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Response surface method is a convenient tool to assess reliability for a wide range of structural

mechanical problems. More specifically, adaptive schemes which consist in iteratively refine the

experimental design close to the limit state have received much attention. However, it is generally

difficult to take into account a lot of variables and to well handle approximation error. The method,

proposed in this paper, addresses these points using sparse response surface and a relevant criterion for

results accuracy. For this purpose, a response surface is built from an initial Latin Hypercube Sampling

(LHS) where the most significant terms are chosen from statistical criteria and cross-validation method.

At each step, LHS is refined in a region of interest defined with respect to an importance level on

probability density in the design point. Two convergence criteria are used in the procedure: The first

one concerns localization of the region and the second one the response surface quality. Finally, a

bootstrap method is used to determine the influence of the response error on the estimated probability

of failure. This method is applied to several examples and results are discussed.

1. Introduction

1.1. Problem statement

In mechanical structures, consideration of uncertainties in

modeling is a growing topic because it provides valuable informa-

tion in industrial applications. Indeed, sensitivity, risk or financial

analyses, which enable to take relevant decisions by comparing

cost and precision of design solution or manufacturing process,

are all common problematics with uncertainty analysis. These

uncertainties operate in several stages of a modeling procedure,

but we shall only consider in this paper those which affect input

paramaters. More precisely, modeling of a physical system can be

seen as a mathematical function which depends on input para-

meters and which provides one or several responses. In mechan-

ical structures, the mathematical function is generally defined

using finite element method. Input variables characterize geome-

try, materials or loads and responses can be any kind of mechan-

ical quantities. Here, the probabilistic framework is considered,

which means that input parameters are realizations of random

variables or random fields. The stake of the analysis is thus to

propagate uncertainties through a mathematical model in order

to get statistical informations on outputs. Our main interest

concerns reliability analysis, which is performed through the

probability of failure calculation.

Let us introduce X¼ ðX1, . . . ,XMÞ a vector of M random vari-

ables, characterized by its joint probability density function

known as f XðxÞ. Suppose that one studies a mechanical system,

described by a performance function, say GðXÞ, defined such as,

for a realization x of vector X, GðxÞo0 is called the domain of

failure, GðxÞ ¼ 0 is the limit state and GðxÞ40 is the domain of

success. The probability of failure relative to the failure mode

described by function G reads

Pf ¼

Z

GðxÞr0
f XðxÞdx1 . . . dxM : ð1Þ

A simple and robust estimation of this probability is given by

Monte Carlo method. However, in a lot of engineering problems,

the limit state function comes from finite element discretization

and is thus very expensive to evaluate. Moreover, when the

probability of failure is low, crude Monte Carlo involves a large

number of numerical simulations.

In order to overcome this difficulty, alternative methods have

been proposed. Some of them use variance reduction techniques

like Importance Sampling, Line Sampling [38] or Subset Simula-

tion [2]. These methods are generally still expensive and some of

them can be less efficient if a large number of input variables is

taken into account. In order to be independant of the dimension,

it is proposed in [9,42,43,34] to keep a crude Monte Carlo method

but to make use of the regularity of tail probabilities. The principle
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is to estimate probabilities of failure at moderate levels and to

approximate the targeted probability of failure at low level.

Although these approaches have attractive features, they can

require a large number of simulations for industrial applications.

Famous reliability methods, known as first and second reliability

method (FORM, SORM), allow also to calculate low probability of

failure [24]. Based on optimization procedures and Taylor expan-

sions, these methods can be difficult to validate. Another kind of

methods consists in substituting the initial expensive model by a

simpler and fast to evaluate one. This new model, called meta-

model, can be of various kinds: quadratic response surfaces [21],

polynomial chaos [23,6], kriging [40,27], neural network [36,13,20]

or even support vector machine [25]. In this paper, quadratic

response surfaces, simply called response surfaces, will be used.

1.2. Short review of response surface approach

Within the current literature of reliability, analysis based on

meta-models such as kriging, neural network or support vector

machine is increasing since mechanical models are more and more

complicated. Indeed, these meta-models can deal with highly non-

linear relations between inputs and outputs and are thus efficient

when several domains of failure and/or several design points exist.

