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FLEXIBLE BUNDLES OVER RIGID AFFINE SURFACES

ADRIEN DUBOULOZ

Abstract. We construct a smooth rational affine surface S with finite automorphism group but with the
property that the group of automorphisms of the cylinder S×A

2 acts infinitely transitively on the complement
of a closed subset of codimension at least two. Such a surface S is in particular rigid but not stably rigid with
respect to the Makar-Limanov invariant.

Introduction

A complex affine variety X is called rigid if it does not admit non trivial algebraic actions of the additive
group Ga = Ga,C. This is the case for “most” affine varieties, for instance for every affine curve different from the
affine line A1 and for every affine variety whose normalization has non negative logarithmic Kodaira dimension.
The notion was actually introduced by Crachiola and Makar-Limanov in [4] under the more algebraic equivalent
formulation that the Makar-Limanov invariant ML(X) of X, which is defined as the algebra consisting of regular
functions on X invariant under all algebraic Ga-actions, is equal to the coordinate ring Γ(X,OX) of X.

Among many important questions concerning this invariant, the understanding of its behavior under the
operation consisting of taking cylinders X×An, n ≥ 1, over a given affine variety X has focused a lot of attention
during the last decade, in connexion with the Zariski Cancellation Problem. Of course, rigidity is lost even when
passing to the cylinder X × A1 since these admit non trivial Ga-actions by translations on the second factor.
But one could expect that such actions are essentially the unique possible ones in the sense that the projection
prX : X × A1 → X is invariant for every Ga-action on X × A1, a property which translates algebraically to the
fact that ML(X × A1) = ML(X). This property was indeed established by Makar-Limanov [14] and this led to
wonder more generally whether a rigid variety is stably rigid in the sense that the equality ML(X×An) = ML(X)
holds for arbitrary n ≥ 1. Stable rigidity of smooth affine curves is easily confirmed as a consequence of the fact
that a smooth rigid curve does not admit any dominant morphism from the affine line, and more generally every
rigid affine curve is in fact stably rigid [4]. Stable rigidity is also known to hold for smooth factorial rigid surfaces
by virtue of a result of Crachiola [5], and without any indication of a potential counter-example, it seems that
the implicit working conjecture so far has been that every rigid affine variety should be stably rigid.

In this article, we construct a smooth rigid surface S which fails stable rigidity very badly, the cylinder S×A2

being essentially as remote as possible from a rigid variety in terms of richness of Ga-actions on it. Here “richness”
has to be interpreted in the sense of a slight weakening of the notion of flexibility introduced recently in [1, 2]
that we call flexibility in codimension one: a normal affine variety X is said to be flexible in codimension one if
for every closed point x outside a possibly empty closed subset of codimension two in X, the tangent space TxX
of X at x is spanned by tangent vectors to orbits of Ga-actions on X. Clearly, the Makar-Limanov invariant of a
variety with this property is trivial, consisting of constant functions only. Now our main result can be stated as
follows:

Theorem 1. Let V ⊂ P3 be smooth cubic surface and let D = V ∩H be a hyperplane section of V consisting of
the union of a smooth conic and its tangent line. Then S = V \D is a smooth rigid affine surface whose cylinder
S × A2 is flexible in codimension one.

A noteworthy by-product is that while the automorphism group Aut(S) of S is finite, actually isomorphic to Z/2Z
if the cubic surface V is chosen general, Theorem 0.1 in [1] implies that Aut(S × A2) acts infinitely transitively
on the complement of a closed subset of codimension at least two in S × A2.

Our construction is inspired by earlier work of Bandman and Makar-Limanov [3] which actually already con-
tained the basic ingredients to construct a counter-example to stable rigidity, in the form of a lifting lemma for
Ga-actions which asserts that if q : Z → Y is a line bundle over a normal affine variety Y then ML(Z) ⊆ ML(Y ),

and an example of a non trivial line bundle p : L → S̃ over a smooth rational rigid affine surface S̃ for which
ML(L) $ ML(S̃). Indeed, with these informations, the property that ML(S̃×A2) is a proper sub-algebra of ML(S̃)

could have been already deduced as follows: letting p′ : L′ → S̃ be a line bundle representing the class of the inverse
of L in the Picard group of S̃, the lifting lemma applied to the rank 2 vector bundle E = L⊕ L′ = L×S̃ L

′ → S̃

considered as a line bundle over L via the first projection implies that ML(E) ⊆ ML(L) $ ML(S̃). But combined

with a result of Pavaman Murthy [15] which asserts in particular that every vector bundle on such a surface S̃ is
isomorphic to the direct sum of its determinant and a trivial bundle, the construction of E guarantees that it is
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isomorphic to the trivial bundle S̃ × A2 and hence that ML(S̃ × A2) $ ML(S̃).

Noting that the aforementioned of Pavaman Murthy also applies to surfaces S as in Theorem 1, the same
construction can be used for its proof provided that such an S admits a line bundle p : L→ S whose total space
is flexible in codimension one, and that flexibility in codimension one lifts to total spaces of line bundles. The
lifting property follows easily from the fact that every line bundle admits Ga-linearizations, but the existence of
a line bundle p : L→ S with the desired property is trickier to establish. To construct such a bundle, we exploit
the fact that S admits an A1-fibration π : S → P1, i.e. a faithfully flat morphism with generic fiber isomorphic to
affine line. The strategy then consists in constructing a suitable A1-fibered affine surface πF : SF → P1 flexible in
codimension one and to which a variant of the famous Danielewski fiber product trick [6] can be applied to derive
the existence of an affine threefold flexible in codimension one and carrying simultaneously the structure of a line
bundle over S and SF .

The article is organized as follows. In the first section we review basic results about rigid and flexible affine
varieties, with a particular focus on the case of affine surfaces, and we establish that flexibility in codimension
one does indeed lift to total spaces of line bundles (see Lemma 4). Section two is devoted to the study of the class
of affine surfaces S considered in Theorem 1 and the construction of their aforementioned flexible mates SF . The
appropriate variant of the Danielewski fiber product trick needed to achieve the proof of Theorem 1 is discussed
in the last section.

