
email: dutang@math.unistra.fr
  
A survey of GNE computation methods: theory and algorithms

Keywords: Generalized Nash equilibrium problem, Semismooth equation, Fixed-point methods, Variational Inequality problem

This paper deals with optimization methods solving the generalized Nash equilibrium problem (GNEP), which extends the standard Nash problem by allowing constraints. Two cases are considered: general GNEPs where constraint functions are individualized and jointly convex GNEPs where there is a common constraint function. Most recent methods are benchmarked against new methods. Numerical illustrations are proposed with the same software for a fair benchmark.

Mathematics Subject Classification (2000): 90C30, 91A10, 91A80, 49M05

We consider a generalized game of N players characterized by their objective function θ i : R n → R and their constraint function g i : R n → R m i . The generalized Nash equilibrium problem (GNEP for short) consists in finding x such that for all i = 1, . . . , N , x i solves the subproblem P i min

x i ∈R n i θ i (x i , x -i ) s.t. g i (x i , x -i ) ≤ 0, (1) 
where (x i , x -i ) denotes the vector (x 1 , . . . , x i , . . . , x N ) ∈ R n with n = i n i the total number of variables and m = i m i the total number of constraints. Note that the dependency on x -i makes all subproblem P i interconnected. When players have a common constraint function g 1 = • • • = g N = g and the feasible set {x, g(x) ≤ 0} is convex, the GNEP is called jointly convex GNEP. The GNEP extends standard Nash equilibrium, since ones' player strategy depends on the rival players' strategies. Thus, when each player's constraint function does not depend on the other players' strategies g i (x i , x -i ) = g i (x i ), the GNEP reduces to standard Nash equilibrium problem.

GNEP arises from many practical problems, including telecommunications (power allocation), engineering (energy market), economics (market model) and environmental (pollution) applications, see [START_REF] Facchinei | Generalized Nash equilibrium problems[END_REF] and the references therein for an overview of GNEPs. This paper aims to make a survey of computational methods to solve general GNEPs and jointly convex GNEPs defined in [START_REF] Aussel | Gap functions for quasivariational inequalities and generalized Nash equilibrium problems[END_REF]. New computational methods are also identified when doing

The KKT system

The first reformulation uses the Karush-Kuhn-Tucker (KKT) conditions of the N optimization subproblems. Both constraints and objective functions are thus assumed to be twice continuously differentiable C 2 . Let x be a solution of the GNEP. If a constraint qualification holds for all players, then for all player i, there exists a Lagrange multiplier λ i ∈ R m i such that

∇ x i θ i (x ) + 1≤j≤m i λ i j ∇ x i g i j (x ) = 0 (∈ R n i ).
0 ≤ λ i , -g i (x ) ≥ 0, g i (x ) T λ i = 0 (∈ R m i ).

Concatening the N subproblems, we get the following "extended" KKT system

D L (x , λ ) = 0, λ ≥ 0, g(x ) ≤ 0, λ T g(x ) = 0, (2) 
where the functions D, g are defined as

D L (x, λ) =    ∇ x 1 L 1 (x, λ 1 ) . . . ∇ x N L N (x, λ N )    , λ =    λ 1 . . . λ N    , g(x) =    g 1 (x) . . . g N (x)    , (3) 
and L i is the Lagrangian function L i (x, λ i ) = θ i (x) + g i (x) T λ i of the ith subproblem. The following theorem precises the necessary and sufficient conditions between the original GNEP in (1) and the KKT system in (2).

Theorem 1. Let a GNEP with twice continuity and differentiability of objective and constraint functions.

(i) If x solves the GNEP at which all the player's subproblems satisfy a constraint qualification, then there exists λ ∈ R m such that x , λ solve equation 2.

(ii) If x , λ solve equation 2 and that the functions θ i 's are player convex and {y i , g i (y i , x -i ) ≤ 0} are closed convex sets, then x solves the original GNEP.

The previous theorem is reported in [START_REF] Facchinei | Generalized Nash equilibrium problems[END_REF] and [START_REF] Facchinei | Generalized Nash equilibrium problems and Newton methods[END_REF], respectively in Theorem 4.6 and Proposition 1. Using Fritz John conditions, see e.g. [START_REF] Simon | Mathematical methods[END_REF] or [START_REF] Bazaraa | Nonlinear Programming: Theory and Algorithms[END_REF], the player convexity of θ i in item (ii) can be relaxed to player-pseudoconvexity, i.e. x i → θ i (x) is pseudoconvex. Now, we present two approaches to solve the extended KKT system (2).

The complementarity reformulation

Let us start by the complementarity reformulation, which use complementarity functions as its name suggests. , see e.g. [START_REF] Facchinei | Finite-Dimensional Variational Inequalities and Complementary Problems[END_REF].

Proposition 1. The complementarity reformulation of the KKT system (2) is

Φ(x, λ) = 0 where Φ(x, λ) = D L (x, λ) φ • (-g(x), λ) , (4) 
where φ • is the component-wise version of the complementarity function φ and D defined in [START_REF] Bellavia | An affine scaling trust-region approach to boundconstrained nonlinear systems[END_REF].

This reformulation of the GNEP is given in [START_REF] Facchinei | Generalized Nash equilibrium problems and Newton methods[END_REF], [START_REF] Facchinei | Generalized Nash equilibrium problems[END_REF] and [START_REF] Dreves | On the solutions of the KKT conditions of generalized Nash equilibrium problems[END_REF]. For a general discussion of semismooth reformulations of optimization problems, see [START_REF]Reformulation -Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods[END_REF].

The constrained equation reformulation

A second approach proposed by [START_REF] Dreves | On the solutions of the KKT conditions of generalized Nash equilibrium problems[END_REF] in the context of GNEP to solve the KKT system is the reformulation via constrained equations of the type

H(z) = 0, z ∈ Ω.
Proposition 2. Let w ∈ R m be slack variables (to transform inequality into equality). Let • denote the component-wise product, i.e. x • y = (x 1 y 1 , . . . , x N y N ). The constrained equation reformulation of the KKT system (2) is H(x, λ, w) = 0, (x, λ, w) ∈ Ω, and H(x, λ, w)

=   D L (x, λ) g(x) + w λ • w   , (5) 
where Ω = {(x, λ, w) ∈ R n+2m , λ ≥ 0, w ≥ 0}.

The QVI reformulation

The Variational Inequality (VI) and Quasi-Variational Inequality (QVI) problems have to be introduced in order to present the QVI reformulation.

Definition 2 (Variational Inequality). The Variational Inequality problem consists in finding x ∈ K such that ∀y ∈ K, (y -x) T F (x) ≥ 0,

where F : K → R n and is denoted VI(K, F (x)).

VI problems typically arise in minimization problems, see e.g. [START_REF] Facchinei | Finite-Dimensional Variational Inequalities and Complementary Problems[END_REF][START_REF] Facchinei | Finite-Dimensional Variational Inequalities and Complementary Problems[END_REF]. Quasi-variational inequality problems are an extension of VI problems where the constraint set K depends on x.

Definition 3 (Quasi-Variational Inequality). The Quasi-Variational Inequality problem consists in finding x such that ∀y ∈ K(x), (y -x) T F (x) ≥ 0,

where F : R n → R n , K : R n → 2 R n and is denoted by QVI(K(x), F (x)).

Note that a QVI has very complex structure since y must satisfy y ∈ K(x) for a vector x we are looking for.

Assuming the differentiability of objective functions, the GNEP in (1) can be reformulated as a QVI problem ∀y ∈ X(x), (y -x) T F (x) ≥ 0, with

F (x) =    ∇ x 1 θ 1 (x)
. . .

∇ x N θ N (x)    , (6) 
and a constrained set X(x) = {y ∈ R n , ∀i, g i (y i , x -i ) ≤ 0}. The following theorem states the equivalence between the GNEP and the QVI, see Theorem 3.3 of [START_REF] Facchinei | Generalized Nash equilibrium problems[END_REF] or Equation (3) [START_REF] Kubota | Gap function approach to the generalized Nash equilibrium problem[END_REF] for a proof.

Theorem 2. If objective functions are C 1 and player-convex, the action sets X ν (x -ν ) are closed convex, then x solves the GNEP if and only if x solves the QVI(X(x), F (x)) defined in [START_REF] Broyden | A class of methods for solving nonlinear simultaneous equations[END_REF].

Note that [START_REF] Aussel | Gap functions for quasivariational inequalities and generalized Nash equilibrium problems[END_REF] also propose a QVI reformulation of the GNEP based on the convex hull of a normal cone (see Theorems 4.1 and 4.2) and establishe error bounds for the GNEP. For its simplicity, we restrict our survey to the QVI reformulation given in [START_REF] Broyden | A class of methods for solving nonlinear simultaneous equations[END_REF].

If the KKT conditions for the QVI problem are expressed, we naturally get back to Equation [START_REF] Bazaraa | Nonlinear Programming: Theory and Algorithms[END_REF]. According to [START_REF] Facchinei | Generalized Nash equilibrium problems[END_REF], methods to solve general QVI problem arising from GNEP are still missing. We will see in Subsection 1.4, that QVI simplifies to a VI when dealing with jointly convex GNEP. In that case, it makes sense to use that reformulation. For the sake of completeness, we present below two approaches to solve the QVI arising from GNEP. [START_REF] Fukushima | Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games[END_REF] propose to solve the QVI(X(x), F (x)) as a sequence of penalized variational inequality problems VI( X, Fk ), where Fk is defined as

Fk (x) =    ∇ x 1 θ 1 (x)
. . .

∇ x N θ N (x)    +    P 1 (x)
. . .

P N (x)    , (7) 
with

P ν (x) = mν i=1 u k i + ρ k g ν i (x) + ∇ xν g ν i (x).
The set X is either R n or a box constraint set [l, u] n ⊂ R n , (ρ k ) k an increasing sequence of penalty parameters and (u k ) k a bounded sequence. Theorem 3 of [START_REF] Fukushima | Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games[END_REF] shows the convergence of the VIP solutions x k to a solution of the QVI under some smoothness conditions. [START_REF] Kubota | Gap function approach to the generalized Nash equilibrium problem[END_REF] propose to refomulate the QVI problem as a minimization of a (regularized) gap function, which is still as complex as the original GNEP.

Definition 4 (Regularized gap function). The regularized gap function of the QVI ( 6) is

V QV I (x) = sup y∈X(x) ψ αV I (x, y),
where ψ αV I is given by

ψ αV I (x, y) =    ∇ x 1 θ 1 (x)
. . .

∇ x N θ N (x)    T (x -y) - α 2 ||x -y|| 2 , (8) 
for a regularization parameter α > 0.

Note that the minimisation problem appearing in the definition of V QV I is a quadratic problem. The following theorem of [START_REF] Kubota | Gap function approach to the generalized Nash equilibrium problem[END_REF] shows the equivalence a minimizer of V QV I and the GNEP. Theorem 3. For each x ∈ X(x), the regularized gap function V QV I is non-negative V QV I (x) ≥ 0. If objective functions are continuous, then x solves the GNEP if and only if x is a minimum of

V QV I with V QV I (x ) = 0 and x ∈ X(x ). ( 9 
)

Nikaido-Isoda reformulation

We present a last reformulation of the GNEP called the Nikaido-Isoda (NI) reformulation, which was originally introduced in the context of standard Nash equilibrium problem by [START_REF] Nikaido | Note on non-cooperative convex games[END_REF].

Definition 5 (Nikaido-Isoda function). For a game with objective functions θ i , the Nikaido-Isoda function is defined as the function ψ from R 2n to R by

ψ N I (x, y) = N ν=1 [θ ν (x ν , x -ν ) -θ ν (y ν , x -ν )]. ( 10 
)
This function represents the sum of unilateral objective improvements between actions x and y.

In order to emphasize the links with the previous subsection, we introduce the corresponding gap function for the Nikaido-Isoda reformulation.

Definition 6 (gap Nikaido-Isoda function). The corresponding gap function is defined as

V N I (x) = sup y∈X(x)
ψ N I (x, y). Theorem 3.2 of [START_REF] Facchinei | Generalized Nash equilibrium problems[END_REF] shows the equivalence between GNEPs and the minimization of the gap Nikaido-Isoda function.

Theorem 4. The function V N I is such that ∀x ∈ X(x), V N I (x) ≥ 0. If objective functions θ i are continuous, then x solves the GNEP if and only if x is a minimum of V N I with

V N I (x ) = 0 and x ∈ X(x ), ( 11 
)
where the set X(x) = {y ∈ R n , ∀i, g i (y i , x -i ) ≤ 0} and V N I defined in [START_REF] Dennis | Quasi-newton methods, motivation and theory[END_REF].

There is no particular algorithm able to solve this problem for a general constrained set X(x). As for the QVI reformulation, Equations ( 9) and ( 11) have a very complex structure due to the presence of y ∈ X(x) in the definition of the gap function.

Jointly convex case

In this subsection, we present reformulations for a subclass of GNEP called jointly convex case. The jointly convex case is such that there exists a closed convex subset X ⊂ R n verifying for all i,

X(x -i ) = {x i ∈ R n i , (x i , x -i ) ∈ X}.
In our context parametrize context, the jointly convex setting requires that the constraint function is common to all players

g 1 = • • • = g N = g and X = {x ∈ R n , ∀i = 1, . . . , N, g(x i , x -i ) ≤ 0} (12) 
is convex. A sufficient condition is to require that g is quasi-convex with respect to all variables. However, it is generally assumed that g is convex with respect to all variables, e.g. in [START_REF] Von | Optimization reformulations of the generalized Nash equilibrium problem using the Nikaido-Isoda type functions[END_REF] and [START_REF] Anna Von Heusinger | Newton's method for computing a normalized equilibrium in the generalized Nash game through fixed point formulation[END_REF]. Therefore, the joint GNEP consists in finding x such that for all i = 1, . . . , N , x i solves the subproblem min

x i ∈R n i θ i (x i , x -i ) s.t. g(x i , x -i ) ≤ 0. ( 13 
)

KKT conditions for the jointly convex case

In the jointly convex case, the KKT conditions (2) become

∇ x i θ i (x ) + ∇ x i g(x )λ i = 0, 0 ≤ λ i , -g(x ) ≥ 0, g(x ) T λ i = 0, (14) 
since the constraint function is common to all players. Note that there are (still) N Lagrange multipliers λ i . Under the same condition as Subsection 1.1, a solution of this KKT system is also a solution of the original GNEP.

QVI formulation for the jointly convex case

As announced in the jointly convex case, the QVI reformulation (6) simplifies to a variational inequality problem VI(X, F )

∀y ∈ X, (y -x) T F (x) ≥ 0, with F (x) =    ∇ x 1 θ 1 (x) . . . ∇ x N θ N (x)    , ( 15 
)
where X is given in [START_REF] Dreves | On the solutions of the KKT conditions of generalized Nash equilibrium problems[END_REF]. But not all solutions of the GNEP are solutions of the V I(X, F ). In order to understand this feature, we just have to compare the KKT conditions of the VI [START_REF] Facchinei | On generalized Nash games and variational inequalities[END_REF] and the GNEP [START_REF] Facchinei | Minimization of SC1 functions and the Maratos effect[END_REF]. This is summarized in the following theorem, see e.g. Theorem 3.9 of [START_REF] Facchinei | Generalized Nash equilibrium problems[END_REF], Theorem 3.1 of [START_REF] Facchinei | On generalized Nash games and variational inequalities[END_REF].