However, response surfaces (RS) are still widely used in structural

reliability analysis because of their simplicity and effectiveness.

Actually, in a lot of industrial applications, mechanical models have

not always complicated behavior and the relation between inputs

and outputs is not highly non-linear. Generally, difficuties are more

related to the number of variables and sizing criteria which can be

relatively or even very large.

RS method is an interesting tool when relation between inputs

and outputs is quite regular. But problems of computational time

may arise even when a moderate number of input variables is

taken into account. Also, although this method has been widely

used, it is often difficult to be very confident in results because of

the difficulty to quantify error due to approximation. The present

paper is oriented in these two issues.

Whatever the used meta-model, the current trend is to

consider an adaptive strategy. Its principle is to build a meta-

model which is refined, iteratively, in some regions of interest.

These regions are close to the limit state and contribute signifi-

cantly to the probability of failure. Recent contributions have

been made on kriging [37,14,4] and support vector machine

[8,12].

About RS, a lot of improvements have been proposed from the

first use in reliability [21]. Adaptive schemes are also of great interest

since they allow to get more precise results with a reduced number

of simulations. Despite their differences, main steps of procedures

are always the same and can be summarized as follows:

1. choose an initial experimental design (ED);

2. build a RS;

3. find the design point (and the reliability index) based on

the RS;

4. add new sampling points around the design point;

5. repeat from the step 2 until a convergence criterion is satisfied.

The idea was first introduced by Bucher and Bourgund [10] who used,

in turn, two RS. The first one is built from a star shaped ED around the

mean point. A linear interpolation between the mean point and the

design point is then used to determine the central point of the second

and smaller ED. A second RS is finally built up, closer than the first

one, to the design point. In this approach, only linear and square

terms are used because cross terms would involve a too large number

of additional sampling points. Rajashekhar and Ellingwood [39]

suggest to improve this method by considering several iterations

until a convergence criterion is satisfied. This criterion is the distance

between the design point and the central point of the ED, which must

be small enough. Authors also take into account that the failure

region is located in the tails of probability distributions and thus

introduce several techniques to start the algorithm from this region.

Finally, they consider cross terms in RS. In a similar way, Kim and Na

[28] suggest to project star shaped sampling points of the ED on a

linear approximation of the limit state, in order to be close to the

design point. Das and Zheng [11] improve the previous methodology

with a cumulative use of sampling points to build RS with square and

cross terms. Gayton et al. [22] select the region around the design

point from confidence intervals. These ones are estimated with a

cross-validation technique with which several design points are

calculated. This procedure is repeated until small enough confidence

intervals are obtained. Nguyen et al. [35] locate additional sampling

points in half-star shaped regions, with respect to the sensitivity of

variables on the performance function and the size of the initial ED.

RS are built with a double weighted regression, first weights being

calculated with respect to the limit state value and second ones

depending on distance between sampling points and design point.

Kang et al. [26] use moving least square method but the size of

additional ED around the design point is empirically chosen.

1.3. Short description of proposed method

Our approach follows the same general scheme but differs at

each step. First, based on some classical statistical tools of linear

regression, it is proposed to build a sparse RS instead of a complete

one. It allows to reduce the number of simulations, and it also goes

towards the minimization of approximation error, which is related

to the number of terms. For this step, forward regression method is

used in order to select most important terms based on statistical

criteria. Second, quantification of effect of the approximation error

on the probability of failure is highlighted. A bootstrap method is

used in order to estimate variations of RS predictions and an

interval of the estimed probability of failure is deduced. From these

two points, an adaptive scheme is proposed. The ED is a Latin

Hypercube as it is widely used among space filling designs and can

be easily enriched. The region, in which the ED is refined, is

determined from an importance level on the probability density

in the design point. The final criterion used to validate results is the

size of the interval around the estimated probability of failure,

calculated with the bootstrap method.