1. Preliminaries on (stable) rigidity and flexibility

1.1. Rigid and flexible affine varieties.
Given a normal complex affine variety X = Spec(A), we denote by DerC(OX) ≃ HomX(Ω1

X/C,OX) the sheaf of
germs of C-derivations from OX to itself. It is a coherent sheaf of OX -modules whose global sections coincide
with elements of the A-module DerC(A) of C-derivations of A. We denote by LNDC(A) the sub-A-module of
DerC(A) generated by locally nilpotent C-derivations, i.e. C-derivations ∂ : A→ A for which every element of A
is annihilated by a suitable power of ∂. Recall that such derivations coincide precisely with velocity vector fields
of Ga-actions on X (see e.g. [12]).

Definition 2. A normal affine variety X = Spec(A) is called:
a) Rigid if LNDC(A) = {0}, equivalently X does not admit non trivial Ga-actions,
b) Flexible in codimension 1, or 1-flexible for short, if the support of the co-kernel of the natural homomorphism

LNDC(A)⊗A OX → DerX(OX) has codimension at least 2 in X.

1.1. The above definition of 1-flexibility says equivalently that there exists a closed subset Z ⊂ X of codimension
at least 2 such that the restriction of DerC(OX) over X \Z is generated by elements of LNDC(A). A closed point
x ∈ X at which the natural homomorphism LNDC(A) ⊗A OX,x → DerX(OX)x is surjective is called a flexible
point of X, this property being equivalent by virtue of Nakayama Lemma to the fact that the Zariski tangent
space TxX of X at x is spanned by the tangent vectors to orbits of Ga-actions on X. The set Xflex of flexible
points is contained in the regular locus Xreg of X and is invariant under the action of the automorphism group
Aut(X) of X. In particular, if there exists a flexible point x ∈ X such that the complement of the Aut(X)-orbit
of x is contained in a closed subset of codimension at least two, then X is flexible in codimension 1.

1.2. We warn the reader that our definition of flexibility for a normal affine variety X is weaker than the one
introduced earlier in [1, 2] which asks in addition that Xflex = Xreg. Since for a 1-flexible variety the set X \Xflex

has codimension at least two in X, this makes essentially no difference for global properties of X depending on
regular functions, for instance the Makar-Limanov invariant of a 1-flexible affine variety is trivial. Furthermore,
all the properties of the regular locus of a flexible variety in the sense of loc. cit. hold for the open subset Xflex of
a 1-flexible variety X, for instance the sub-group of Aut(X) generated by its one-parameter unipotent sub-groups
acts infinitely transitively on Xflex.

Clearly, the only 1-flexible affine curve is the affine line A1. While the classification of flexible affine surfaces in
the stronger sense of [1, 2] is not known and most probably quite intricate, 1-flexible surfaces coincide with the
so-called Gizatullin surfaces [13] with non constant invertible functions. More precisely, we have the following
characterization (see also [1, Example 2.3]).

Theorem 3. For a normal affine surface S, the following are equivalent:
a) S is 1-flexible,
b) S admits two A1-fibrations over A1 with distinct general fibers,
c) Γ(S,O∗

S) = C∗ and S admits a normal projective completion S →֒ V whose boundary is a chain of proper
smooth rational curves supported on the regular locus of V .

Proof. It is well known that every A1-fibration q : S → C over a smooth affine curve C arises as the algebraic
quotient morphism q : S → S//Ga = Spec(Γ(S,OS)

Ga) of a non trivial Ga-action on S. In particular, the general
fibers of such fibrations coincide with the general orbits of a Ga-action on S. Since a flexible surface admits at
least two Ga-actions with distinct general orbits, this provides two A1-fibrations on S with distinct general fibers
and whose respective base curves are isomorphic to A1 due to the fact that they are dominated by a general



FLEXIBLE BUNDLES OVER RIGID AFFINE SURFACES 3

fiber of the other fibration. Conversely, let qi : S → A1, i = 1, 2, be A1-fibrations on S associated with a pair of
Ga-actions σ1 and σ2 on S with distinct general orbits. Since the morphism q1 × q2 : S → A2 is quasi-finite [8,
Lemma 2.21], it follows on the one hand that general orbits of σ1 and σ2 intersect each other transversally and on
the other hand that the intersection S0 of the fixed point loci of σ1 and σ2 is finite. This implies in turn that every
point in S \S0 can be mapped by an element of the sub-group of Aut(S) generated by σ1 and σ2 to a point p ∈ S
at which a general orbit of σ1 intersects a general orbit of σ2 transversally. Such a point p is certainly flexible.
Therefore every point outside the finite closed subset S0 is a flexible point of S which proves the equivalence
between a) and b). For the equivalence b)⇔c) we refer the reader to [8] (in which the statement of Theorem
2.4 should actually be corrected to read: A normal affine surface with no non constant invertible functions is
completable by a zigzag if and only if it admits two A1-fibrations whose general fibers do not coincide). �

1.2. Stable rigidity/stable flexibility.

1.2.1. Rigidity property for line bundles.

1.3. The total space of a line bundle p : L→ X over an affine affine varietyX = Spec(A) always admits Ga-actions
by generic translations along the fibers of p, associated with locally nilpotent A-derivations of Γ(L,OL). More
precisely, these derivations corresponds to Ga,X -actions on L, i.e. Ga-actions on L byX-automorphisms, and are in
one-to-one correspondence with global sections s ∈ H0(X,L) of L. Indeed, letting p : L = Spec(Sym(M∨))→ X,
where M ≃ H0(X,L) is a locally free A-module of rank 1, one has Ω1