Theorem 5. Assuming that θ i and g are C 1 functions, g is convex and θ i is player-convex, the subset of generalized Nash equilibria verifying Equation ( 15) are the solutions of the KKT system ( 14) with a common multiplier

λ 1 = • • • = λ N = λ.
Therefore, GNEs verifying the VI problem [START_REF] Facchinei | On generalized Nash games and variational inequalities[END_REF] are subclass of GNE. They are called variational or normalized equilibria, see [START_REF] Kulkarni | Revisiting generalized Nash games and variational inequalities[END_REF] for a detailed discussion of the VI representation of the QVI reformulation of GNEPs. Furthermore, the regularized gap function also simplifies and becomes

V αV I (x) = sup y∈X ψ αV I (x, y),
where ψ αV I is in [START_REF] Clarke | Partial subdifferentials, derivates and Rademacher's theorem[END_REF]. Constrained equation [START_REF] Frank | Optimization and Nonsmooth Analysis[END_REF] simplifies to a nonlinear equation V αV I (x ) = 0 and x ∈ X. Using two regularization parameters 0 < α < β, x is the global minimum of the unconstrained minimization problem

min x∈R n V αV I (x) -V βV I (x). (16) 
Furthermore, the VI reformulation leads to a fixed-point problem as shown in the following proposition.

Proposition 3. Assuming that θ i and g are C 1 functions, g is convex and θ i player-convex, then x solves the VI (15) if and only if x is a fixed point of the function

x → y V I (x) = arg max y∈X ψ αV I (x, y). ( 17 
)
There is a unique maximiser of ψ αV I with respect to y as y → ψ αV I (x, y) is strictly concave.

Proof. A normalized equilibrium x verifies V V I (x ) = 0 and x ∈ X. By definition, for all x ∈ X, V V I (x) = ψ αV I (x, y V I (x)). Thus, ψ αV I (x , y V I (x )) = 0. As ψ αV I (x , x ) = 0, it follows that y V I (x ) = x .

NIF formulation for the jointly convex case

In the jointly convex case, the NI reformulation [START_REF] Dennis | Numerical Methods for Unconstrained Optimization and Nonlinear Equations[END_REF] simplifies to a minimization problem of V N I where

V N I (x) = sup y∈X ψ N I (x, y).
As in the previous subsection, solutions of this problem form a subset of GNEs, called normalized equilibrium. From [START_REF] Von | Optimization reformulations of the generalized Nash equilibrium problem using the Nikaido-Isoda type functions[END_REF], we have the following theorem. Theorem 6. Assuming θ i and g are C 1 functions and g is convex and θ i player-convex. x is a normalized equilibrium if and only if x solves V N I (x ) = 0.

From a mathematical point-of-view, computing V N I is challenging as the supremum may be attained at more than one point. To deal with this problem, we use a regularized version of the Nikaido-Isoda function.

Definition 7 (regularized Nikaido-Isoda function). For a game with objective functions θ i , the regularized Nikaido-Isoda function is defined as the function ψ from R 2n to R by

ψ αN I (x, y) = N ν=1 [θ ν (x ν , x -ν ) -θ ν (y ν , x -ν )] - α 2 ||x -y|| 2 , (18) 
for a regularization parameter α > 0.

The corresponding gap function is now defined as

V αN I (x) = max y∈X ψ αN I (x, y).
Since y → ψ αN I (x, y) is strictly concave as long as objective functions θ i are player-convex, the supremum is replaced by the maximum. Using two regularization parameters 0 < α < β, the constrained minimization problem can be further simplified to the unconstrained problem

min x∈R n V αN I (x) -V βN I (x), (19) 
see [START_REF] Von | Optimization reformulations of the generalized Nash equilibrium problem using the Nikaido-Isoda type functions[END_REF].

As for the VI reformulation, a normalized equilibrium is also a fixed-point, see Property 3.4 of [START_REF] Von | Optimization reformulations of the generalized Nash equilibrium problem using the Nikaido-Isoda type functions[END_REF]. Proposition 4. Assuming θ i and g are C 1 functions and g is convex and θ i player-convex. x is a normalized equilibrium if and only if x is a fixed-point of the function x → y N I (x) = arg max y∈X ψ αN I (x, y).

(20)

Scope of the paper

In this section, we present the four main reformulations of the GNEP : the complementarity reformulation and the constrained equation reformulation based on the KKT system, the QVI reformulation and the Nikaido-Isoda reformulation. The latter two are particularly useful for jointly convex GNEP, since in the general setting, no algorithms are yet available to solve optimization problems given in ( 6) and [START_REF] Dennis | Numerical Methods for Unconstrained Optimization and Nonlinear Equations[END_REF].

In the rest of the paper, we first focus on algorithms solving general GNEP based on the KKT system. Secondly, we turn our attention to algorithms solving jointly convex GNEP based on the QVI and the NIF reformulations. These two situations differs widely, since in the general GNEP, we have to solve a nonlinear equation, while for the jointly convex case, we solve a fixed point equation or a minimization problem.

Methods to solve general GNEP

In this section, we study optimization methods solving the KKT system : either the semismooth (nonlinear) equation ( 4) or the constrained equation [START_REF] Bonnans | Numerical Optimization: Theoretical and Practical Aspects[END_REF]. Optimization methods solving a smooth equation F (z) = 0 are first presented in Subsection 2.1. Then in Subsection 2.2, we consider the necessary extensions solving the semismooth equation (4) of the complementarity reformulation. We continue with specific algorithms solving the constrained equation ( 5) in Subsection 2.3. Finally, numerical illustrations to compare algorithms for both reformulations in Subsection 2.4 are carried out.

Classical methods for smooth nonlinear equations

As introduced in many optimization books, see e.g. [START_REF] Bonnans | Numerical Optimization: Theoretical and Practical Aspects[END_REF][START_REF] Dennis | Numerical Methods for Unconstrained Optimization and Nonlinear Equations[END_REF][START_REF] Nocedal | Numerical Optimization[END_REF], an optimization method to solve a nonlinear equation is made of two components: a local method and a globalization scheme. Assuming the initial point is not "far" from the root, local methods use a local approximation of the function (generally linear or quadratic approximation based on Taylor expansions) that is easier to solve in order to derive the sequence of iterates. The globalization studies adjustments to be carried out, so that the iterate sequence still converges when algorithms are badly initialized. In this subsection, we focus on local methods and refer to Appendix B for globalization techniques. We also give conditions for convergence to better emphasize the issues with the GNEP.

Local methods

Local methods are sequences z k+1 = z k + d k where d k is a root of a certain equation based on an approximation of the root function F : R n → R n . The first and the most simple method, the Newton method, uses a first-order Taylor expansion

F (z + h) = F (z) + J(z)h + o(h) ,
where J denotes the Jacobian1 Jac F . Let M N k (h) = F (z k ) + J(z k )h be the model function. At the kth iterate, the Newton step consists in solving the system M N k (d k ) = 0. We get the following equation

J(z k )d k = -F (z k ). ( 21 
)
Note that there is no guarantee that J(z k ) is nonsingular.

Another method consists in replacing the Jacobian by an approximate matrix, which will always be invertible. The direction d k solves

H k d k = -F (z k ), ( 22 
)
where H k is updated by a so-called quasi-Newton scheme. This is equivalent to a model function

M QN k (h) = F (z k ) + H k h.
A quasi-Newton scheme needs an iterative process to update the approximate Jacobian from H k to H k+1 . The choice of the matrix is large, since there are n2 terms. We can assume first that

F (z k ) = M QN k+1 (z k+1 -z k ) ⇔ H k+1 s k = y k , where s k = z k+1 -z k and y k = F (z k+1 ) -F (z k )
. The latter equation is called the secant equation. We could have considered a scheme to approximate directly the inverse of the Jacobian by W k with the secant equation s k = W k+1 y k . But still, we have an underdetermined system of n equations for a n × n matrix.

Having no other property on the Jacobian of F (e.g. symmetry or positiveness), we generally consider the matrix that makes the smallest possible change to the preceding Jacobian according to the Frobenius norm 2 , see [START_REF] Nocedal | Numerical Optimization[END_REF]Chap. 11]. From an implementation point of view, the smallest possible change feature reduces the linear algebra computation work from O n3 to O n 2 cost. If we consider minimizing min H ||H -H k || F for all matrix H verifying the secant equation, we get the (good 3 ) Broyden scheme

H k+1 = H k + y k -H k s k s T k s k s T k ⇔ W k+1 = W k + (s k -W k y k )y T k W k s T k W k y k ,
using the Sherman-Morrison formula. For a general discussion of quasi-Newton methods, we refer to [START_REF] Dennis | Quasi-newton methods, motivation and theory[END_REF] and for details on quasi-Newton methods tailored to nonlinear equations, see [START_REF] Broyden | A class of methods for solving nonlinear simultaneous equations[END_REF] or [START_REF] Nocedal | Numerical Optimization[END_REF]Chap. 11].

Another way to solve the equation

F (z) = 0 requires minimizing the norm f (z) = 1 2 ||F (z)|| 2 2 .
But not all minima of the function f are roots of F because we must have f (z) = 0. A widely known method for this least square problem is the Gauss-Newton method. With this method, we minimize the model function

1 2 M N k (d k ) T M N k (d k ) and get J(z k ) T J(z k )d k = -J(z k ) T F (z k ). ( 23 
)
To prevent the right-hand side matrix to be nonsingular, the Levenberg-Marquardt method modifies Equation [START_REF] Fischer | Local behavior of an iterative framework for generalized equations with nonisolated solutions[END_REF] to

J(z k ) T J(z k ) + λ k I d k = -J(z k ) T F (z k ), (24) 
where I denotes the n × n identity matrix and λ k ≥ 0. Various choices of Levenberg-Marquart parameter are possible: [START_REF] Fan | On the quadratic convergence of the Levenberg-Marquardt Method without nonsingularity assumption[END_REF] consider terms

λ k = ||F (z k )|| δ 2 with δ ∈ [1, 2].
In practice, δ = 1, i.e. λ = ||F (z k )|| 2 , works much better than other δ's. We may also use

||J k || or min(||F (z k )|| 2 , ||J T k F (z k )|| 2
). The Levenberg-Marquart is sometimes referred to as the modified Gauss-Newton method for its relation to the Gauss-Newton method.

Summarizing this first subsection, local methods consider sequences of the form z k+1 = z k + d k where the direction d k is a solution of one of the above equations. Newton direction uses Equation [START_REF] Fan | A modified Levenberg-Marquardt algorithm for singular system of nonlinear equations[END_REF], quasi-Newton Equation [START_REF] Fan | On the quadratic convergence of the Levenberg-Marquardt Method without nonsingularity assumption[END_REF] and Levenberg-Marquardt Equation (24).

Convergence in the differentiable setting

By construction, the Newton and the Levenberg-Marquardt methods require the root function F to be differentiable, while the Broyden method does not. Let us analyze the convergence conditions for these methods. We concatenate all theorems in one, see e.g. Theorems 11.2 and 11.5 of [START_REF] Nocedal | Numerical Optimization[END_REF] for Newton and Broyden, respectively, Theorem 2.1 of [START_REF] Yamashita | On the rate of convergence of the Levenberg-Marquardt method[END_REF] or Theorem 10 of [START_REF] Fischer | Local behavior of an iterative framework for generalized equations with nonisolated solutions[END_REF] for Levenberg-Marquardt.

Theorem 7. Suppose that F is continuously differentiable in a open convex set O ⊂∈ R n . Let z be a solution of F (z) = 0 and let (z N k ) k be the sequence generated by the Newton method. If the Jacobian at the solution J(z ) is nonsingular, then (z N k ) k converges superlinearly to z . If in addition, F is Lipschitz continuously differentiable4 near z , then the convergence rate is quadratic. Let (z B k ) k be the sequence generated by the Broyden method. If for the starting points, there exist δ, > 0, such that

||z B 0 -z || ≤ δ, ||B 0 -J(z )|| ≤ , then (z B k ) k converges superlinearly to z .
Let (z LM k ) k be the sequence generated by the Levenberg-Marquardt method. If F is Lipschitz continuously differentiable on O and ||F (x)|| provides a local error bound, then (z LM k ) k converges superlinearly to z .

In other words, convergence theorems require (i) F is Lipschitz continuously differentiable (LC) 1 in an open convex set around a solution z and (ii) the Jacobian at the solution J(z ) is nonsingular for Newton and Broyden method or the function F verifies a local error bound. Moreover, additional conditions may be required to ensure the convergence of globalized sequences, see Appendix B.4. These conditions can be weakened as shown in the next subsection.

Extension to a semismooth setting of SSR

In the two previous subsections, a blanket assumption of differentiability of the root function F is assumed. We describe the necessary adjustment for the GNEP context.

Toward the non-differentiable setting

In the GNEP context (Equation (4) of Subsection 1.1.1), the root function is defined as

Φ(x, λ) = D L (x, λ) φ • (-g(x), λ) ,
where the first component D L (x, λ) is composed of N derivatives of the Lagrangian function L i (x, λ i ) and the second component φ • (-g(x), λ) is the component-wise application of the complementarity function φ on the constraint function g : R n → R m . Firstly, the top component is differentiable when objective and constraint functions are C 2 . Secondly, only the bottom component is not everywhere differentiable, because most complementarity functions φ(., .) are nondifferentiable at (0, 0). In this paper, we use the minimum function

φ ∧ (a, b) = min(a, b) and the Fischer-Burmeister function φ F B (a, b) = √ a 2 + b 2 -(a + b), which are not differentiable at (0, 0).
To deal with non-differentiability, Clarke ( [START_REF] Clarke | Generalized gradients and applications[END_REF]) introduced the generalized gradient. Few laters, its famous book [START_REF] Frank | Optimization and Nonsmooth Analysis[END_REF] provides a comprehensive presentation of the nonsmooth analysis. We briefly present here some elements necessary to our paper and refer to Appendix C for further details.

Let G : R n → R m a function with component G j . By the Rademacher theorem, a locally Lipschitzian function is almost everywhere differentiable. We define first the limiting Jacobian, also called B(ouligand) subdifferential, denoted by ∂ B G(x).

Definition 8 (limiting Jacobian). The limiting Jacobian of G at x is defined as

∂ B G(x) = {V x , ∃(x k ) k ∈ D G , x k → x, Jac G(x k ) → V x },
where D G is the differentiability set of G.

For his desirable properties (such as convexity), the Clarke's generalized Jacobian, based on the limiting Jacobian, is commonly used. Definition 9 (generalized Jacobian). The generalized Jacobian ∂G(x) of G at x is the convex hull of the limiting Jacobian ∂ B G(x) 5 .