So, this paper is organized as follows. Section 2 presents all

tools used in the adaptive procedure which is detailed in Section

2.4. First, a general approach of response surface is given and

statistical methods are presented to estimate approximation error

(Section 2.1). This is followed by the description of response

surface construction, where most significant terms are iteratively

chosen (Section 2.2). Then, a final validation procedure, based on

bootstrap, is introduced (Section 2.3). Section 2.4 describes how

these tools are nested to build an adaptive method where

experimental design is iteratively refined in a region of interest.

The method is illustrated and discussed in Section 3 on one

analytical example and two finite element cases.

2. Description of the adaptive procedure

2.1. Some tools related to response surfaces

2.1.1. General description of response surfaces

Let us consider a physical model represented by a mapping

y¼fðxÞ, where yAR is a response of interest, x¼ ðx1, . . . ,xMÞAR
M

are input variables and f the deterministic function of the model,

which is, in our case, the finite element model. The physical



model is the reference one in the sense that it is a description of

the physical phenomenon and it is considered to be correct. The

meta-model, given by the mapping y¼ f̂ðxÞþe, is then a simpli-

fied representation of the physical model, where f̂ is the

approximation function and e an error. As mentioned before,

the words ‘‘response surface’’ are used afterwards for quadratic

response surfaces, i.e. functions which read f̂ðxÞ ¼
PP

j ¼ 1 ajzj,

where terms zj may be linear (xi), square (x2i ) or cross terms

(xixk) of variables x.

The RS is obtained from a statistical sample of size N, with

NZP, which comes from simulations of the reference model. In a

matrix form, the linear regression equation reads

y¼ Zaþe, ð2Þ

where y¼ ðy1, . . . ,yNÞ
T is the vector of response values in each

sampling point, Z is the matrix of regressors of size N � P, with

maximum rank, a¼ ða1, . . . ,aPÞ
T is the vector of coefficients to

determine and e¼ ðe1, . . . ,eNÞ
T is the vector of errors. In classical

linear regression theory, these terms of error are supposed to be

normal random variables with null expectation and constant

standard deviation denoted s (normality assumption). Then, the

least square minimization method gives an estimate, say â, of

coefficients a from normal equations

â ¼ ðZTZÞÿ1ZTy: ð3Þ

As this linear system is generally ill-conditioned, it is often

prefered to solve the least square problem with a QR decomposi-

tion of matrix Z [29].

In a simple way, the quality of the meta-model can be

measured through the empirical mean of square errors

Eemp ¼
1

N

X

N

i ¼ 1

ðyiÿf̂ðxiÞÞ
2: ð4Þ

Another more convenient measure is given by the coefficient of

determination, known as R2, widely used in literature and defined by

R2 ¼ 1ÿ

PN
i ¼ 1ðyiÿf̂ðxiÞÞ

2

PN
i ¼ 1ðyiÿyÞ2

, ð5Þ

where y is the empirical mean of responses: y ¼ 1
N

PN
i ¼ 1 yi. R2

coefficient varies between 0 and 1 and represents how the model

explains the response: closer it is to 1, better is the model.

Suppose that from a set of potential terms of size P, one tries to

find a subset of size x which best fits sampling datas. If the

selection criterion used is either R2 or Eemp, the number of terms

in the RS will always be maximum, i.e. x¼ P. Moreover, if P¼N,

obtained values will be R2 ¼ 1 and Eemp ¼ 0 as the RS will perfectly

fit sampling points. The risk involved when the number of terms

is large, is that approximation could be very good on learning

points but very bad elsewhere. This situation called overfitting

means that the RS is flexible to be adjusted on learning sample

but it is not stable enough, i.e. the RS would be too different if it is

built with another learning sample. This can be avoided by

minimizing the number of terms x in order to obtain a parcimo-

nious RS. In this manner, predictions are generally better on the

entire studied domain.

This highlights two main steps of a RS construction. First, the

criterion used to estimate the prediction error must be robust and,

second, it must be minimized in order to find the best RS from sets

of potential terms. The two next sections address these points.