Sym(M∨)/A ≃ Sym(M∨) ⊗A M
∨ and the

isomorphism

DerA(Sym(M∨)) ≃ HomSym(M∨)(Ω
1
Sym(M∨)/A,Sym(M∨)) ≃ Sym(M∨)⊗AM

identifies A-derivations of Γ(L,OL) ≃ Sym(M∨) with global sections of the pull-back p∗L of L to its total space.
Since a Ga,X-action on L corresponding to a locally nilpotent A-derivation ∂ of Sym(M∨) restricts on every fiber
of p : L → X to a Ga-action which is either trivial or a translation, it follows that the corresponding section of
p∗L is constant along the fibers of p : L → X whence is the pull-back by p of a certain section s∂ ∈ H

0(X,L).
Consersely, every global section s ∈ H0(X,L) gives rise to a Ga,X-action on L defined by σs(t, ℓ) = ℓ + ts(p(ℓ))
where the fiberwise addition and multiplication are given by the vector space structure. More formally, viewing
p : L → X as a locally constant group scheme for the law µ : L ×X L → L induced by the addition of germs of
sections, global sections s ∈ H0(X,L) give rise to homomorphisms s : Ga,X → L of group schemes over X whence
to Ga,X -actions σs = µ ◦ (s× idL) : Ga,X ×X L→ L on L.

1.4. Even though they are no longer rigid, it is natural to wonder whether total spaces of line bundles p : L→ X
over rigid varieties X stay “as rigid as possible” in the sense that they do not admit any Ga-actions besides the
Ga,X-actions described above. For the trivial line bundle prX : X×A1 → X, the question was settled affirmatively
by Makar-Limanov [14] (see also [12, Proposition 9.23]). Let us briefly recall the argument for the convenience of
the reader: viewing Γ(X×A1,OX×A1) = A[x] =

⊕
i≥0A ·x

i as a graded A-algebra, every nonzero locally nilpotent

derivation ∂ of A[x] associated with a non trivial Ga-action on X ×A1 decomposes into a finite sum ∂ =
∑
i∈Z

∂i
of nonzero homogeneous derivations ∂i : A[x]→ A[x] of degree i ∈ Z, the top homogeneous component ∂m being
itself locally nilpotent. Note that m ≥ −1 for a nonzero derivation and that derivations of the form a∂x for a
certain a ∈ A \ {0} correspond to the case m = −1. On the other hand, if m ≥ 0 then ∂m = xm∂̃0 for a certain

derivation of degree 0 and since ∂m(x) ∈ xm+1A ⊂ xA, x must belong to the kernel of ∂m. This implies that ∂̃0
is a locally nilpotent derivation of degree 0 whose restriction to A = A · x0 ⊂ A[x] is trivial as X is rigid. But

since since x ∈ Ker(∂̃0) = Ker(∂m), ∂̃0 whence ∂ would be the zero derivation, a contradiction.

1.5. In contrast, as mentioned in the introduction, it was discovered by Bandman and Makar-Limanov [3] that
the above property can fail for non trivial line bundles. The fact that the rigid surfaces considered in Theorem 1
admit line bundles p : L→ S with 1-flexible total spaces (see §3.3 below) shows that such total spaces can be in
general very far from being rigid.

1.2.2. Lifting flexibility in codimension one to split vector bundles.

1.6. The total space of the trivial line bundle prX : X × A1 → X over a 1-flexible (resp. flexible in the sense of
[2]) affine variety X = Spec(A) is again 1-flexible (resp. flexible). Indeed, every locally nilpotent derivation ∂ of

A canonically extends to a locally nilpotent derivation ∂̃ of A[x] containing x in its kernel in such way that the
projection prX : X × A1 → X is equivariant for the corresponding Ga-actions on X and X × A1 respectively. It
follows that for every point p ∈ X×A1 dominating a flexible point x of X, say for which DerC(OX)x is generated
by the images of locally nilpotent derivations ∂1, . . . , ∂r of A, the OX×A1,p-module DerC(OX×A1)p is generated

by the images of ∂̃1, . . . , ∂̃r together with the image of the locally nilpotent A-derivation ∂x of A[x]. This implies
that pr−1

X (Xflex) ⊂ (X × A1)flex and hence that the set of non flexible points in X × A1 has codimension at least
two. Furthermore, (X × A1)flex coincides with (X × A1)reg in the case where Xflex = Xreg.

1.7. Even though different results related with lifts of Ga-actions on an affine variety X to Ga-actions on total
spaces of line bundles p : L→ X over it exist in the literature (in particular, [3, Lemma 9] and [1, Corollary 4.5]),
it seems that the question whether 1-flexibility or flexibility of X lifts to total spaces of arbitrary line bundles
over it has not been clearly settled yet. This is fixed by the following cost free generalization:



FLEXIBLE BUNDLES OVER RIGID AFFINE SURFACES 4

Lemma 4. Let X be a normal affine variety and let p : E → X be a vector bundle which splits as a direct sum
of line bundles. If X is 1-flexible (resp. flexible) then so is the total space of E.

Proof. Since E is isomorphic to the fiber product L1×X L2 · · ·×X Lr of line bundles pi : Li → X, we are reduced
by induction to the case of a line bundle p : L→ Y over a 1-flexible (resp. flexible) affine variety. Recall that for
a connected algebraic group G acting on a normal variety Y , there exists an exact sequence of groups

0→ H1
alg(G,Γ(Y,O

∗
Y ))→ PicG(Y )

α
→ Pic(Y )→ Pic(G)

where PicG(Y ) denotes the group of G-linearized line bundles on Y and where H1
alg(G,Γ(Y,O

∗
Y )) parametrizes

isomorphy classes of G-linearizations of the trivial line bundle over Y (see e.g. [7, Chap. 7]). In the case where
G = Ga, this immediately implies that every line bundle p : L→ Y admits a Ga-linearization (note furthermore
that such a linearization is unique up to isomorphism provided that Γ(Y,O∗