Example 1. In the Example 7.1.2 of [20], a function G : R 2 → R 2 is defined with components G 1 (x) = min(x 1 , x 2 ) and G 2 (x) = |x 1 | 3 -x 2 .
G is not differentiable at (0,0). By splitting R 2 into 4 parts, we can compute the limiting Jacobian

∂ B G(0, 0) = 1 0 0 -1 , 0 1 0 -1 and ∂G(0, 0) = λ 1 -λ 0 -1 , λ ∈ [0, 1] .
From a computational point of view, using a component-wise version of the generalized Jacobian

∂G(x) ⊂ ∂G 1 (x) × • • • × ∂G m (x) might be useful, see Appendix C.
Now, we focus on the properties of the generalized Jacobian and a more flexible criterion than continuous differentiability : the semismoothness. Before introducing the semismoothness, we have to present directional derivatives.

Definition 10 (directional derivative). For a locally Lipschitzian function G, the (classical) directional derivative at x along h ∈ R n is defined as

G (x; h) = lim t↓0 G(x + th) -G(x) t .
The Hadamard directional derivative is

G H (x; h) = lim h →h,t↓0 G(x + th ) -G(x) t .
The difference between classical and Hadamard directional derivatives lies the fact that we look at all directions h → h and not only at h.

Definition 11 (semismooth).

A locally Lipschitzian function G is semismooth at x, if for all d ∈ R n , the following limit exists lim

V ∈∂G(x+t d) d→d,t↓0 V d.
In this case, this limit equals to G H (x; h).

Therefore, the semismoothness of function H at x requires the Hadamard directional derivative at x to exists along any direction converging to h and not only along h. Finally, we introduce the strong semismoothness, also called 1-order semismoothness, that will be used in convergence theorems.

Definition 12 (strongly semismooth). A locally Lipschitzian function G is strongly semismooth at

x if for all d → 0 and V ∈ ∂G(x + d), we have

V d -G (x, d) = O ||d|| 2 .
Examples of semismooth functions are smooth, convex and piecewise linear functions. Furthermore, composite, scalar products, sums, minimum, maximum of semismooth functions are semismooth. Let us study our complementarity functions φ ∧ and φ F B .

Example 2. The non-differentiability breakpoint is at (0, 0). By standard calculations, the directional derivate of φ ∧ at this point is φ ∧ ((0, 0); (a, b)) = min(a, b). Futhermore, for all nonzero vector (a, b), φ ∧ is differentiable and ∇φ ∧ is given by

∇φ ∧ (a, b) = 1 1 a≤b 1 1 a>b . We deduce that ∂ B φ ∧ (0, 0) = 1 0 , 0 1 and ∂φ ∧ (0, 0) = λ 1 -λ , λ ∈ [0, 1] . Furthermore, for all V ∈ ∂φ ∧ (c, d), such that (c, d) → (a, b), we have V a b -φ ∧ ((0, 0); (a, b)) = a1 1 c≤d + b1 1 c>d -min(a, b) = o((a, b)) . (25) 
Using Appendix C, we conclude that φ ∧ is semismooth at (0,0) but not strongly semismooth.

Example 3. For φ F B , the non-differentiability breakpoint is also at (0, 0). In fact, by standard calculations, for all nonzero vector (a, b), we have

∇φ F B (a, b) = a √ a 2 +b 2 -1 b √ a 2 +b 2 -1 . We deduce that ∂ B φ F B (0, 0) = {∇φ F B (a, b), (a, b) = (0, 0)} and ∂φ F B (0, 0) = B((-1, -1), 1)
, where B(x, ρ) denotes the closed ball at x of radius ρ.

Furthermore, for all

V ∈ ∂φ F B (c, d), such that (c, d) → (a, b), we have V a b = φ F B (a, b) and φ F B ((0, 0); (a, b)) = φ F B (a, b).
Hence, we get

V a b -φ F B ((0, 0); (a, b)) = 0.
We conclude that φ F B is strongly semismooth at (0, 0), as proved in [START_REF] Kanzow | A new class of semismooth Newton-type methods for nonlinear complementarity problems[END_REF].

Now, we can express appropriately the generalized Jacobian of the GNEP. We denote by J Φ (z) elements of the generalized Jacobian ∂Φ(z). Using chain rules and previous definitions, we get

J Φ (z) = Jac x D L (x, λ) diag ∇ x i g i (x) i -D a (z)Jac x g(x) D b (z) , (26) 
where Jac x denotes the Jacobian with respect to x and diag[...] represents a block diagonal matrix.

The diagonal matrices D a and D b are given by

D a (z) = diag[a 1 (x, λ 1 ), . . . , a N (x, λ N )] , D b (z) = diag[b 1 (x, λ 1 ), . . . , b N (x, λ N )],
with

a i (x, λ i ), b i (x, λ i ) ∈ R m i defined by (a i j (x, λ i j ), b i j (x, λ i j )) = φ a (-g i j (x), λ i j ), φ b (-g i j (x), λ i j ) if (-g i j (x), λ i j ) = (0, 0), (ξ ij , ζ ij ) if (-g i j (x), λ i j ) = (0, 0),
where φ a (resp. φ b ) denotes the derivative of φ with respect to the first (resp. second) argument a (resp. b) and (ξ ij , ζ ij ) ∈ B(p φ , c φ ). See Appendix A for a detailed representation of the generalized Jacobian J Φ .

Let us specify the parameters p φ and c φ for the two considered complementarity functions: for the minimum function, p φ = (1/2, 1/2) and c φ = 1/2 and for the Fischer-Burmeister function, p φ = (-1, -1) and c φ = 1. By standard chain rules, we get the following proposition. Proposition 5. Consider φ = φ ∧ or φ F B . If functions θ i and g i are C 2 , then the root function Φ defined in ( 26) is C 1 except at points (x, λ) such that g i j (x) = λ i j = 0. At these points, when φ = φ ∧ , Φ is semismooth, while for φ = φ F B , Φ is strongly semismooth.

Local convergence in the semismooth framework

Now, we get back to the general equation F (z) = 0. As the Jacobian of the root function is not available, the direction computation of local methods presented in Subsection 2.1.1 must be adapted.

The solution consists in replacing the Jacobian by an element of the generalized Jacobian. Let J k ∈ ∂F (z k ). Considering the Newton method [START_REF] Fan | A modified Levenberg-Marquardt algorithm for singular system of nonlinear equations[END_REF], we now solve

J k d k = -F (z k ), (27) 
whereas for the Levenberg-Marquardt method [START_REF] Fukushima | Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games[END_REF], the direction solves

J T k J k + λ k I d k = -J T k F (z k ). ( 28 
)
Corresponding sequences are called respectively the generalized Newton and the generalized Levenberg-Marquardt methods. For the quasi-Newton framework, there is no modification. Some authors also use the B-subdifferential

∂ B F (z k ) or the component wise B-subdifferential ∂ B F 1 (z k )ו • •×∂ B F n (z k )
instead of the generalized Jacobian in ( 27) and ( 28). Now, theorems extending Theorem 7 to semismooth functions are presented. The first extension is due to [START_REF] Qi | A nonsmooth version of Newton's method[END_REF], cf. Theorem 3.2, for the generalized Newton method. We give below a slightly more general version 6 than the original version. Theorem 8. Let z a solution of F (z ) = 0. If F is locally Lipschitzian and semismooth at z and all elements7 J ∈ ∂ B F (z ) are nonsingular, then the generalized Newton method is well defined and converges superlinearly to z . If in addition, F is strongly semismooth at z , then the convergence rate is quadratic.

For the quasi-Newton approach, convergence results have been proposed in the literature, e.g. [START_REF] Ip | Local convergence of quasi-Newton methods for B-differentiable equations[END_REF] and [START_REF] Qi | On superlinear convergence of quasi-Newton methods for nonsmooth equations[END_REF], where the differentiability is needed at a solution rather than in an open convex. [START_REF] Lopes | On the convergence of quasi-Newton methods for nonsmooth problems[END_REF] give a minimal condition (lesser than semismoothness) for a general quasi-Newton method to converge linearly.

As in the differentiable setting, e.g. [START_REF] Dennis | Numerical Methods for Unconstrained Optimization and Nonlinear Equations[END_REF], the convergence of quasi-Newton methods for semismooth functions is done in two steps: (i) a first theorem gives conditions of local linear convergence based on the limited difference between approximate Jacobian and elements in the generalized Jacobian, and (ii) a second theorem gives an additional condition for a general quasi-Newton method to converge superlinearly. We report here Theorems 4.1 and 4.2 of [START_REF] Sun | Newton and Quasi-Newton methods for a class of nonsmooth equations and related problems[END_REF].

Theorem 9. Let z a solution of F (z ) = 0. If F is locally Lipschitzian in the open convex D ⊂ R n such as z ∈ D. Consider the sequence z 0 ∈ D and z k+1 = z k -V -1
k F (z k ) with V k a n × n matrix updated by a quasi-Newton scheme. Suppose F is semismooth at z and for all J ∈ ∂ b F (x ) are nonsingular. There exist constant , ∆ > 0 such that if ||z 0 -z || ≤ and there exists 

W k ∈ ∂ b F (z k ) such that ||V k -W k || ≤ ∆,
z k+1 = z k -V -1 k F (z k ). If (z k ) k converges to z then (z k ) k converges superlinearly to z and F (z ) = 0 is equivalent to ∃W k ∈ ∂ b F (z k ), lim k→+∞ ||(V k -W k )s k || ||s k || = 0, with s k = z k+1 -z k .
Local convergence of the generalized Levenberg-Marquardt method is studied in Theorem 6 of [START_REF] Facchinei | A nonsmooth inexact Newton method for the solution of large-scale nonlinear complementarity problems[END_REF].

Theorem 11. Let z a solution of F (z ) = 0, with F a locally Lipschitzian, semismooth at z and ∀J ∈ ∂ B F (z ) are nonsingular. If the Levenberg-Marquardt parameters (λ k ) k converge to 0, then the (generalized) Levenberg-Marquardt converges superlinearly to z . If in addition, F is strongly semismooth and locally directionnally differentiable at z , and

λ k = O(||J k g k ||) or λ k = O(||g k ||),
then the sequence converges quadratically.

Analysis of assumptions

We analyze in detail the assumptions of preceding theorems. All theorems require the root function to be semismooth at a solution z . By Proposition 5, the function Φ defined in Equation ( 4) is semismooth. If φ = φ F B , Φ is even strongly semismooth and thus improving the convergence rate.

The nonsingularity condition is required only for elements J of the limiting Jacobian at a solution z . As analyzed in [START_REF] Facchinei | Generalized Nash equilibrium problems and Newton methods[END_REF], the limiting Jacobian (26) might have some identical rows at the bottom part 8 . Let us investigate first this issue 9 . As only terms (ξ ij , ζ ij ) in diagonal matrices D a and D b change between the generalized and the limiting Jacobian of Φ, we study the nonsingularity condition directly on the generalized Jacobian. In a detailed form, the bottom part has the following structure

   -D a 1 (x, λ 1 )Jac x 1 g 1 (x) . . . -D a 1 (x, λ 1 )Jac x N g 1 (x) . . . . . . -D a N (x, λ N )Jac x 1 g N (x) . . . -D a N (x, λ N )Jac x N g N (x) D b 1 (x, λ 1 ) 0 . . . 0 D b N (x, λ N )    (29) 
where D a i and D b i are m i × m i diagonal matrices. In the following, we denote by D a -part and D b -part the left-hand and right-hand sides of Equation ( 29). Proposition 6. For φ = φ ∧ or φ F B , the bottom part of generalized Jacobian of Φ defined in (4) has two identical rows if and only if there are two shared and active constraints.

Proof. Assume that the generalized Jacobian has two identical rows, say for players i and ĩ and components j i and j ĩ. The D b -part requires that the j i th row of D b i and the j ĩth row of

D b ĩ equals zero b i j (x, λ i j ) = b ĩ j ĩ (x, λ ĩ j ĩ ) = 0, ( 30 
)
with b i j (x, λ i j ) = φ b (-g i j (x), λ i j ). Identical rows in the D a -part is equivalent to the n dimensional equation a i j (x, λ i j )Jac x g i j (x) = a ĩ j ĩ (x, λ ĩ j ĩ )Jac x g ĩ j ĩ (x). (31) 
If φ = φ ∧ , then Equation ( 30) leads to g i j (x) < λ i j and g ĩ j ĩ (x) < λ ĩ j ĩ .

Since at a solution z both g i j (x) and λ i j are nonnegative and (at least) one is zero. Hence, g i j (x) = g ĩ j ĩ (x) = 0, i.e. active constraints. For the D a -part using φ ∧a (a, b) = 1 1 a<b , Equation ( 31) leads to a i j (x, λ i j ) = a ĩ j ĩ (x, λ ĩ j ĩ ) = 1. Therefore, Jac x g i j and Jac x g ĩ j ĩ are identical. So if the constraints g i j , g ĩ j ĩ are active and shared, then both Equations ( 30) and ( 31) are satisfied, i.e. the generalized Jacobian has two identical (null) rows.

If φ = φ F B , then Equation ( 30) is equivalent to

g i j (x) = 0 and λ i j > 0,
and the same for j. This is equivalent to g i j , g ĩ j ĩ are strongly active constraints. These conditions are such that a i j (x, λ i j ) and a ĩ j ĩ (x, λ ĩ j ĩ ) are non-zero and expressed as a i j (x, 31) again requires that the constraint functions g i j and g ĩ j ĩ have identical derivatives.

λ i j ) = a ĩ j ĩ (x, λ ĩ j ĩ ) = -1. Equation (
If we exclude the pathological case described above, the nonsingularity of limiting Jacobian10 (26) requires that J has a non-zero determinant. Using the determinant formula for partitionned matrix and the Schur complement, the nonsingularity condition can be expressed in two different formulations (i) that Jac x D L (x, λ) and

D b (z) + D a (z)Jac x g(x)Jac x D L (x, λ) -1 diag ∇ x i g i (x) i (32) 
are nonsingular,

(ii) D b (z) and Jac x D L (x, λ) + diag ∇ x i g i (x) i D b (z) -1 D a (z)Jac x g(x) (33) 
are nonsingular.

Note, since D b (z) is a diagonal matrix, its nonsingularity is equivalent to have non-null terms. We will see in Subsection 2.2 that (32) is a typical condition. Following the above discussion, we conclude that both the generalized Newton and the generalized Levenberg-Marquardt method converge superlinearly to a solution z if one of the two conditions (32) and ( 33) are satisfied and no constraint functions are shared.

Finally, we focus on the convergence of the Broyden method. Theorems 9 and 10 of [START_REF] Sun | Newton and Quasi-Newton methods for a class of nonsmooth equations and related problems[END_REF] give minimal conditions for a quasi-Newton method to converge (superlinearly). In [START_REF] Sun | Newton and Quasi-Newton methods for a class of nonsmooth equations and related problems[END_REF] (or also in [START_REF] Qi | Semismooth KKT equations and convergence analysis of Newton and Quasi-Newton methods for solving these equations[END_REF]), the Broyden method is used on smooth parts of the root function F . When applying the Broyden method directly on F , it is hard to show the convergence for a general semismooth function, e.g. [START_REF] Jiang | Semismoothness and superlinear convergence in nonsmooth optimization and nonsmooth equations[END_REF]. The weakest condition seems to be the Lipschitz continuity of B-derivative of F proved in [START_REF] Ip | Local convergence of quasi-Newton methods for B-differentiable equations[END_REF]. In our GNEP setting, the function F (x, λ) is not differentiable only when λ i j = g i j (x) = 0. Otherwise, F is differentiable for which the convergence is established. So, we expect the generalized Broyden method to work well in our setting and do not prove the convergence. To our knowledge, the Broyden method has been not used in the GNEP context.

Global convergence

A merit function is introduced to globalize local methods, as explained in Appendix B. For a semismooth equation F (z) = 0, we use the same function as in the differentiable setting : the residual norm f (z) = || F (z)|| 2 /2. The gradient is given by ∇f (z) = V T F (z), where V ∈ ∂F (z). As mentioned in [START_REF] Qi | A Survey of Some Nonsmooth Equations and Smoothing Newton Methods[END_REF], the merit function may be C 1 , even if F is only semismooth.

In our GNEP context, the root function Φ is given in (4) and the merit function is thus defined as

f Φ (z) = 1 2 D L (x, λ) φ • (-g(x), λ) 2 2 . ( 34 
)
The gradient of f Φ can be expressed as

∇f Φ (z) = Jac x D L (x, λ) diag ∇ x i g i (x) i -D a (z)Jac x g(x) D b (z) T D L (x, λ) φ • (-g(x), λ)
.

using [START_REF] Grippo | A nonmonotone line search technique for Newton's method[END_REF] and classic chain rules. As mentioned in [START_REF] Dreves | On the solutions of the KKT conditions of generalized Nash equilibrium problems[END_REF], the gradient ∇f Φ is single-valued since only the bottom part of the generalized Jacobian ∂Φ(z) contains multi-valued expressions (D a and D b when g i j (x) = λ i j = 0) and the bottom part of Φ(x, λ) has zero entries. Hence, f is C 1 as long as objective and constraint functions are C 2 . Therefore, both line-search and trust-region approaches are well defined for our GNEP reformulation (4) and [START_REF] Krawczyk | Relaxation algorithms to find Nash equilibria with economic applications[END_REF].

As given in Appendix B.5 (and as for local convergence), a nonsingularity condition of elements in the limiting Jacobian ∂ B Φ is required. Under this nonsingularity condition, sequences generated by generalized Newton, generalized Levenberg-Marquardt and generalized Broyden converge to a stationary point of f Φ . This leads to a new question : does a stationary point of f Φ solve the original GNEP? Theorem 3 of [START_REF] Dreves | On the solutions of the KKT conditions of generalized Nash equilibrium problems[END_REF] analyzes the additional conditions for a stationary point of f to be a solution of the nonsmooth equation, hence of the original GNEP. The condition is that Jac x D L (x, λ) is nonsingular and the matrix

M = Jac x g(x)Jac x D L (x, λ) -1 diag ∇ x i g i (x) i ( 35 
)
is a P 0 -matrix 11 . If diagonal matrices D a and D b have non zero terms, then Condition [START_REF] Kubota | Gap function approach to the generalized Nash equilibrium problem[END_REF] implies that D b (z) + M D a (z) is nonsingular, which is Condition [START_REF] Jiang | Global and local superlinear convergence analysis of Newtontype methods for semismooth equations with smooth least squares[END_REF]. Therefore, if we have the nonsingularity assumption of elements of the limiting Jacobian of Φ, then Condition (35) can be deduced and thus ensuring that a stationary point of the merit function f Φ (defined in [START_REF] Krawczyk | Relaxation algorithms to find Nash equilibria with economic applications[END_REF]) solves the GNEP.

Tailored optimization algorithms for the CER

This subsection aims to present specific methods solving constrained (nonlinear) equations, first proposed by [START_REF] Dreves | On the solutions of the KKT conditions of generalized Nash equilibrium problems[END_REF] in the GNEP context. The KKT system can be reformulated as a constrained equation, see Equation ( 5) of Subsection 1.1.2. Techniques to solve such equation may provide good alternatives to standard optimization procedures. In the context of VI problems, [START_REF] Facchinei | Finite-Dimensional Variational Inequalities and Complementary Problems[END_REF] devotes a chapter to interior-point methods for solving such constrained equations (CE). Here, we focus on the method of [START_REF] Monteiro | A Potential Reduction Newton Method for Constrained equations[END_REF] providing a general framework for CE problems.

Definition 13 (Constrained equation).

A constrained equation is defined as

H(z) = 0, z ∈ Ω, ( 36 
)
where Ω is a closed subset of R n . Generally, the constraint set Ω has a simple structure, e.g. the nonnegative orthant

Ω = R n + or a hypercube Ω = [l, u].
As mentioned in [START_REF] Wang | An interior point potential reduction method for constrained equations[END_REF], in practice, the root function H has also a partitionned form

H(z) = F (z) G(z) .
Indeed, the KKT reformulation of the GNEP (2) falls within this framework

Let Ω denote the interior of Ω. In the contrained equation literature, we assume that (i) Ω is a closed subset with nonempty interior Ω, (ii) there exists a closed convex set S ⊂ R n , such that 0 ∈ S, H -1 ( S) ∩ Ω is nonempty but H -1 ( S) ∩ bd Ω is empty and (iii) H is C 1 function. The first assumption states that the set S contains zero, so that the set H -1 ( S) contains a solution to Equation [START_REF] Kulkarni | Revisiting generalized Nash games and variational inequalities[END_REF] and local points around. The second assumption requires that such points should not be on the boundary of Ω. The third assumption is just differentiability. In the following, these three assumptions will be referenced as the constrained equation blanket assumptions.

Potential reduction algorithms with line-search

[39] build a framework with potential functions for solving constrained equations. These potential functions, which play a major role, are first introduced.

Definition 14 (potential function).

A potential function S → R satisfies the following properties:

1. For all sequences (u k ) k in S such that either ||u k || tends to infinity or (u k ) tends to a point on the boundary bd S \ {0}, then p(u k ) tends to infinity.

2. p is C 1 function on its domain and the curvature condition u T ∇p(u) > 0 for all nonzero vectors.

3. There exists a pair (a, σ) in R n ×]0, 1], such that for all u ∈ S, we have

||a|| 2 u T ∇p(u) ≥ σ(a T u)(a T ∇p(u)).
The potential function has the dual objective to keep the sequences (H(x k )) k away from the set bd S \ {0} and to help the convergence to the zero vector. The parameter a, known as the central vector, will play a crucial role to generate iterates in the constrained set Ω.

For instance, let us consider S = R n + . A typical potential function for S is

p(u) = ζ log ||u|| 2 2 - n i=1
log u i for u > 0.

[39] prove that this function verifies the above conditions when ζ > n/2 with the pair (a, σ) = (1 1 n , 1) where 1 1 n being the n-dimensional one vector.

In the GNEP context, we consider the subset S = R n. × R 2m.

+

where n . = N i=1 n i is the total number of player variables and m . = N i=1 m i is the total number of constraints, i.e. n = n . + 2m . in Definition 13. The function H has components F and G given by

F (z) = D L (x, λ) and G(z) = g(x) + w λ • w ,
where z = (x, λ, w), see, e.g., [START_REF] Wang | An interior point potential reduction method for constrained equations[END_REF]. [START_REF] Dreves | On the solutions of the KKT conditions of generalized Nash equilibrium problems[END_REF] propose the following potential function

p (u) = ζ log ||u 1 || 2 2 + ||u 2 || 2 2 - 2m. i=1 log(u 2i ), where u = (u 1 , u 2 ) ∈ R n. × R 2m.
+ . We choose ζ > m . so that p is a potential fucntion with a = (0 n. , 1 1 m. ) and σ = 1.

The difficulty of constrained equations, compared to a classical nonlinear equation, is to ensure that all the iterates remains in the constrained set Ω. In [START_REF] Monteiro | A Potential Reduction Newton Method for Constrained equations[END_REF], this is achieved by considering a modified Newton method globalized with a backtracking line-search. We report below their potential reduction Newton algorithm, which is divided into two parts: (i) computation of the direction using the central vector a and (ii) finding of an appropriate stepsize with a geometric line-search for which the merit function is

ψ(u) = p(H(u)). Note that H(u) is valued in R n. × R 2m. . Init z 0 ∈ Ω, 0 < ρ, α < 1 and choose σ 0 ∈ [0, σ[ Iterate until a termination criterion is satisfied, • Solve the system (37) to get d k 12 H(z k ) + Jac H(z k )d = σ k a T H(z k ) ||a|| 2 2 a. (37) 
• Find the smallest integer m k such that

ψ(z k + ρ m k d k ) ≤ ψ(z k ) + αρ m k ∇ψ(z k ) T d k and z k + ρ m k d k ∈ Ω. • Set z k+1 = z k + ρ m k d k .
end Iterate

Due to the presence of a non-zero term in the right-hand side of (37), the modified Newton direction d k is different from the Newton direction. For a given problem, the special structure of H = (F, G) and a will simplify this term. In this form, the algorithm is defined when the Jacobian JacH is nonsingular at z k ∈ Ω. Lemma 2 of [START_REF] Monteiro | A Potential Reduction Newton Method for Constrained equations[END_REF] shows that the direction computed in the first step is a descent direction for the merit function ψ. So, the line-search is well-defined. Theorem 3 of [START_REF] Monteiro | A Potential Reduction Newton Method for Constrained equations[END_REF] shows the convergence of the potential reduction algorithm.

Theorem 12. Assume that p is a potential function, the constrained Equation ( 36) satisfies the constrained equation blanket assumptions, the Jacobian Jac H(z) is nonsingular for all z ∈ Ω and we have lim sup k σ k < σ. Let (z k ) k be a sequence generated by the potential reduction Newton algorithm. We have (i) the sequence (H(z k )) k is bounded and (ii) any accumulation point, if there exists, solves the constrained Equation [START_REF] Kulkarni | Revisiting generalized Nash games and variational inequalities[END_REF]. In particular, if (z k ) k is bounded, the constrained equation has a solution.

In the numerical illustrations, the potential reduction algorithm is benchmarked with the affinescaling algorithm of [START_REF] Bellavia | An affine scaling trust-region approach to boundconstrained nonlinear systems[END_REF], as in [START_REF] Dreves | On the solutions of the KKT conditions of generalized Nash equilibrium problems[END_REF].

Application to GNEP

As already mentioned, Equation ( 5) of the GNEP can be reformulated as a constrained equation. The root function H : R n × R 2m → R n × R 2m is defined as

H(x, λ, w) =   D L (x, λ) g(x) + w λ • w   ,
where the dimensions n, m correspond to the GNEP notation and (a, σ) is given by ((0 n , 1 1 m ), 1).

The potential function is given by

p (u) = ζ log ||x|| 2 2 + ||λ|| 2 2 + ||w|| 2 2 - m k=1 log(λ k ) - m k=1 log(w k ), where u = (x, λ, w) ∈ R n × R m + × R m + and ζ > m.
This reformulation of the potential function emphasizes the three components u = (x, λ, w). For the line-search, the gradient ∇p is given by

∇p(x, λ, w) =     2ζ ||x|| 2 2 +||λ|| 2 2 +||w|| 2 2 x 2ζ ||x|| 2 2 +||λ|| 2 2 +||w|| 2 2 λ -λ -1 2ζ ||x|| 2 2 +||λ|| 2 2 +||w|| 2 2 w -w -1     ,
where λ and w have positive components and terms λ -1 and w -1 correspond to the component-wise inverse vector. Compared to the semismooth reformulation, the root function H is now C 1 . The Jacobian is given by

Jac H(x, λ, w) =   Jac x D(x, λ) diag ∇ x i g i (x) i 0 Jac x g(x) 0 I 0 diag[w] diag[λ]   .
As reported in [START_REF] Dreves | On the solutions of the KKT conditions of generalized Nash equilibrium problems[END_REF], the computation of the direction d k = (d x,k , d λ,k , d w,k ) in ( 37) can be simplified due to the special structure of the above Jacobian matrix. The system reduces to a linear system of n equations to find d x,k and the 2m components d λ,k , d w,k are simple linear algebra. Using the classic chain rule, the gradient of the merit function ψ(.) = p(H(.)) is given by ∇ψ(x, λ, w) = JacH(x, λ, w) T ∇p(H(x, λ, w)).

Again the computation of this gradient can be simplified due to the sparse structure of Jac H. Theorem 4.3 of [START_REF] Dreves | On the solutions of the KKT conditions of generalized Nash equilibrium problems[END_REF] is the direct application of the previous theorem in the GNEP context. We do not restate here their theorem, but present their nonsingularity result given in Theorem 4.6. The Jacobian matrix is nonsingular, if the matrix Jac x D L (x, λ) is nonsingular and

M = Jac x g(x)Jac x D L (x, λ) -1 diag ∇ x i g i (x) i (38) 
is a P 0 -matrix. This is exactly Condition [START_REF] Kubota | Gap function approach to the generalized Nash equilibrium problem[END_REF] given in the semismooth setting. So there is no particular gain in terms of assumptions between the two reformulations.

Numerical illustrations

In this section, we perform numerical illustrations to compared the different methods for computing general GNEP. The implementation is carried out in the R statistical software ( [START_REF] Core | R: A Language and Environment for Statistical Computing[END_REF]) and the package GNE ( [START_REF] Dutang | GNE: computation of Generalized Nash Equilibria[END_REF]). We start our benchmarking by considering a simple two-player duopoly for which there exists a unique Nash equilibrium. Let d 1 = 20, d 2 = 21, λ 1 = 4, λ 2 = 5, ρ 1 = 1.1 and ρ 2 = 1.25. The objective function (to be maximized) of Player i is θ i (x) = (d i -λ i -ρ i (x 1 + x 2 ))x i for i = 1, 2. One can show that the Nash equilibrium is

(x 1 , x 2 ) = 2(d 1 -λ 1 ) 3ρ 1 - d 2 -λ 2 3ρ 2 , 2(d 2 -λ 2 ) 3ρ 2 - d 1 -λ 1 3ρ 1 .
In Table 1, we benchmark all the root methods of this section : 'Fct. call' is the number of function calls (either Φ or H), 'Jac. Call' is the number of Jacobian calls (either ∂Φ or JacH), Code is an exit code and ||x f inal -x || 2 is the distance between the final iterate and the true NE x . Algorithms always stop after a finite number of iterations with an exit code specifying whether the sequence converges or not: (1) convergence is achieved

||F (z)|| ∞ < f tol with f tol = 10 -8 , (2) algorithm is stuck because two consecutive iterates are too close ||(z k -z k-1 )/z k || ∞ < xtol with xtol = 10 -8 , (3) 
stepsize is too small t k < xtol or radius is too small ∆ k < xtol, (4) the iteration limit is exceeded k > k max with k max = 300; or generalized Jacobian is either ill-conditionned (5) or singular [START_REF] Broyden | A class of methods for solving nonlinear simultaneous equations[END_REF]; see e.g. Chapter 7 of [START_REF] Dennis | Numerical Methods for Unconstrained Optimization and Nonlinear Equations[END_REF].