Y ) = C∗).
It follows in particular that every Ga-action on Y can be lifted to a Ga-action on L preserving the zero section

Y0 ⊂ L and for which the structure morphism p : L→ Y is Ga-invariant. So the 1-flexibility (resp. the flexibility)
of L follows from that of Y thanks to [1, Corollary 4.5]. But let us provide a self-contained argument: the
above property translates algebraically to the fact that every locally nilpotent derivation ∂ of Γ(Y,OY ) extends

to a locally nilpotent derivation ∂̃ of Γ(L,OL) mapping the ideal IY0 of Y0 into itself and such that the induced

derivation on Γ(Y0,OY0) = Γ(L,OL)/IY0 coincides with ∂ via the isomorphism Γ(Y,OY )
∼
→ Γ(Y0,OY0) induced

by the restriction of p. Since Y is affine, given any point ℓ ∈ L, we can find a global section s ∈ H0(Y,L) which
does not vanish at y = p(ℓ). Now if y is a flexible point of Y , say for which DerC(OY )y is generated by the images
of locally nilpotent derivations ∂1, . . . , ∂r of Γ(Y,OY ) then ℓ0 = p−1(y) ∩ Y0 is a flexible point of L at which

DerC(OL)ℓ0 is generated by the lifts ∂̃1, . . . , ∂̃r of ∂1, . . . , ∂r together with the locally nilpotent derivation ∂s of
Γ(L,OL) corresponding to the Ga,Y -action σs : Ga,Y ×Y L→ L associated with s (see §1.3 above). Furthermore,
since s does vanish at y, the Ga-action induced by σs on p−1(y) is transitive, and so p−1(y) consists of flexible
points of L. This shows that p−1(Yflex) ⊂ Lflex and completes the proof. �

2. Construction of rigid and 1-flexible A1-fibered surfaces over over P1

In this section, we first consider affine surfaces SR which arise as complements of well-chosen hyperplane
sections of a smooth cubic surface in P3. We check that they are rigid by computing their automorphism groups
and we exhibit certain A1-fibrations πR : SR → P1 on them. We then construct auxiliary 1-flexible A1-fibered
surfaces πF : SF → P1 which will be used later on in section three for the proof of Theorem 1.

2.1. A family of rigid affine cubic surfaces. Most of the material of this sub-section is borrowed from [10]
to which we refer the reader for the details.

2.1. Given a smooth cubic surface V ⊂ P3 and a line L on it, the restriction to V of the linear pencil HL =
|OP3(1)⊗ IL| on P3 generated by planes containing L can be decomposed as HL |V= L + L where L is a base
point free pencil defining a conic bundle ΦL : V → P1 with five degenerate fibers each consisting of the union
of two lines. The restriction ΦL |L: L → P1 is a double cover and for every branch point x ∈ P1 of ΦL |L, the
intersection of V with the corresponding hyperplane Hx ∈ H consists either of a smooth conic tangent to L or
two distinct lines intersecting L in a same point, which is then an Eckardt point of V . The second case does
not occur if V is chosen general. We fix from now on a cubic surface V , a line L on it and a hyperplane section
D = H ∩ V for which D = L+ C where C is a smooth conic tangent to L at a point p ∈ L.

2.2. Given a pair (V,D) where D = L+C as above, the surface SR = V \D is affine as D is a hyperplane section
of V . It comes equipped with an A1-fibration πR : SR → P1 which is obtained as follows: we let µ : V → P2 be
the birational morphism obtained by contracting a 6-tuple of disjoint lines L,F1, . . . , F5 ⊂ V with the property
that each Fi, i = 1, . . . , 5, intersects C transversally. Since L is tangent to C, the image µ∗(C) of C in P2 is a
cuspidal cubic. The rational pencil on P2 generated by µ∗(C) and three times its tangent T at its unique singular

point µ(p) lifts to a rational pencil q : V 99K P1 having the divisors C+
∑5
i=1 Fi and 3T +L as singular members.

Letting τ : V̂ → V be a minimal resolution of q, the induced morphism q ◦ τ : V̂ → P1 is a P1-fibration whose
restriction to SR = V \ D ≃ V̂ \ τ−1D is an A1-fibration πR : SR → P1 with two degenerate fibers: one is
irreducible of multiplicity three consisting of the intersection of the proper transform of T with SR and the other
is reduced, consisting of the disjoint union of the curves Fi ∩ SR ≃ A1, i = 1, . . . , 5 (see Figure 2.1).

Remark 5. Choosing an alternative 6-tuple of disjoint lines F0,1F0,2, F∞,1, . . . , F∞,4 such that F∞,1, . . . , F∞,4

intersect C transversally while F0,1 and F0,2 intersects L but not C, we obtain another contraction morphism
µ̃ : V → P2 for which the proper transforms of C and L are respectively a conic and its tangent line at the point
µ̃(p). One checks that the lift to V of the rational pencil on P2 generated by µ̃∗(C) and 2µ∗(L) restricts on SR
to an A1-fibration π′

R : SR → P1 with two reducible degenerate fibers: one consisting of the disjoint union of the
curves F0,i ∩ S ≃ A1, i = 1, 2, both occuring with multiplicity two and the other one consisting of the disjoint
union of the reduced curves F∞,i ∩ SR ≃ A1, i = 1, . . . , 4. The description of the degenerate fibers shows that
this second A1-fibration is not isomorphic to the one πR : SR → P1, so that SR carries at least two distinct types
of A1-fibrations over P1.
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Figure 2.1. The total transform of µ∗(C) ∪ T ⊂ P2 in the minimal resolution τ : V̂ → V of
q. The plain curves correspond to the irreducible components of τ−1(D) and the exceptional
divisors Ei of τ are numbered according to the order they are extracted.

2.3. To determine the automorphism group of SR = V \D we first notice that the subgroup Aut(V,D) of Aut(V )
consisting of automorphisms of V which leave D globally invariant can be identified in a natural way with a
subgroup of Aut(SR). The latter is always finite, and even trivial if the cubic surface V is chosen general. On
the other hand, SR admits at least another natural automorphism which is obtained as follows: the projection
P3

99K P2 from the point p = L ∩ C induces a rational map Q 99K P2 with p as a unique proper base point
and whose lift to the blow-up α : W → V of V at p coincides with the morphism θ : W → P2 defined by the
anticanonical linear system |−KW |. The latter factors into a birational morphism W → Y contracting the proper
transform of L followed by a Galois double cover Y → P2 ramified over an irreducible quartic curve ∆ with a
unique double point located at the image of L. The non trivial involution of the double cover Y → P2 induces an
involution GW : W → W fixing L and exchanging the proper transform of C with the exceptional divisor E of
α. The former descends to a birational involution GV,p : V 99K V which restricts further to a biregular involution
jGV,p

of SR = V \D.

The following description of the automorphism group of SR shows in particular that these surfaces are rigid:

Lemma 6. For a surface SR = V \D as above, there exists a split exact sequence

0→ Aut(V,D)→ Aut(SR)→ Z2 · jGV,p
→ 0.

Proof. We interpret every automorphism of SR as a birational self-map f : V 99K V of V restricting to an
isomorphism from SR = V \D to itself. Since f ∈ Aut(V,D) in case it is biregular, it is enough to show that either
f or GV,p ◦ f is biregular. To establish this alternative, it suffices to check that the lift fW = α−1fα : W 99K W
of f to W is a biregular morphism, hence an automorphism of the pair (W,α−1(D)red). Indeed if so, then fW
preserves the union of E and the proper transform of D as these are the only (−1)-curves contained in the support
of α−1(D)red. Since by construction GW exchanges E and the proper transform of D, it follows that either fW or
GW ◦ fW leaves E, the proper transform of D and the proper transform of L invariant. This implies in turn that
either f = αfWα

−1 or αGW ◦ fWα
−1 = (αGWα

−1) ◦ (αfWα
−1) = GV,p ◦ f is a biregular automorphism of V .

To show that fW is a biregular automorphism of W , we consider the lift f̃ = σ−1 ◦ f ◦ σ : Ṽ 99K Ṽ of
f to the variety α̃ : Ṽ → W obtained from W by blowing-up further the intersection point of E and of the
proper transform of C, say with exceptional divisor Ẽ. We identify SR with the complement in Ṽ of the SNC
divisor D̃ = L ∪ C ∪ E ∪ Ẽ. Now suppose by contradiction that f̃ is strictly birational and consider its minimal

resolution Ṽ
β
← X

β′

→ Ṽ ′. Recall that the minimality of the resolution implies in particular that there is no
(−1)-curve in X which is exceptional for β and β′ simultaneously. Furthermore, since Ṽ is smooth and D̃ is
an SNC divisor, β′ decomposes into a finite sequence of blow-downs of successive (−1)-curves supported on the

boundary B = β−1(D̃)red = (β′)−1(D̃)red with the property that at each step, the proper transform of B is again

an SNC divisor. The structure of D̃ implies that the only possible (−1)-curve in B which is not exceptional for

β is the proper transform of Ẽ, but after its contraction, the proper transform of B would no longer be an SNC
divisor, a contradiction. So f̃ : Ṽ → Ṽ is a morphism and the same argument shows that it does not contract
any curve in the boundary D̃. Thus f̃ is a biregular automorphism of Ṽ , in fact, an element of Aut(Ṽ , D̃). Since

Ẽ is the unique (−1)-curve contained in the support of D̃ it must be invariant by f̃ which implies in turn that

fW = α̃f̃ α̃−1 is a biregular automorphism of the pair (W,α−1(D)red), as desired. �

2.2. Flexible mates. In this subsection, we construct 1-flexible affine surfaces SF admitting A1-fibrations πF :
SF → P1 whose degenerate fibers resemble the ones of the fibrations πR : SR → P1 described in §2.2 above. A
more precise interpretation of this resemblance, going beyond the bare fact that the number of their irreducible
components and their respective multiplicities are the same, will be given in the next section.
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2.4. For the construction, we start with a Hirzebruch surface πn : Fn = P(OP1 ⊕ OP1(−n)) → P1, n ≥ 0, in
which we fix an ample section C ≃ P1 of πn and two distinct fibers, say F0 = π−1

n (p0) and F∞ = π−1
n (p∞), where

p0, p∞ ∈ P1 . We let σ : X → Fn be the birational map obtained by the following sequence of blow-ups:
- Step 1 consists of the blow-up of five distinct points p∞,1, . . . , p∞,5 on F∞ \ C with respective exceptional

divisors G∞,1, . . . , G∞,5.
- Step 2 consists of the blow-up of a point p0,1 ∈ F0 \ C with exceptional divisor E1, followed by the blow-up

of the intersection point p0,2 of the proper transform of F0 with E1, with exceptional divisor E2, then followed
by the blow-up of the intersection point p0,3 of the proper transform of F0 with E2, with exceptional divisor E3.
Finally, we blow-up a point p0,4 ∈ E3 distinct from the intersection points of E3 with the proper transforms of
F0 and E2 respectively. We denote the last exceptional divisor produced by G0,1.

The structure morphism πn : Fn → P1 lifts to a P1-fibration p = πn ◦ σ : X → P1 with two degenerate
fibers p−1(p0) = F0 + E1 + 2E2 + 3E3 + 3G0,1 and p−1(p∞) = F∞ +

∑5
i=1G∞,i. The inverse image by σ of

the divisor F0 ∪ C ∪ F∞ is pictured in Figure 2.2. Letting SF be the open complement in X of the divisor
B = F∞ ∪C ∪ F0 ∪E3 ∪E2 ∪E1, the restriction of p to SF is an A1-fibration πF : SF → P1 with two degenerate
fibers: the one π−1

F (p0) is irreducible of multiplicity three consisting of the intersection of G0,1 with SF and the

other one π−1
F (p∞) is reduced, consisting of the disjoint union of the curves G∞,i ∩ SF ≃ A1, i = 1, . . . , 5.