In Table 1, the first eight rows corresponds to generalized Newton and generalized Broyden methods with a globalization scheme (line search or trust-region). From the ninth to the tenth row, we consider the Levenberg-Marquardt (LM) method with a fixed parameter

λ k = min(||F (z k )|| 2 , ||J T k F (z k )|| 2 ) (see Subsection 2.1.1
) and an adaptive parameter λ k (see Appendix B.3). For the complementarity reformulation of Subsection 2.2, we do not have to choose in this game a complementarity function as there are no constraints. The last two rows correspond to the constrained equation reformulation : 'PR' stands for potential reduction algorithm and 'AS' is the affine scaling. In this game, we observe that all methods converges in few steps, but the Levenberg-Marquardt iterates are longer to converge. Secondly, we consider a more elaborate two-player game for which there are four generalized Nash equilibria. The objective functions (to be minimized) are given by θ 1 (x) = (x 1 -2) 2 (x 2 -4) 4 and θ 2 (x) = (x 2 -3) 2 (x 1 ) 4 , for x ∈ R 2 , while the constraint functions are g 1 (x) = x 1 +x 2 -1 ≤ 0 and g 2 (x) = 2x 1 + x 2 -2 ≤ 0. Objective functions are player-strictly convave. This problem is simple but not simplistic, since second-order partial derivatives of objective functions are not constant, as the previous game. Due to the simple form of the objective function, we can manually solve the KKT system for this GNEP. The solutions are listed in Table 2.

x 1 x 2 λ 1 λ 2 z 1 2 -2 0 5 × 2 5 z 2 -2 3 8 0 z 3 0 1 4 × 3 4 0 z 4 1 0 2 9 6
Table 2: The four GNE

In Table 3, we report the result with the complementarity function φ F B and the starting point z 0 = (5, 5, 0, 0), while for the constrained equation method, the starting point is z 0 = (5, 5, 2, 2, 2, 2). Most methods converge to an equilibrium, whose number in Table 2 is indicated the last column i of Table 3. Surprisingly, the Newton method with geometric line seach converges to z 2 whereas the trust-region Newton methods converge to z 3 , despite using the same initial points. A similar behavior is found for the Broyden method. Some methods diverge to a local minimum of the merit function 1/2||F (z )|| 2 2 which is not a root of F , for example the potential reduction algorithm and the affine scaling method. In overall, there is a clear advantage for classic semismooth methods solving the extended KKT system on this game. With the minimum complementarity function φ ∧ , we get similar results.

To further compare these methods, we draw uniformly 1000 random initial points such that z 0 ∈ [-10, 10] 2 × [0, 1] 2 and run algorithms on each of them. For simplicity, we restrict out comparison to Newton GLS and Broyden PTR methods. Results are summarized in Table 4, the first four columns store the number of sequences converging to a particular GNE, while the last column ∞ contains the number of diverging sequences (under the same termination criterion). On this game based on the number of diverging sequences, the best method seems to be the Broyden method with a Powell trust-region globalization. 

Methods to solve jointly GNEP

As explained in Subsections 1.3 and 1.2, the GNEP can be reformulated as a minimum problem and a fixed-point, respectively, which further simplifies for a jointly convex GNEP. In this section, we start by describing usual methods for solving a minimum problem and a fixed-point problem in Section 3.1 and 3.3. Then, we focus on the application of theses methods to the GNEP, respectively in Sections 3.2 and 3.4

Classical methods for solving minimization problem

In this subsection, we present natural optimization methods solving smooth minimization problems min x f (x). As in Subsection 2.1, we first present local methods and then continue with convergence theorems.

Local methods

Local methods are sequences z k+1 = z k + d k where d k is a root of a certain equation based on a local approximation of f : R n → R. Assuming f is C 2 , the Newton method uses a second-order Taylor expansion

f (z) + ∇f (z) T h + 1 2 h T ∇ 2 f (z)h + o h 2 ,
where ∇ 2 f denotes the Hessian matrix. By finding h minimizing this quadratic (local) approximation at z k , we get

∇ 2 f (z k )d k = -∇f (z k ). ( 39 
)
As for the Jacobian matrix in non-linear equation, there is no guarantee that the Hessian matrix will be always invertible. Quasi-Newton methods, i.e. approximating the Hessian ∇ 2 f by invertible matrices H k , is also possible for minimum problem. Therefore, for quasi-Newton methods, the direction solves the equation

H k d k = -∇f (z k ). ( 40 
)
Many schemes can be used to update H k : we require schemes to verify the secant equation

H k+1 s k = y k with s k = z k+1 -z k and y k = ∇f (z k+1 ) -∇f (z k ).
The most classical scheme for updating H k (BFGS, see e.g. [START_REF] Nocedal | Numerical Optimization[END_REF][START_REF] Bonnans | Numerical Optimization: Theoretical and Practical Aspects[END_REF]) is a rank-two symmetric scheme that preserves positive definiteness and is defined as

H k+1 = H k - H k y k y T k H k y T k H k y k + s k s T k y T k s k .
By the Sherman-Morrison formula, this update can be represented in terms of the approximate inverse Hessian, which is how it is implemented in practice. In our GNEP context, the function f is not necessarily twice differentiable. Thus, we present a semismooth generalization of Equation ( 39) by using the generalized Hessian13 ∂ 2 f . The generalized Newton direction solves

H k d k = -∇f (z k ), ( 41 
)
where

H k ∈ ∂ 2 f (z k ).
In the numerical illustrations when solving the minimization problems of Subsection 1.4, we consider only the BFGS scheme [START_REF] Nikaido | Note on non-cooperative convex games[END_REF] as the generalized Newton scheme ( 41) is heavier to put in place. As for nonlinear equations, a globlalization scheme must be used in addition to a given local methods, cf. Appendix B. In our numerical illustration, we use line-search techniques with the merit function being (directly) f .

We also test two Hessian-free methods, which are particularly attractive in the GNEP context : the conjugate gradient and the Barzilai and Borwein methods, see e.g. [START_REF] Nocedal | Numerical Optimization[END_REF] and [START_REF] Raydan | The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem[END_REF], respectively. The latter was already tested in the GNEP context by [START_REF] Von | Optimization reformulations of the generalized Nash equilibrium problem using the Nikaido-Isoda type functions[END_REF]. Let g k = ∇f (z k ). The (nonlinear) conjugate gradient method builds a sequence of directions starting by d 1 = -g 1 and

d k = -g k + β k d k-1
for k > 1. Generally, β k are updated according one of the following schemes : the Fletcher-Reeves update

β k = g T k g k /g T k-1 g k-1 (the default) or the Polak-Ribière β k = g T k (g k -g k-1 )/g T k-1 g k-1
. Therefore, there is no equation to solve when computing d k in the conjugate gradient method. In practice, the conjugate gradient is combined with a backtracking line-search.

The Barzilai and Borwein method was first introduced to deal with large scale optimization methods. This method is particularly relevant in our context, since it uses only the function and the gradient to determine the next iterate. The Barzilai and Borwein method has a direction and a stepsize given by

d k = -g k , t k = d T k-1 d k-1 d T k-1 (g k -g k-1 )
.

In the literature, the following step size is sometimes considered

t k = d T k-1 (g k -g k-1 )/(g k - g k-1 ) T (g k -g k-1
), but we discard it for numerical accuracy reasons. In practice, the method is also globalized using a nonmonotone line-search, see e.g. [START_REF] Grippo | A nonmonotone line search technique for Newton's method[END_REF].

Convergence theorems

The convergence theorem for the (classical) Newton method, see e.g. Theorem 3.5 of [START_REF] Nocedal | Numerical Optimization[END_REF] and Theorem 4.1 of [START_REF] Bonnans | Numerical Optimization: Theoretical and Practical Aspects[END_REF], are now recalled.

Theorem 13. Suppose that f is C 2 in a open convex set O ⊂ R n .
Let z be a stationary point of f (i.e. ∇f (x ) = 0). Let (z N k ) k be the sequence generated by the Newton method. If the Hessian ∇ 2 f is Lipschitz continuous around z and z 0 is sufficiently close to z , then (z N k ) k converges quadratically to z . Now, we give a generalization by no longer assuming f is C 2 . We consider functions with semismooth gradients called SC 1 . This theorem is an application of Theorem 3.2 of [START_REF] Qi | A nonsmooth version of Newton's method[END_REF] to the nonsmooth equation ∇f (z) = 0. Theorem 14. Let z be a stationary point of a SC 1 function f satisfying ∀v = 0, ∀H ∈ ∂ 2 f (z ), v T Hv > 0. The (generalized) Newton method z k+1 = z k + d k where d k solves [START_REF] Nocedal | Numerical Optimization[END_REF], converges superlinearly to z . If in addition ∇f is strongly semismooth at z , then the convergence rate is quadratic.

Note that using the same reasoning as in Subsection 2.2.2, we can replace the nonsingularity of

H ∈ ∂ 2 f (z ) to the nonsingularity of H ∈ ∂ 2 B f (z ).
When combined with a line-search, the global convergence of the generalized Newton method can be proved. Recalling that for smooth problems, convergence theorems require (at least) the function f to be C 2 with a Lipschitz Hessian in a neighborhood of a solution, see e.g. Theorem 3.5 of [START_REF] Nocedal | Numerical Optimization[END_REF]. This is similar for the convergence of the generalized Newton method, see e.g. Theorem 4.1 of [START_REF] Jiang | Global convergence analysis of the generalized Newton and Gauss-Newton methods for the Fischer-Burmeister equation for the complementarity problem[END_REF] and Theorems 8.3.19 and 10.4.9 of [START_REF] Facchinei | Finite-Dimensional Variational Inequalities and Complementary Problems[END_REF]. We present below a version based on [START_REF] Facchinei | Minimization of SC1 functions and the Maratos effect[END_REF] and refer to Appendix B.1 for more details on line-search techniques.

Theorem 15. Let x be a stationary point of a SC 1 function f satisfying ∀v = 0, ∀H ∈ ∂ 2 f (z ), v T Hv > 0. The (generalized) Newton method with line search x k+1 = x k + t k d k where d k solves (41) and t k satisfies the Armijo condition, converges superlinearly to x . If in addition ∇f is strongly semismooth at x , then the convergence is quadratic. Proof. By Theorem 3.6 of [START_REF] Facchinei | Minimization of SC1 functions and the Maratos effect[END_REF], we have ∃ρ > 0, ∇f (x k ) T d k ≤ -ρ||d k || 2 . And by Theorem 3.3 of [START_REF] Facchinei | Minimization of SC1 functions and the Maratos effect[END_REF], there exists a k such that the Armijo condition is always satisified for a full Newton step t k = 1. Theorem 14 completes the proof. Now we turn our attention to the convergence of quasi-Newton methods. In the differentiable setting, e.g. [START_REF] Nocedal | Numerical Optimization[END_REF] or [START_REF] Bonnans | Numerical Optimization: Theoretical and Practical Aspects[END_REF], the convergence of the BFGS method when assuming f is C 2 and a condition on the deviation ||(H k -∇ 2 f (z k ))s k ||/||s k || → 0. Extensions of those convergence theorems when f is only SC 1 have yet to be found. Theorems 9 and 10 applied to the semismooth equation ∇f (z) = 0 provide criteria for a general quasi-Newton method. The resulting condition on the deviation is

||(H k -V k )s k ||/||s k || → 0, where V k ∈ ∂ 2 f (z k ). It is
still an open problem if the BFGS scheme satisfies this condition. However, as the BFGS method does not need the Hessian matrix, we test it without knowing the convergence.

Finally, we give two convergence theorems for the conjugate gradient (with Fletcher-Reeves) and the Barzilai-Borwein method, respectively Theorem 5.7 of [START_REF] Nocedal | Numerical Optimization[END_REF] and Theorem 2.1 of [START_REF] Raydan | The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem[END_REF]. Theorem 17. Consider (z k ) k the sequence of the globalized Barzilai-Borwein method. Assume the level set L = {z, f (z) ≤ f (z 0 )} is bounded and f is C 1 in some neighborhood of L. Then, the sequence (z k ) k either attains to a stationary point in a finite number of step or converges to a stationary point if there are in a finite number of steps.

Application to the VI and NI reformulations

All necessary tools for the study of the GNEP [START_REF] Dutang | GNE: computation of Generalized Nash Equilibria[END_REF] have been presented : we focus on the two reformulations of Subsection 1.4.

The VI reformulation

Let us start by the VI reformulation of Subsection 1.4.2. We recall that the merit function of the GNEP is V V I (x) = max y ψ rV I (x, y) where ψ rV I is defined as

ψ rV I (x, y) = F (x) T (x -y) - 1 2 (x -y) T H(x -y),
and F (x) = (∇ x i θ i (x)) i . In order to derive the gradient of V V I in terms of ψ rV I , we apply the Dankins theorem, see e.g. [START_REF] Bertsekas | Nonlinear Programming[END_REF]. Since ψ rV I is concave in y, we get

∇V V I (x) = JacF (x) T (x -y H (x)) + F (x) -H(x -y H (x)),
where y H is the unique maximizer of y → ψ rV I (x, y). This formulation requires F to be differentiable, i.e. objective functions θ ν 's to be C 2 .

The NI reformulation

We continue with the NI reformulation of Subsection 1.4.3. The regularized Nikaido-Isoda function is defined

ψ rN I (x, y) = N ν=1 θ ν (x ν , x -ν ) -θ ν (y ν , x -ν ) - α 2 ||x ν -y ν || 2 ,
with which the merit function is V rN I (x) = max y ψ rN I (x, y). Again by applying the Dankins theorem, we get the gradient V rN I

∇V rN I (x) = N ν=1 [∇ x θ ν (x ν , x -ν ) -∇ x θ ν (y α,ν (x), x -ν )] +    ∇ x 1 θ 1 (y α,1 (x), x -1 ) . . . ∇ x N θ N (y α,N (x), x -N )    -α(x -y α (x)),
where y α is the unique maximizer of y → ψ rN I (x, y). In this case, θ ν needs only to be C 1 .

Analysis of assumptions

We turn our attention to the analysis of assumptions of Theorems 14 and 15 for Hessian-based methods, and then Theorems 17 and 16 for Hessian-free methods. For Hessian-based methods, convergence theorems require the function to be SC 1 . For the NI reformulation, Theorem 3.6 of [START_REF] Von | SC1 optimization reformulations of the generalized Nash equilibrium problem[END_REF] (recalled below) shows that the regularized Nikaido-Isoda function is SC 1 in a neighborhood of a GNEP x under certain conditions.

Theorem 18. Let x be a solution of the GNEP [START_REF] Dutang | GNE: computation of Generalized Nash Equilibria[END_REF]. Assume that functions θ ν are C 2 and player-convex, and function g is C 2 and convex. If for all active constraints (i.e. i, g i (y ) = 0) of max y ψ rN I (x, y) ∇g i (y ) are linearly independent with y = y α (x ), then V rN I is an SC 1 -function in the neighborhood of x .

The semismoothness of the gradient ∇V rN I is proved by showing that ∇V rN I is a composition of C 1 functions ∇ x θ ν and a semismooth function y α . Thus, the difficulty lies on the latter part. Firstly, they show that a semismooth reformulation of the KKT conditions of max y ψ rN I (x, y) is locally Lipschitzian and has an explicit form for its generalized Jacobian. Secondly, the condition of linear independence of active gradients and the concavity of y → ψ rN I (x, y) guarantee the nonsingularity of elements of the generalized Jacobian. Finally, the semismoothness is derived by the implicit function theorem.

For the VI reformulation, we can derive the same result since the regularized gap function y → ψ rV I (x, y) is also concave but we have to assume F is a C 2 function. We get the following theorem.

Theorem 19. Let x be a solution of the GNEP [START_REF] Dutang | GNE: computation of Generalized Nash Equilibria[END_REF]. Assume that objective functions θ ν are C 3 , and constraint function g is C 2 and convex. If for all active constraints of max y ψ rV I (x, y), i.e. i, g i (y ) = 0, ∇g i (y ) are linearly independent with y = y H (x ), then V rV I is an SC 1 -function in the neighborhood of x .

Proof. Same proof as Theorem 3.6 of [START_REF] Von | SC1 optimization reformulations of the generalized Nash equilibrium problem[END_REF] for the problem max y ψ rV I (x, y).

A second assumption for Hessian-based methods in convergence theorems is the nonsingularity of elements in the generalized Hessian : V ∈ ∂ 2 V rN I (x ) and V ∈ ∂ 2 V rV I (x ). So, a natural question raises about the expression of ∂ 2 V rN I . Lemma 4.1 and 4.2 of [START_REF] Von | SC1 optimization reformulations of the generalized Nash equilibrium problem[END_REF] gives an expression ∂ 2 V rN I , which can be easily adapted to ∂ 2 V rV I . The expression of the generalized Hessian can be derived using the chain rule and is given by

∇ xx ψ(x, y) + ∇ xy ψ(x, y)∂y(x) ⊂ ∂ 2 V (x),
where V equals to V rV I or V rN I , ψ equals to ψ rV I or ψ rN I , and y equals to y H or y α . With the same assumption of nonsingularity (of H ∈ ∂ 2 V (x )), we can apply Theorems 14 and 15 to get the global convergence. This is done in Theorem 4.3 of [START_REF] Von | SC1 optimization reformulations of the generalized Nash equilibrium problem[END_REF] where they apply Theorem 14 and requires the nonsingularity of V ∈ ∂ 2 V rN I (x ). Similarly, we can apply those theorems to the function V rV I .

Regarding the Hessian-free methods presented in the previous subsection, the conditions for convergence are lesser than for Hessian-based methods. In Theorems 16 and 17 (for min z f (z)), they require the differentiability of f and the boundedness of the set L = {z, f (z) ≤ f (z 0 )}. We already know that V rV I and V rN I are C 1 functions, while the boundedness of L is generally not a problem.

Classical methods for solving fixed-point problem

We deal with methods solving the fixed-point problem of Propositions 3 and 4. As seen in Subsections 1.4.2 and 1.4.3, the GNEP can be reformulated to a fixed-point problem. Therefore in this subsection, we present main algorithms to solve the fixed-point equation

z = F (z), (42) 
where F : R n → R n . By Banach's fixed point theorem, we know that the fixed point is unique if F is contractive, i.e. ∃0 < L < 1, ∀z, y, ||F (z) -F (y)|| ≤ L||z -y||. The two main approaches for computing fixed points are polynomial methods and epsilon algorithms, see e.g. [START_REF] Varadhan | Simple and globally convergent methods for accelerating the convergence of any em algorithm[END_REF]. We focus on the former one.

A first method to solve (42) uses the pure fixed-point iterates z n+1 = F (z n ), starting from z 0 , which is also known as the Picard iteration. In the case of contractive function, the Picard iteration converges to the fixed point from any starting point at a geometric rate. Applying the Newton method to the equation z -F (z) = 0 leads to the following sequence of iterate z n+1 = z n -(I -Jac F (z n ))(z n -F (z n )). In practice, the Newton method is slow to converge and needs the computation of the Jacobian. In the following, we deal with extensions of the Picard method.

Polynomials extrapolation methods aim to accelerate the Picard method by considering polynoms of the function F ., Let F i stands for the ith composition of F (and F 0 the identity function). Polynomial methods are based on the general scheme

z k+1 = d i=0 γ k i F i (z k ),
where γ k i are constants and d is the order of the polynom such that d i=0 γ k i = 1. Let ∆ i,j be the forward differences ∆ i,j z k = j l=0 (-1) l-j C j l F l+i (z k ) with C j l the binomial coefficients for positive integers i, j. For first-order methods, i.e. d = 1, the next iterate computation reduces to

z k+1 = z k -γ k 1 r k ,
where r k = F (z k ) -z k is known as the residual and γ k 1 is the. We only have to determine γ k 1 since

γ k 0 = 1 -γ k 1 .
Relaxation methods consider a decreasing stepsize independent of the current iterate z k , but more advanced methods can be used to determine γ k i .

d-order extrapolation methods propose a set of equations for coefficients γ k i to satisfy

d i=0 β k i,j γ k i = 0, (43) 
where β k i,j are expressed in terms of forward differences ∆ i,j z k . The reduced rank extrapolation (RRE) method uses β k i,j = (∆ i,1 z k ) T ∆ j,2 z k , whereas the minimal polynomial extrapolation (MPE) method assumes β k i,j = (∆ i,1 z k ) T ∆ j,1 z k . In the special case of d = 1, the coefficients γ k i have a simple explicit form. From [START_REF] Qi | Convergence analysis of some algorithms for solving nonsmooth equations[END_REF], we get

γ k 1,RRE = v T k r k v T k v k and γ k 1,M P E = r T k r k r T k v k , (44) 
where

r k = ∆ 0,1 z k = F (z k ) -z k and v k = ∆ 0,2 z k = F (F (z k )) -2F (z k ) + z k .
The corresponding methods, resp. RRE1 and MPE1, are thus defined as z k+1 = z k -γ k 1,. r k . Note that RRE1 method is also called the Richardson method, while the MPE1 is called the Lemaréchal method, see e.g. [START_REF] Roland | Squared polynomial extrapolation methods with cycling: an application to the positron emission tomography problem[END_REF].

For a general d, there is a close-form formula for the system (43) which involves matrix transpose and inverse. For RREd, we have

z k+1 = z k -∆Z k (∆Z T k ∆ 2 Z k ) -1 ∆Z T k r k , (45) 
and for MPEd,

z k+1 = z k -∆Z k (∆ 2 Z T k ∆ 2 Z k ) -1 ∆ 2 Z T k r k , (46) 
where ∆Z k and ∆ 2 Z k are d × d matrices given by ∆ j Z k = (∆ 1,j z k , . . . , ∆ 1,j z k+d-1 ), for j = 1, 2. When d is small, z k+1 can be reasonably computed by [START_REF] Qi | Semismooth KKT equations and convergence analysis of Newton and Quasi-Newton methods for solving these equations[END_REF] and [START_REF] Qi | A Survey of Some Nonsmooth Equations and Smoothing Newton Methods[END_REF]. But for large values of d, extrapolation methods RREd and MPEd have to be implemented by a recursive algorithm, e.g. [START_REF] Sidi | Efficient implementation of minimal polynomial and reduced rank extrapolation methods[END_REF].

Let u k i = F i (z k ). In the previous polynomial methods, the next iterate is computed as z k → u k 0 , . . . , u k d → z k+1 . The sequence (u k i ) i 's, called a cycle or a restart, is used to extrapolate the next point with interpolation point (u k i ) i . Squaring extrapolation methods consist in applying twice a cycle step to get the next iterate, see e.g. [START_REF] Varadhan | Squared Extrapolation methods (SQUAREM): a new class of simple and efficient numerical schemes for accelerating the convergence of the EM algorithm[END_REF] and [START_REF] Roland | Squared polynomial extrapolation methods with cycling: an application to the positron emission tomography problem[END_REF]. Therefore, the next point have the general form

z k+1 = d i=0 d j=0 γ k i γ k j F i+j (z k ).
When d = 1, the squaring 1st order method are such that z k+1 can be rewritten as

z k+1 = z k -2γ k 1 r k +(γ k 1 ) 2 v k ,
where the coefficient γ k 1 is given in ( 44) depending wether we choose the RRE1 or the MPE1 sequence. The corresponding squared version are denoted SqRRE1 and SqMPE1, respectively. The squared RRE and MPE methods are obtained with the same arbitrary vectors.

Finally, we focus on convergence results for RRE and MPE methods. In some papers, there is a blanket assumption that F is a contraction. We present Theorem 6 of [START_REF] Sidi | Efficient implementation of minimal polynomial and reduced rank extrapolation methods[END_REF] based on their Remark 1. To our knowledge, there is no convergence result for squared methods SqRRE1 and SqMPE1.

Theorem 20. For a fixed point problem F (z) = z, we assume F is differentiable, Jac F is Lipschitz. Let z be a fixed point of F . If Jac F (z ) -I is nonsingular and if the stepsize given by [START_REF] Qi | Semismooth KKT equations and convergence analysis of Newton and Quasi-Newton methods for solving these equations[END_REF] or [START_REF] Qi | A Survey of Some Nonsmooth Equations and Smoothing Newton Methods[END_REF] is bounded after a finite number of iterations, then there exists a neighborhood U of z such that for all initial points z 0 ∈ U , the sequence (z k ) k generated by MPE and RRE converges quadratically to z . x i θ i (y i , x -i )] -αI are positive definite. Therefore, by the implicit function theorem, see e.g. Chapter 8 of [START_REF] Zorich | Mathematical Analysis I[END_REF], we conclude that y is a differentiable function with Jacobian given by Jac x y(x) = -(Jac y F (x, y(x))) -1 Jac x F (x, y(x)). Hence, we get Jac

x y(x) = -(Jac y (∇ y ψ)(x, y(x))) -1 Jac x (∇ y ψ)(x, y(x)).
The Lipschitzness of Jacy is guaranted by further differentiability of objective and constraint functions.

Numerical illustrations

We consider the three-player river basin pollution game of [START_REF] Krawczyk | Relaxation algorithms to find Nash equilibria with economic applications[END_REF], where players engaged in an economic activity must meet environmental constraints. The profit of Player j is assumed to be quadratic in player variable as θ j (x) = (d 1 -d 2 (x 1 + x 2 + x 3 ) -c 1j -c 2j x j )x j while the common constraint function is defined as g(x) = (g l (x)) 1≤l≤2 with g l (x) = u l1 e 1 x 1 +u l2 e 2 x 2 +u l3 e 3 x 3 -K l ≤ 0 for l = 1, 2. Constants of this game are listed in As in Subsection 2.4, an exit code of a given algorithm is provided: (1) indicates successfull convergence ||m(x )|| ≤ f tol with f tol = 1e -6 , (2) algorithm is stuck and (4) the iteration limit is exceeded k > kmax with kmax = 100. For both reformulations, we carry out a double-level optimization since the minimization of the function V or the fixed-point function y require the computation max y ψ(x, y), i.e. for one outer iteration, there are multiple inner iterations. This constrained system is solved by an augmented Lagrangian method ( [START_REF] Lange | Optimization[END_REF]) implemented in the alabama package ( [START_REF] Varadhan | alabama: Constrained nonlinear optimization[END_REF]). We set the maximum number of iteration to kmax with the same tolerance f tol.

Minimization reformulation

Firstly, results for the minimization reformulation are presented. As explained in Section 1.4, the GNEP is reformulated as an unconstrained minimization problem [START_REF] Facchinei | Finite-Dimensional Variational Inequalities and Complementary Problems[END_REF] for NIR and ( 16) for VIR. As in [START_REF] Von | Optimization reformulations of the generalized Nash equilibrium problem using the Nikaido-Isoda type functions[END_REF], we set α = 0.02 and β = 0.05. In Table 6, we report the number of calls to the function V αβ (.), the gradient function ∇V αβ (.), the regularized gap function ψ(., .) and its gradient ∇ψ(., .), the termination criterion at final iterate and the code, where the algorithms are denoted as follows: 'BB' for the Barzilai-Borwein method, BFGS for the quasi-Newton BFGS method and 'CG' for the conjugate-gradient method. For both reformulations NIR and VIR, we consider as termination critertion the merit function m(x) = V αβ (x). The initial point is x 0 = (1, 1, 1). As shown in Table 6, only the BFGS method converge, while the BB and the CG methods remains stuck except for the CG-NIR which exhausts the maximum number of iterations. So, there is a clear advantage of the BFGS method. The best estimation of the normalized NE of the river-basin pollution game is x = (21.46060005, 16.00840374, 2.53209932).

Fixed-point reformulation

The results for the fixed-point reformulation are now presented. As described in Section 1.4, the GNEP is reformulated as an unconstrained fixed-point problem [START_REF] Facchinei | Finite-Dimensional Variational Inequalities and Complementary Problems[END_REF] for NIR and (17) for VIR (as in [START_REF] Von | Optimization reformulations of the generalized Nash equilibrium problem using the Nikaido-Isoda type functions[END_REF], we set α = 0.02). The different algorithms of Sections 3.3 and 3.4 are denoted as follows: 'pure' for the Picard method, 'relax' for the relaxation method developped in [START_REF] Krawczyk | Relaxation algorithms to find Nash equilibria with economic applications[END_REF], 'grelax' for a line-search-globalized relaxation method developped in [START_REF] Von | Numerical methods for the solution of the generalized Nash equilibrium problem[END_REF], 'RRE' and 'MPE' for extrapolation methods RRE1 and MPE1, 'SqRRE' and 'SqMPE' for the corresponding squared version. There are two reformulations either Nikaido-Isoda reformulation (NIR) or Variational Inequality reformulation (VIR).