G∞,1

−1

G∞,2

−1

G∞,3

−1

G∞,4

−1

G∞,5

−1

F∞

−5

C

F0
−3







E3

−2 ..
..
..
..
..

E2

−2

��
��
��
��
��

E1

−2 ..
..
..
..
..

G0,1

−1

Figure 2.2. The total transform of F0 ∪ C ∪ F∞ ⊂ Fn in X. The plain curves correspond to
irreducible components of the boundary divisor B.

Lemma 7. A surface SF = X \B as above is affine and 1-flexible.

Proof. By construction, B is chain of smooth complete rational curves. So the 1-flexibility of SF will follows from
Theorem 3 provided that SF is indeed affine and has no non constant invertible functions. Since πF : SF → P1

is an A1-fibration, an invertible function on SF is constant in restriction to every non degenerate fiber of πF
and hence has the form f ◦ πF for a certain global invertible function f on P1. So such a function is certainly
constant. To establish the affineness of SF , we first observe that SF does not contain a complete curve. Indeed,
otherwise since the points blown-up by σ : X → Fn are contained in Fn \ C, the image by σ of such curve
would be a complete curve in Fn which does not intersect C, in contradiction with the ampleness of C in Fn.
On the other hand, since C has positive self-intersection in Fn, whence in X, one checks by direct computation
that for a∞, a, a0, a1, a2, a3 ∈ Z>0 such that a0 ≫ a3 ≫ a2 ≫ a1 and a ≫ max(a0, a∞), the effective divisor

B̃ = a∞F∞ + aC + a0F0 + a1E1 + a2E2 + a3E3 has positive self-intersection and positive intersection which each
of its irreducible components. It then follows from the Nakai-Moishezon criterion that B̃ is an ample effective
divisor supported on B, and hence that SF = X \B is affine. �

Remark 8. In the construction of §2.4, one can replace Step 1 and 2 by the following alternative sequence of
blow-ups σ′ : X ′ → Fn:

- Step 1’ consists of the blow-up of four distinct points p′∞,1, . . . , p
′
∞,4 on F∞ \ C with respective exceptional

divisors G′
∞,1, . . . , G

′
∞,4.

- Step 2’ consists of the blow-up of a point p′0,1 ∈ F0 \ C with exceptional divisor E′
1, followed by the blow-up

of the intersection point p′0,2 of the proper transform of F0 with E′
1, with exceptional divisor E′

2, then followed
by the blow-up of a pair of distinct points p′0,3 and p′′0,3 on E′

2 distinct from the intersection points of E′
2 with the

proper transforms of F0 and E′
1, with respective exceptional divisors G′

0,1 and G′
0,2.

The morphism p′ = πn ◦ σ
′ : X ′ → P1 is then a P1-fibration with two degenerate fibers p′

−1
(p0) = F0 + E′

1 +

2E′
2 + 2G′

0,1 + 2G′
0,2 and p′

−1
(p∞) = F∞ +

∑4
i=1G

′
∞,i. The same argument as in the proof of Lemma 7 above

shows that the complement in X ′ of the chain of smooth complete rational curves B′ = F∞ ∪ C ∪ F0 ∪ E
′
1 ∪ E

′
2

is a 1-flexible affine surface, on which p′ restricts to an A1-fibration π′
F : S′

F → P1 with two degenerate fibers
consisting respectively of the disjoint union of G′

0,i ∩ S
′
F ≃ A1, i = 1, 2 both occurring with multiplicity 2 and of

the disjoint union of the reduced curves G′
∞,i ∩S

′
F ≃ A1, i = 1, . . . , 4. So π′

F : S′
F → P1 resembles the alternative

A1-fibration π′
R : SR → P1 described in Remark 5 above.
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3. rigidity lost

The last ingredient needed to derive Theorem 1 is the following result:

Proposition 9. Let πR : SR → P1 and πF : SF → P1 be a pair of A1-fibered surfaces as constructed in §2.2 and
2.4 above. Then there exists an algebraic space δ : C → P1 such that πR and πF factor respectively through étale
locally trivial A1-bundles ρR : SR → C and ρF : SF → C.

Let us first explain how derive the 1-flexibility of the cylinder SF × A2 from this Proposition.

3.1. Recall that since the automorphism group of A1 is the affine group Aff1 = Gm ⋉ Ga, every étale locally
trivial A1-bundle ρ : S → C is in fact an affine-linear bundle. This means that there exists a line bundle p : L→ C

such that ρ : S → C has the structure of an étale L-torsor, that is, an étale locally trivial principal homogeneous
bundle under L, considered as a group space over C for the group law induced by the addition of germs of sections.
Isomorphy classes of such principal homogeneous L-bundles are then classified by the cohomology group H1

ét(C, L)
(see e.g. [9, §1.2]).

3.2. So Proposition 9 implies in particular that ρR : SR → C and ρF : SF → C can be equipped with the structure
of principal homogeneous bundles under suitable line bundles pR : LR → C and pF : LF → C respectively. As a
consequence, the fiber product Z = SR×C SF is simultaneously equipped via the first and second projection with
the structure of a principal homogeneous bundle under the line bundles ρ∗RLF and ρ∗FLR respectively. But since
SR and SF are both affine, the vanishing of H1

ét(SR, ρ
∗
RLF ) and H1

ét(SF , ρ
∗
FLR) implies that pr1 : Z → SR and

pr2 : Z → SF are the trivial ρ∗RLF -torsor and ρ∗FLR-torsor respectively. In other word, Z carries simultaneously
the structure of a line bundle over SR and SF .

3.3. Now since SF is 1-flexible by virtue of Theorem 3, we deduce from Lemma 4 that Z is 1-flexible. Furthermore,
the same Lemma implies that given any line bundle p : Z′ → SR, the total space of the rank 2 vector bundle
pr1 × p : E = Z′ ×X Z → SR over SR is 1-flexible. On the other hand, it follows from [15, Theorem 3.2]
that every rank 2 vector bundle E → SR splits a trivial factor, whence is isomorphic to the direct sum of its
determinant detE and of the trivial line bundle. Choosing for Z′ a line bundle representing the inverse of the
class of pr1 : Z → SR in the Picard group Pic(SR) of SR yields a vector bundle E = Z′ ×X Z → SR with trivial
determinant, whence isomorphic to the trivial one SR × A2, and with 1-flexible total space.

3.1. Proof of Proposition 9.

3.4. To prove Proposition 9, we first observe that if it exists, an algebraic space δ : C → P1 with the property
that a given A1-fibration π : S → P1 on a smooth surface S factors as δ ◦ ρ, where ρ : S → C is an étale locally
trivial A1-bundle, is unique up to isomorphism of spaces over P1. Indeed, suppose that δ′ : C → P1 is another
such space for which we have π = δ′ ◦ ρ′ where ρ′ : S′ → C

′ is an étale locally trivial A1-bundle. The closed
fibers of ρ and ρ′ being both in one-to-one correspondence with irreducible components of closed fibers of π,
it follows that for every closed point c ∈ C there exists a unique closed point c′ ∈ C

′ such that δ(c) = δ′(c′)
and ρ−1(c) = (ρ′)−1(c′) ⊂ π−1(δ(c)). So the correspondence c 7→ c′ defines a bijection ψ : C → C

′ such that
ρ′ = ψ ◦ ρ and δ = δ′ ◦ ψ. Letting f : C → C be an étale cover over which ρ : S → C becomes trivial, say with
isomorphism θ : S×C C

∼
→ C ×A1, and choosing a section σ : C → C ×A1 of prC : C ×A1 → C, the composition

ψ ◦ f = ψ ◦ f ◦ prC ◦ σ is equal to ψ ◦ ρ ◦ pr1 ◦ θ
−1 ◦ σ and hence to ρ′ ◦ pr1 ◦ θ

−1 ◦ σ by construction of ψ.

C × A1 θ−1
//

prC

%%K
KK

KK
KK

KK
KK

S ×C C
pr1 //

pr2

��

S

ρ

��

ρ′

��
>>

>>
>>

>>

C

σ

eeKKKKKKKKKKK f
// C

ψ
// C

′

This implies that ψ ◦ f : C → C
′ is a morphism whence that ψ : C→ C

′ is a morphism since being a morphism is
a local property with respect to the étale topology. The same argument on an étale cover f ′ : C′ → C

′ over which
ρ′ : S′ → C

′ becomes trivial implies that the set-theoretic inverse ψ−1 of ψ is also a morphism, and so ψ : C→ C
′

is an isomorphism of spaces over P1.

3.5. In what follows, given an A1-fibered surface π : S → P1, we use the notation S/A1 to refer to an algebraic
space δ : C → P1 with the property that π factors through an étale locally trivial A1-bundle ρ : S → C. The
previous observation implies that its existence is a local problem with respect to the Zariski topology on P1.
More precisely, we may cover P1 by finitely many affine open subsets Ui, i = 1, . . . , r over which the restriction of
π : S → P1 is an A1-fibration with a most a degenerate fiber, say π−1(pi) for some pi ∈ Ui. Since the restriction of
π over Ui,∗ = Ui \ {pi} is then a Zariski locally trivial A1-bundle, we see that if δi : Ci = π−1(Ui)/A1 → Ui exists
then the restriction of δi over Ui \ {pi} is an isomorphism of schemes over Ui. This implies that the isomorphisms
δ−1
j ◦ δi |δ−1(Ui,∗∩Uj,∗)

: δ−1
i (Ui,∗ ∩ Uj,∗) → δ−1

j (Ui,∗ ∩ Uj,∗), i, j = 1, . . . , r, satisfy the usual cocyle condition on

triple intersections whence that the algebraic space δ : C = S/A1 → P1 with the desired property is obtained by
gluing the local ones δi : Ci → Ui, i = 1, . . . , r along their respective open sub-schemes δ−1

i (Ui,∗ ∩ Uj,∗) ⊂ Ci,
i, j = 1, . . . , r via these isomorphisms.
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3.6. Now we turn more specifically to the case of the A1-fibrations πR : SR → P1 and πF : SF → P1 constructed
in §2.2 and §2.4 respectively. Both have exactly two degenerate fibers, one irreducible of multiplicity three and the
other one consisting of the disjoint union of five reduced curves. So up to an automorphism of P1 we may choose
a pair of distinct point p0, p∞ ∈ P1 such that π−1

R (p0) = 3T ∩SR, π−1
F (p0) = 3G0,1 ∩SF , π−1

R (p∞) =
⊔5
i=1 Fi ∩SR

and π−1
F (p∞) =

⊔5
i=1G∞,i ∩ SF . Letting U0 = P1 \ {p∞} and U∞ = P1 \ {p0}, the existence and isomorphy of

the algebraic spaces π−1
R (U0)/A1 and π−1

F (U0)/A1 (resp. π−1
R (U∞)/A1 and π−1

F (U∞)/A1) hence of those SR/A1

and SF /A1, follows from a reinterpretation of a description due to Fieseler [11]:
- Since the unique degenerate fiber of the restriction of πR (resp. πF ) over U∞ is reduced, consisting of five

irreducible components, π−1
R (U∞)/A1 and π−1

F (U∞)/A1 are isomorphic to the scheme δ∞ : C∞ → U∞ obtained
from U∞ by replacing the point p∞ by five copies p∞,1, . . . , p∞,5 of itself, one for each irreducible component
of π−1

R (p∞) (resp. π−1
F (p∞)). More explicitly, πR restricts on SR,∞,i = π−1

R (U∞) \
⊔
j 6=i(Fj ∩ SR), i = 1, . . . , 5,

to an A1-fibration πR,∞,i : SR,∞,i → U∞ with no degenerate fiber over the factorial base U∞ ≃ A1 and hence
is a trivial A1-bundle. So SR,∞,i/A1 ≃ U∞ and π−1

R (U∞)/A1 is thus isomorphic to the U∞-scheme obtained by

gluing r-copies δ∞,i : U∞,i
∼
→ U∞, i = 1, . . . , 5, of U∞ by the identity along the open subsets U∞,i \ {p∞,i}, where

p∞,i = δ−1
∞,i(p∞). The same description holds for π−1

F (U∞)/A1.