For both reformulations, we consider as termination criterion either the merit functions m(x) = ψ(x, y(x)) (either NI or VI) evaluated at current iterate x k or no merit function (FP) so that the termination criterion is ||x k -x k-1 ||. The initial point is chosen as x 0 = (1, 1, 1) (similar results are obtained x 0 = [START_REF]Reformulation -Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods[END_REF][START_REF]Reformulation -Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods[END_REF][START_REF]Reformulation -Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods[END_REF]). Table 7 report the number of calls to the function y(.), the merit function m(.), the regularized gap function ψ(., .) and its gradient ∇ψ(., .), the termination criterion at final iterate and the code. As given in Table 7, relaxation methods 'relax' and 'grelax' do not converge within 100 (outer) iterations, leading to a high number of calls to ψ and ∇ψ. The pure fixed-point iteration performs relatively well compared to its simplicity, then comes the extrapolation methods MPE and RRE, and finally their squared version. As described in [START_REF] Roland | Squared polynomial extrapolation methods with cycling: an application to the positron emission tomography problem[END_REF], squared methods outperform the simple extrapolation methods whatever the problem is when the merit function is specified (i.e. not for FP). Our best estimation of the normalized NE is x = (21.12806751, 16.03599004, 2.736678647).

Conclusion

The generalized Nash equilibrium problem (GNEP) is of particular importance when modelling concrete applications, e.g. in economics, in computer science and in biology. The demand for effective computational methods of the GNEP in general form is increasing. This survey paper provided a large panel of optimization methods available for the general GNEP and the jointly convex GNEP. Our numerical experiments showed an advantage for the KKT reformulation of the GNEP compared to the constrained equation reformulation, yet, in [START_REF] Dreves | On the solutions of the KKT conditions of generalized Nash equilibrium problems[END_REF], the constrained equation reformulation was better. A method working for any general GNEP has yet to be found and its convergence to be proved. Regarding jointly convex GNEP, there is a clear advantage to use the fixed-point reformulation especially solved with extrapolation techniques. In this paper, we also propose new optimization methods solving the GNEP by considering quasi-Newton methods (the Broyden method for general games and the BFGS method for jointly convex games), as well as extrapolation methods when solving the GNEP as a fixed-point. This work was partially funded by the AXA research fund and the Swiss National Science Foundation Project 200021-124635/1. These two conditions are referred to the Wolfe conditions. In this paper, we use a backtracking algorithm, for which the curvature condition is always satisfied. Let t k,0 = 1 be the initial guess of the stepsize. The backtracking algorithm is defined as follows

Repeat until f (x k + td k ) ≤ f (x k ) + t k,i c 1 ∇f (x k ) T d k satisfied,
• propose a new t k,i+1 using t k,i , . . . t k,0 .

end Repeat

This algorithm always tests a full step with t k,0 = 1. For the backtracking line search, a classic result shows that the full step will be eventually satisfied as z k tends to a solution. In practice, we test two stepsize proposal algorithms. The geometric line search uses t k,i+1 = ρ × t k,i , with 0 < ρ < 1, whereas the quadratic line search uses a quadratic approximation of φ using the information φ k (t k,i ), φ k (t k,i-1 ), φ k (t k,i-1 ). We get

t k,i+1 = - 1 2 φ k (t k,i-1 )t 2 k,i φ k (t k,i ) -φ k (t k,i-1 ) -φ k (t k,i-1 )t k,i .
Other proposal, such as cubic approximation, are e.g. given in [START_REF] Bonnans | Numerical Optimization: Theoretical and Practical Aspects[END_REF] and [START_REF] Dennis | Numerical Methods for Unconstrained Optimization and Nonlinear Equations[END_REF].

Until now, we do not specify the merit function f . For nonlinear equation, we generally choose f (z) = 1 2 ||F (z)|| 2 2 , sometimes referred to the residual function. This merit function has some defficiencies, since a local minimum is not necessarily a root of the function F . We will see later in the GNEP context, that f has still some interesting properties. Line-search methods require to a tractable formula for the gradient ∇f (z) = Jac F (z) T F (z), when testing the Armijo condition. However, in a quasi-Newton framework, we do not necessarily have a tractable Jacobian. A typical way to deal with this is to use a numerical Jacobian, e.g., based on the forward difference. We use [START_REF] Dennis | Numerical Methods for Unconstrained Optimization and Nonlinear Equations[END_REF]'s algorithm A5.4.1 defined by D(F )(z) = (D 1 , . . . , D n ), with D j = F (z + h j e j ) -F (z)

h j ∈ R n ,
where e j is the jth unit vector and h j a small step, typically, h j = √ z j where is the epsilon machine ( = 1e -16 ).

B.2 Trust-region approach

Trust-region strategies relaxe the constraint that d k is a descent direction. Line search assumes the "best" point from z k lies on the half-line z k + R + d n . Quoting [START_REF] Bonnans | Numerical Optimization: Theoretical and Practical Aspects[END_REF], "what is magic in this half line? answer: nothing". Trust-region approach will look for appropriate steps h k in a "small" region around z k . Such regions are not the half-line as in line search.

To find the root of F (x) = 0, trust-region methods minimizes a local quadratic approximation m k of a merit function f : R n → R on a bounded subset: the trust region {z, ||z -z k || ≤ ∆ k }. The name comes from viewing ∆ k as providing a region in which we can trust m k to adequately model f . Classic trust region methods consider the following model function

m k (h) = f (z k ) + g(x k ) T h + 1 2 h T Hk h,
with g(x k ) the approximate gradient of f and Hk a (ideally) positive definite matrix approximating the Hessian of f .

To adapt the trust region radius ∆ k , we define the following ratio

ρ k (h) = f (x k ) -f (x k + h) m k (0) -m k (h) .
ρ k (h) is the ratio of the actual reduction and the predicted reduction of the merit function for a step h. The higher is ρ k (h), the higher is the reduction of the merit function f for a given h. Now, we can define a generic algorithm for a model function m k , see e.g. [START_REF] Nocedal | Numerical Optimization[END_REF] for a recent survey.

Init ∆ 0 = 1, η 0 > 0, 0 < η 1 < η 2 < 1 and 0 < γ 1 < 1 < γ 2 .

Iterate until a termination criterion is satisfied,

• get h k = arg min ||h||<∆ k m k (h) (approximately),
• compute ρ k (h k ), • next iterate

-if ρ k (h k ) < η 1 then ∆ k+1 = γ 1 ∆ k (unsuccessful), -else if ρ k (h k ) > η
-if ρ k (h k ) > η 0 then x k+1 = x k + h k , -else x k+1 = x k .
end Iterate

Typical values of parameters are ∆ 0 = 1 or ||g 0 || 10 , ∆ max = 10 10 for radius bounds, η 0 = 10 -4 , η 1 = 1 4 , η 2 = 3 4 for ratio threshold, γ 1 = 1 2 and γ 2 = 2 for radius expansion coefficients.

If readers have been attentive, then they should have noticed that the algorithm cannot be used directly. In fact, we have to determine how to compute the approximate solution h k of the following minimization problem min

||h||<∆ k m k (h).
As for line search techniques, this problem has to be solved approximately as this problem is not our primary concern. There are two heuristic methods to achieve this: Powell's dogleg and double dogleg methods. The Powell dogleg method uses a linear approximation of the model function m k (h), see e.g. Chapter 6 of [START_REF] Powell | A hybrid method for nonlinear algebraic equations[END_REF]. Let p S k be the scaled steepest descent direction and p N k be the Newton point defined as

p S k = - g T k g k g T k Hk g k g k and p N k = -H-1 k g k .
The Powell dogleg method is as follows.

• If ||p N || ≤ ∆ k , then h = p N .

• Else if ||p S || ≥ ∆ k , then h = ∆ k /||p S || × p S .

• Else, we choose a convex combination between the two points p S and p N . That is we find a λ ∈ [0, 1] such that ||p S + λ(p N -p S )|| = ∆ k . We get h = λ p N + (1 -λ )p S with λ = -< p S , p N -p S > + < p S , p N -p S > 2 -||p N -p S || 2 (||p

S || 2 -∆ k ) ||p N -p S || 2 ,
where < ., . > denotes the scalar product and ||.|| denotes the Euclidean norm.

[41] also propose a "simple" dogleg method which remove the step ||p S || ≥ ∆ k , see Algorithm 11.6. The double dogleg method finds an approximate solution of the model function m k (h) assuming the Hessian matrix is Hk = L T L. The double dogleg method is a variant Powell dogleg method using a forcing parameter η k . [START_REF] Dennis | Numerical Methods for Unconstrained Optimization and Nonlinear Equations[END_REF] propose the following procedure.

• If ||p N || ≤ ∆ k , then h = p N . • Else if η k ||p N || ≤ ∆ k , then h = p N × η k /∆ k . • Else if ||p S || ≥ ∆ k then h = p S × ∆ k /||p S ||.
• Else, we choose λ such that ||p S + λ(η k p N -p S )|| = ∆ k . We get back to the Powell dogleg case with η k p N instead of p N .

where the parameter η k ≤ 1 is defined as η k = 0.2 + 0.8α 2 /(β|g T k d N |), with α = ||g k || 2 , β = ||Lg k || 2 . As for line-search techniques, we use the merit function f (z) = 1 2 ||F (z)|| 2 2 . We recall that the gradient is given by g(z) = Jac F (z) T F (z).

Therefore, the approximated Hessian Hk is JacF (z k ) T Jac F (z k ) as in the Gauss-Newton model. Hence, the steepest descent point and the Newton point have the following expression

p S k = - g T k g k g T k J T k J k g k g k and p N k = -J T k g k .
As in the previous subsection, when working a quasi-Newton method, the Jacobian is numerically approximated by a forward difference.

B.3 The special case of the Levenberg-Marquardt method

Until now, all globalization methods are adapted for the Newton or the Broyden direction defined in Equations ( 21) and [START_REF] Fan | On the quadratic convergence of the Levenberg-Marquardt Method without nonsingularity assumption[END_REF]. We need to precise how to globalize the Levenberg-Marquardt direction. This method was introduced in the context of the least-square problem min 1 2 ||F (z)|| 2 2 . In fact, there is a relation between the trust-region approach and the Levenberg-Marquardt method. The solution to the quadratic problem min

||h||<∆ k f (z k ) + g(x k ) T h + 1 2 h T Hk h

Definition 1 (

 1 complementarity functions). A complementarity function φ : R 2 → R is a function verifying the following property φ(a, b) = 0 ⇔ a ≥ 0, b ≥ 0, ab = 0. Examples of complementarity functions are φ ∧ (a, b) = min(a, b), φ F B (a, b) = √ a 2 + b 2 -(a + b)

Theorem 16 .

 16 Let (z F R k ) k generated by the Fletcher-Reeves update. Assume the level set L = {z, f (z) ≤ f (z 0 )} is bounded and f is C 1 with Lipschitz gradient on L. If the line search satisfies the strong Wolfe conditions with c 1 < c 2 < 1/2, then the sequence (z F R k ) k either terminates to a stationary point or converges in the sense that lim inf k→+∞ ||∇f (z k )|| = 0.

3. 4

 4 Application to the VIR and NIRAs given in Subsections 1.4.2 and 1.4.3, generalized Nash equilibria of jointly convex games solve a fixed-point problemy(x) = x,where y denotes either[START_REF] Facchinei | Finite-Dimensional Variational Inequalities and Complementary Problems[END_REF] the NI reformulation or[START_REF] Facchinei | A nonsmooth inexact Newton method for the solution of large-scale nonlinear complementarity problems[END_REF] for the VI reformulation. Those two fixed-point functions are defined as a solution of a maximization problemy(x) = arg max y∈X ψ(x, y),where ψ is either ψ rN I or ψ rV I . Since the function y → ψ(x, y) is strictly concave in our GNEP setting, maximizers of ψ satisfying the first-order KKT condition ∇ y ψ(x, y) = 0, are global maximizers. Let F : R n × R n → R n be the mapping F (x, y) = ∇ y ψ(x, y) : F V I and F N I are defined similarly. By definition, F (x, y(x)) = 0. Using the differentiability of objective and constraint functions, we get that F is C 1 with respect to both variables. Furthermore, Jac y F (x, y) is a positive definite matrix (i.e. hence invertible), since Jac y F V I (x, y) = -H and Jac y F N I (x, y) = -diag[∇ 2

2

 2 and ||h k || = ∆ k then ∆ k+1 = min(γ 2 ∆ k , ∆ max ) (very successful), else ∆ k+1 = ∆ k .

  Theorem 10. Let F be locally Lipschitzian in a open convex D ⊂ R n . Assume F is semismooth and ∀J ∈ ∂ b F (z ) are nonsingular. Consider a sequence of nonsingular matrices V k and points

then the quasi-Newton sequence is well defined and converges linearly to z .

method

  Fct. call Jac. Call Code ||x f inal -x || 2

	Newton -geom. line search	1	1	1	4.440892e-16
	Newton -quad. line search	1	1	1	4.440892e-16
	Newton -Powell trust region	1	1	1	4.440892e-16
	Newton -dbl. trust region	1	1	1	4.440892e-16
	Broyden -geom. line search	1	1	1	4.440892e-16
	Broyden -quad. line search	1	1	1	4.440892e-16
	Broyden -Powell trust region	1	1	1	4.440892e-16
	Broyden -dbl. trust region	1	1	1	4.440892e-16
	LM -geom. line search	8	8	1	1.176846e-07
	LM -quad. line search	8	8	1	1.176846e-07
	LM -adaptive	6	3	1	8.188869e-11
	PR -geom. line search	1	1	1	2.979041e-15
	AS -Powell trust region	3	3	1	9.930137e-16

Table 1 :

 1 Benchmark of root methods on the generalized duopoly

Table 3 :

 3 Benchmark of root methods on the generalized gamez 1 z 2 z 3 z 4 ∞

		Fct. call Jac. call Code	||F (z )||	i
	Newton -geom. line search	28	11	1	6.476053e-09 2
	Newton -quad. line search	92	31	3	48.30996
	Newton -Powell trust region	63	50	1	5.606129e-07 3
	Newton -Dbl. trust region	63	54	1	5.868254e-07 3
	Broyden -geom. line search	141	9	1	1.790037e-08 2
	Broyden -quad. line search	503	27	3	0.00178784
	Broyden -Powell trust region	261	6	1	8.044891e-07 3
	Broyden -Dbl. trust region	68	4	1	7.342636e-08 2
	LM min -geom. line search	29	29	1	2.936729e-07 2
	LM min -quad. line search	29	29	1	2.936729e-07 2
	LM -adaptive	44	22	1	7.249862e-13 2
	PR -geom. line search	157	20	3	1830.257
	AS -Powell trust region	6	6	2	14.06935
	Newton -geom. line search (GLS)	0	349 236	0	415
	Broyden -Powell trust region (PTR) 120 453 45	87 295

Table 4 :

 4 Number of GNE found for 1000 random initial points

Table 5 .

 5 The normalized Nash equilibrium has no close-form formula but[START_REF] Von | Optimization reformulations of the generalized Nash equilibrium problem using the Nikaido-Isoda type functions[END_REF] found a value of x = (21.1467103, 16.0278207, 2.724244725).