- The situation for the open subsets SR,0 = π−1
R (U0) and SF,0 = π−1

F (U0) is a little more complicated. Letting

g : Ũ0 → U0 be a Galois cover of order three ramified over p0 and étale everywhere else, the inverse image of
π−1
F (p0)red in the normalization S̃R,0 of the reduced fiber product (SR ×U0

Ũ0)red is the disjoint union of three
curves ℓ0,1, ℓ0,ε, and ℓ0,ε2 (where ε ∈ C∗ is a primitive cubic root of unity) which are permuted by the action of

the Galois group µ3 of cubic roots of unity. The A1-fibration pr1 : SR,0×U0
Ũ0 → U ′

0 lifts to one π̃R,0 : S̃R,0 → Ũ0

with a unique, reduced, degenerate fiber (π′)−1
R,0(p̃0), where p̃0 = g−1(p0), which consists of the union of the ℓ0,α,

α = 1, ε, ε2. The same argument as in the previous case implies then that C̃0 = S̃R,0/A1 is isomorphic to the

Ũ0-scheme δ̃0 : C̃0 → Ũ0 obtained by gluing three copies δ̃0,α : Ũ0,α
∼
→ Ũ0, α = 1, ε, ε2, of Ũ0 by the identity

outside the points p̃0,α = (δ̃0,α)
−1(p̃0). Furthermore, the action of the Galois group µ3 on S̃R,0 descends to a

fixed point free action on C̃0 defined locally by Ũ0,α ∋ p̃ 7→ ε · p̃ ∈ Ũ0,εα. A geometric quotient for this action on

C̃0 exists in the category of algebraic spaces in the form of an étale µ3-torsor C̃0 → C̃0/µ3 over a certain algebraic

space C̃0/µ3 and we obtain a commutative diagram

S̃R,0 //

ρ̃R,0

��

S̃R,0/µ3 ≃ SR,0

ρR,0

��

C̃0
//

δ̃0

��

C̃0/µ3

δ0

��

Ũ0
// Ũ0/µ3 ≃ U0

in which the top square is cartesian. It follows that the induced morphism ρR,0 : SR,0 → C̃0/µ3 is an étale locally

trivial A1-bundle which factors the restriction of πR to SR,0. So δ0 : C̃0/µ3 → U0 is the desired algebraic space
SR,0/A1.

It is clear from the construction that the isomorphy type of C̃0/µ3 as a space over U0 depends only on the fact
that SR,0 is smooth and that πR |SR,0

: SR,0 → U0 is an A1-fibration with a unique degenerate fiber of multiplicity
three over p0, and not on the full isomorphy type of SR,0 as a scheme over U0. In other word, the same construc-

tion applied πF |SF,0
: SF,0 → U0 yields an algebraic space SF,0/A1 which is isomorphic to C̃0/µ3 as spaces over U0.

Finally, the desired algebraic space C = SR/A1 = SF /A1 is obtained by gluing C∞ and C0 = C̃0/µ3 by the
identity along the open sub-schemes δ−1

∞ (U0 ∩ U∞) ≃ U0 ∩ U∞ ≃ δ−1
0 (U0 ∩ U∞). This completes the proof of

Proposition 9.

Remark 10. A similar construction applies to the A1-fibrations π′
R : SR → P1 and π′

F : SF → P1 considered in
remarks 5 and 8 respectively. The desired algebraic space C

′ = SR/A1 = SF /A1 is again obtained as the gluing

by the identity along δ′
−1
∞ (U0 ∩ U∞) ≃ U0 ∩ U∞ ≃ δ′

−1
0 (U0 ∩ U∞) of two algebraic spaces δ′∞ : C′

∞ → U∞ and
δ′0 : C′

0 → U0 which are constructed as follows:
- The algebraic space C

′
∞ is obtained from U∞ be replacing the point p∞ by four copies of itself, one for each

irreducible component in the reduced degenerate fiber π′−1
R (p∞) (resp. π′−1

F (p∞)).

- Corresponding to the fact that the degenerate fiber π′−1
R (p0) (resp. π′−1

F (p0)) has two irreducible components,
both occurring with multiplicity two, the algebraic space C

′
0 is now itself a compound object. First we let

g : Ũ0 → U0 be Galois cover of degree two ramified at p0 and étale elsewhere. Then we let D̃′
0 → Ũ0 be the scheme

obtained by gluing two copies Ũ0,± of Ũ0 by the identity outside p̃0 = g−1(p0). The Galois group µ2 acts freely

on D̃
′
0 by Ũ0,± ∋ p̃ 7→ −p̃ ∈ Ũ0,∓ and we let γ′

0 : D′
0 = D̃

′
0/µ2 → U0 ≃ Ũ0/µ2 be the geometric quotient taken in

the category of algebraic spaces. Finally, δ′0 : C′
0 → U0 is obtained by gluing two copies γ′

0,i : D
′
0,i → U0, i = 1, 2

of D′
0 by the identity along the open subschemes γ′

0,1
−1

(U0 \ {p0}) ≃ U0 \ {p0} ≃ γ
′
0,2

−1
(U0 \ {p0}).
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