	Player j c 1j	c 2j	e j	u 1j	u 2j	Index l K l	d l
	1	0.10 0.01 0.50 6.5 4.583 1	100	3
	2	0.12 0.05 0.25 5.0 6.250 2	100 0.01
	3	0.15 0.01 0.75 5.5 3.750	

Table 5 :

 5 Constants of the river basin pollution game

Table 6 :

 6 V (.) call ∇V (.) call ψ(., .) call ∇ψ(., .) call ||m(x )|| Code Results for the minimization reformulation

	BB-NIR	19	19	61,457	15,504	1.08e-06	2
	BB-VIR	25	25	85,826	24,424	1.07e-06	2
	BFGS-NIR	74	62	215,628	54,702	8.04e-07	1
	BFGS-VIR	40	19	100,128	28,531	1.47e-07	1
	CG-NIR	201	101	479,382	120,231	0.0194	4
	CG-VIR	123	52	295,865	85,110	0.00194	2

Table 7 :

 7 (.) call m(.) call ψ(., .) call ∇ψ(., .) call ||m(x )|| Code Results for the FP reformulation

	pure-NIR-NI	29	29	23,490	5,355	6.41e-07	1
	pure-NIR-FP	61	0	48,881	11,278	21.1	2
	pure-VIR-VI	20	20	16,239	4,132	9.86e-07	1
	pure-VIR-FP	100	0	79,542	20,435	21.1	4
	relax-NIR-NI	101	101	158,369	36,838	0.172	4
	relax-NIR-FP	101	101	79,126	18,474	0.00395	4
	relax-VIR-VI	101	101	160,869	41,195	0.131	4
	relax-VIR-FP	101	101	80,855	20,677	0.00363	4
	grelax-NIR-NI	101	580	600,597	142,395	0.0907	4
	grelax-VIR-VI	101	3,042	2,609,630	666,968	0.0443	4
	RRE-NIR-NI	41	21	49,925	11,473	-1.47e-07	1
	RRE-NIR-FP	29	0	23,555	5,368	21.1	2
	RRE-VIR-VI	13	7	16,245	4,138	5.52e-07	1
	RRE-VIR-FP	101	0	81,503	20,882	21.1	4
	MPE-NIR-NI	43	22	52,048	11,980	2.61e-08	1
	MPE-NIR-FP	38	0	30,557	7,031	21.1	2
	MPE-VIR-VI	21	11	25,905	6,617	1.56e-08	1
	MPE-VIR-FP	101	0	81,331	20,819	21.1	4
	SqRRE-NIR-NI	15	8	18,565	4,229	5.14e-07	1
	SqRRE-NIR-FP	74	0	59,015	13,639	21.1	2
	SqRRE-VIR-VI	15	8	18,572	4,765	1.94e-07	1
	SqRRE-VIR-FP	101	0	81,567	20,848	21.1	4
	SqMPE-NIR-NI	15	8	18,710	4,259	-6.21e-07	1
	SqMPE-NIR-FP	71	0	56,809	13,108	21.1	2
	SqMPE-VIR-VI	19	10	23,666	6,015	9.38e-07	1
	SqMPE-VIR-FP	104	0	83,959	21,494	21.1	4

y

As usual, Jac F denotes the Jacobian whereas ∇F the tranpose of the Jacobian.

The Frobenius norm (also called the Euclidean norm) for matrix A is defined as ||A||F = i,j |aij| 2 .

If we minimize minW ||W -W k ||F for all matrix W verifying the secant equation, then we will obtain the (bad) Broyden scheme. According to[START_REF] Broyden | A class of methods for solving nonlinear simultaneous equations[END_REF], this method appears often unsatisfactory in practice.

that is F is continuously differentiable C 1 and the Jacobian is Lipschitzian.

Note that if m = 1, the generalized Jacobian reduces to the generalized gradient, see Theorem 2.5.1 of[START_REF] Frank | Optimization and Nonsmooth Analysis[END_REF] for this characterization of the generalized gradient.

A version of the previous theorem exists when the generalized Newton method use the limiting Jacobian J k ∈ ∂BF (z k ) (instead of the generalized Jacobian) in Equation[START_REF] Ip | Local convergence of quasi-Newton methods for B-differentiable equations[END_REF], see e.g.[START_REF] Sun | Newton and Quasi-Newton methods for a class of nonsmooth equations and related problems[END_REF],[START_REF] Jiang | Global and local superlinear convergence analysis of Newtontype methods for semismooth equations with smooth least squares[END_REF] or[START_REF] Facchinei | Generalized Nash equilibrium problems and Newton methods[END_REF].

Originally,[START_REF] Qi | A nonsmooth version of Newton's method[END_REF] use the generalized Jacobian and not the limiting Jacobian. But as mentioned in[START_REF] Qi | Semismooth KKT equations and convergence analysis of Newton and Quasi-Newton methods for solving these equations[END_REF] and[START_REF] Qi | Convergence analysis of some algorithms for solving nonsmooth equations[END_REF], there is a weaker condition for superlinear convergence to hold, that is all elements in the limiting Jacobian are nonsingular.

For the top part, there are less problem in general. As shown in Appendix A, matrices are less sparse: identical rows implies that the constraint functions are linear and two objective derivatives are identical.

For jointly convex GNEP,[START_REF] Izmailov | On error bounds and Newton-type methods for generalized Nash equilibrium problems[END_REF] avoid this issue by considering only smooth parts of (4).

We do not have to require all elements of ∂F but only elements of ∂BF .

A m × m square matrix M is a P0-matrix if for all subscript set α ⊂ {1, . . . , m} the determinant det(Mαα) ≥ 0.

In[START_REF] Monteiro | A Potential Reduction Newton Method for Constrained equations[END_REF], they use the directional derivative along d in the left-hand side of Equation[START_REF] Lange | Optimization[END_REF], which is equivalent to this formulation since H is C 1 under the blanket assumptions.

The generalized Hessian is defined as the generalized Jacobian of the function z → ∇f (z) for a function f with a locally Lipschitzian gradient∂ 2 f (x) = co{H ∈ R n×n , ∃x k → x, with ∇f (x k ) is differentiable and ∇ 2 f (x k ) → H}.

A The KKT system

The generalized Jacobian J(z) of the complementarity formulation has the following form

. . . . . . Jac x 1 L N (x, λ N ) . . . Jac x N L N (x, λ N ) Jac x 1 g 1 (x) T 0 . . . 0 Jac x N g N (x) T -D a 1 (x, λ 1 )Jac x 1 g 1 (x) . . . -D a 1 (x, λ 1 )Jac x N g 1 (x) . . .

. .

-D a N (x, λ N )Jac x 1 g N (x) . . . -D a N (x, λ N )Jac x N g N (x)

.

B Globalization techniques

Globalization schemes are briefly presented. There are mainly two frameworks: line search and trust-region methods.

B.1 Line-search techniques

Line-search techniques are a refinement of the local sequence by considering the sequence z k+1 = z k + t k d k where t k ∈]0, 1] is the stepsize 14 in direction d k at the current iterate z k . Overall, an (outer) iteration is done in two steps : the computation of the direction d k and the computation of the stepsize t k . Line-search techniques propose criteria to choose t k in a certain number of iterations called inner iterations. As the stepsize may reduces the (full) step from z k to z k+1 , line-search version of an algorithm is sometimes called the damped version of that algorithm.

Let f be a merit function. We define the function t → φ k (t) = f (z k + td k ). We want to find a good minimizer of φ k . However, it is useless to find the global minimizer arg min φ k (t), because we want to solve the outer problem F (z) = 0, and not the inner problem min φ k (t). In the following, we assume we have a descent direction d k for the merit function f , as a minimal condtion to choose t k is f (z k+1 ) < f (z k ). This descent direction condition translates to φ k (0) < 0. We are focused on two things, t k should be big enougth to ensure a sufficient decrease of φ, and also t k should not be too small to guarantee a sufficient big step.

One could think that requiring f (z k+1 ) < f (z k ) is enough to show convergence, but unfortunately not. In literature, see, e.g., [START_REF] Dennis | Numerical Methods for Unconstrained Optimization and Nonlinear Equations[END_REF][START_REF] Nocedal | Numerical Optimization[END_REF][START_REF] Bonnans | Numerical Optimization: Theoretical and Practical Aspects[END_REF], two typical conditions are used to determine an appropriate stepsize. Let 0

The curvature condition ensures an increase of ∇φ, implying a decrease of f ,

14 Considering the stepsize t k to ]0, 1] is not too restrictive since the direction d k is not unitary, i.e. ||d k || >> 1.

is equivalent to the problem of finding λ , h such that

with the condition that Hk + λ I is a positive semidefinite matrix. We note in Equation ( 47) that variable λ has the same role as in the Levenberg-Marquardt method.

We can easily interpret Equation [START_REF] Qi | A nonsmooth version of Newton's method[END_REF]. If h lies strictly inside the trust-region then parameter λ is zero. Otherwise, h hits the radius ∆ k , and then parameter λ is set to a positive value. With this interpretation, the use of a trust-region approach with the Levenberg-Marquardt method is redundant.

However, we still consider a globalization strategy for the Levenberg-Marquardt method. Firstly, we test the geometric line-search strategy, defined in Subsection B.1, which is proposed in [START_REF] Fan | On the quadratic convergence of the Levenberg-Marquardt Method without nonsingularity assumption[END_REF], [START_REF] Yamashita | On the rate of convergence of the Levenberg-Marquardt method[END_REF]. Secondly, we use the adaptive Levenberg-Marquardt method discussed in [START_REF] Fan | A modified Levenberg-Marquardt algorithm for singular system of nonlinear equations[END_REF]. The method consists in adjusting the parameter λ k based on

, where µ k is udpated at each iteration depending on the value of the ratio ρ k . Their Algorithm 2.2 updates µ k as in the generic algorithm of the previous Subsection B. [START_REF] Bazaraa | Nonlinear Programming: Theory and Algorithms[END_REF]. So, we do not restate here the updating scheme.

B.4 Convergence criteria in the differentiable setting

Let f be the merit function. The global convergence of line-search techniques is guaranteed when we have the following conditions: (i) the set L = {z, f (z) ≤ f (z 0 )} is bounded, (ii) the Jacobian is bounded in an open convex set around a solution z and (iii) line-search always satisfies the Wolfe conditions with a descent direction, see, e.g. Theorem 11.6 of [START_REF] Nocedal | Numerical Optimization[END_REF]. We have seen that the backtracking algorithm satisfies the Wolfe conditions at each step.

The convergence of trust-region strategies is proved with similar conditions and requires also that the set L and the Jacobian are bounded. Furthermore, the approximated solution of the quadratic local problem min m k (h) such that ||h|| < ∆ k must verify two conditions: (i)

for some c 1 > 0 and (ii) ||h || ≤ γ∆ k for some γ ≥ 1.

B.5 Global convergence in the semismooth setting

Let us study the global convergence starting by line-search techniques. The merit function used is the same function as for the differentiable setting the residual norm.

The gradient is given by ∇f (z) = V T F (z), where V ∈ ∂F (z). As mentioned in [START_REF] Qi | A Survey of Some Nonsmooth Equations and Smoothing Newton Methods[END_REF], the merit function may be C 1 , even if F is only semismooth.

[32] and [START_REF] Qi | A Survey of Some Nonsmooth Equations and Smoothing Newton Methods[END_REF] show the convergence of the Newton method globalized with a backtracking (geometric) line search. When using the generalized Jacobian, [START_REF] Jiang | Global convergence analysis of the generalized Newton and Gauss-Newton methods for the Fischer-Burmeister equation for the complementarity problem[END_REF] shows the convergence of the corresponding algorithm. All proofs rely on the fact that after a large number of iteration, the full Newton step is accepted, i.e. we get back to local convergence.

Theorem 21. Suppose that the root function F is a semismooth function and the merit function f is C 1 . Then any accumulation points z of the line-search generalized Newton method is a stationary point of f , i.e. ∇f (z ) = 0. If z is a solution of F (z) = 0 and all matrices in ∂ B F (z ) are nonsingular, then the whole sequence converges superlinearly (resp. quadratically) to z (if F is strongly semismooth at z ).

To our knowledge, the global convergence of general quasi-Newton methods for nonsmooth equation is not established. However, for the Levenberg-Marquardt with a backtracking line-search technique, [START_REF] Jiang | Global and local superlinear convergence analysis of Newtontype methods for semismooth equations with smooth least squares[END_REF] and [START_REF] Jiang | Global convergence analysis of the generalized Newton and Gauss-Newton methods for the Fischer-Burmeister equation for the complementarity problem[END_REF] show the convergence. We present below a light version of their theorem.

Theorem 22. Let (z k ) k be a sequence of the generalized LM method globalized with a backtracking line search to solve F (x) = 0 for a semismooth function F and a C 1 merit function f . Assuming the direction step is solvable at each iteration, we denote by z an accumulation point. If

If in addition F is strongly semismooth at z , then it converges quadratically. Now, we focus on the second globalization strategy: the trust-region approach. We present first a convergence result of [START_REF] Jiang | Global and local superlinear convergence analysis of Newtontype methods for semismooth equations with smooth least squares[END_REF], based on a result of [START_REF] Jiang | A Trust Region Method for Solving Generalized Complementarity Problem[END_REF] in the context of complementarity problems. 

If z is an accumulation point of the sequence, then z is a stationary point of f . If for all element of ∂ B F (z ) are nonsingular, then the entire sequence converges to x superlinearly. If in addition, F is strongly semismooth at z , then the convergence rate is quadratic.

C Nonsmooth analysis

Definition 15 (locally Lipschitzian). G is locally Lipschitzian

Theorem 24 (from [START_REF] Clarke | Partial subdifferentials, derivates and Rademacher's theorem[END_REF]). Let f : R n → R be a locally Lipschitz function. Then f is almost everywhere differentiable.

From [9, Cor 2.2.4, Chap. 2], for a function f : R n → R locally Lipschitzian at x, we have that the generalized gradient ∂f (y) is a singleton for all y ∈ B(x, ) is equivalent to f is C 1 on B(x, ). From [9, Prop 2.6.2, Chap. 2], we have the following properties of the generalized Jacobian. Proposition 7.

• ∂G(x) is a nonempty, convex, compact subset of R m×n , while ∂ B G(x) is nonempty and compact.

• ∂G is upper semicontinuous and closed at x and ∂ B G is upper semicontinuous.

• ∂G(x) ⊂ ∂G 1 (x) × • • • × ∂G m (x), where the right-hand side is a matrix set where the ith row is the generalized gradient.

The term ∂G 1 (x) × • • • × ∂G m (x) is sometimes denoted by ∂ C G(x). But it is not Clarke's subdifferential, which seems to refer only to real-valued function, i.e. ∂G(x) = ∂ C G(x).

Proposition 8 (From Theorem 2.3 of [START_REF] Qi | A nonsmooth version of Newton's method[END_REF]).

• G is semismooth at x.

• ∀V ∈ ∂G(x + h), h → 0, V h -G (x; h) = o(||h||).

• ∀x ∈ D G , G (x + h; h) -G (x; h) = o(||h||).

From Lemma 2.2 of [START_REF] Qi | A nonsmooth version of Newton's method[END_REF] and Lemma 2.1 of [START_REF] Sun | Newton and Quasi-Newton methods for a class of nonsmooth equations and related problems[END_REF], we have the following properties