2.1.2. Estimates of prediction error

Prediction error is theoretically defined by the expectation,

known as E½��, of the square error. This amounts to consider that

input variables x are realizations of random variables X, and

therefore y is also a realization of a random variable Y. The

prediction error, also known as Mean Square Error (MSE), reads

MSE¼ E½ðfðXÞÿf̂ðXÞÞ2�, ð6Þ

which can be decomposed as

MSE¼ ðE½f̂ðXÞ�ÿfðXÞÞ2þV½f̂ðXÞ�, ð7Þ

where E½f̂ðXÞ�ÿfðXÞ is the bias, illustrating precision, and V½�� is

the variance, representing stability. As these statistics evolve in an

opposite way (larger is the RS, better is the bias but larger is the

variance), the selection of a ‘‘good’’ RS involves a bias-variance

trade-off [3]. Two main techniques exist to estimate this predic-

tion: Penalty methods based on statistical considerations and

simulation methods based on intensive calculation. Some of them

are presented in the two following paragraphs. They are the most

used in basic statistical literature.

Penalty methods. Mallows’ Cp [31] is a well-known estimate of

MSE. If x terms, among P, are selected in the RS and if the statistical

sample has N points, the sum of squared error is SSEðxÞ ¼
PN

i ¼ 1 e
2
i

and the Cp is defined by

CpðxÞ ¼
SSEðxÞ

ŝ2
ÿNþ2x, ð8Þ

where ŝ is the estimator of the standard deviation s of residuals ei,
estimated on the complete RS. The Cp criterion can be viewed as a

penalization of SSE by twice the number of terms. It enables to

balance the reduction of SSE when the number of terms increases.

Comparing models of different sizes, the one which minimizes Cp

will be prefered.

Other criteria has been derived from the likelihood function such

as Akaike Information Criterion (AIC) [1] and Bayesian Information

Criterion (BIC) [41]. In case of normality assumption, they read

AICðxÞ ¼N log SSEðxÞ
N þ2x

BICðxÞ ¼N log SSEðxÞ
N þx log N:

ð9Þ

Like Cp, they have to be minimized in order to select the best model

from P potential terms.

Finally, a penalized form of the coefficient of determination

exists. It is called adjusted coefficient of determination and, like

previous criteria, depends on the number of terms in the RS. It is

defined by

R2
adjðxÞ ¼ 1ÿ

Nÿ1

Nÿxÿ1
ð1ÿR2ðxÞÞ: ð10Þ

The idea still remains to compensate for reduction of SSE with the

number of terms in the RS. It must be maximized contrary to Cp,

AIC and BIC and varies between 0 and 1 like R2.

Simulation methods. Their principle is to test a RS with

sampling points not used in the building procedure. The well-

knwon cross-validation consists in splitting the initial statistical

sample of size N in K groups. Iteratively, for k¼ 1, . . . ,K , the kth

group is removed from the initial sample, the RS is built with the

rest of sample and tested on the left out group, i.e. the kth. The

error is thus only calculated on points not used in the building

procedure. This error is denoted cross-validated error and reads

ECV ¼
1

N

X

N

i ¼ 1

ðyiÿf̂
ðÿDiÞ

ðxiÞÞ
2
, ð11Þ

where f̂
ðÿDiÞ

defines the RS built when the subset which contains

point i is removed from the initial sample. In analogy with R2

coefficient, a more convenient measure, often denoted Q2 and

called predictive coefficient, can be used. It is defined by

Q2
¼ 1ÿ

PN
i ¼ 1ðyiÿf̂

ðÿDiÞ
ðxiÞÞ

2

N
i ¼ 1ðyiÿyÞ2

: ð12Þ



The number K is often taken to 10 in literature as it gives good

estimate [33]. The limit is K¼N which means that, in turn, one

point is removed from the initial sample. This case is the leave-

one-out cross-validation.

Another tool based on simulation, known as bootstrap [17],

consists in computing several learning sets of size N by sampling

with replacement in the initial sample. Bootstrap samples thus

may include redundant points of the initial sample, while some

others are missing. This resampling technique can be used to

estimate mean, standard deviation, confidence interval or even

distribution law. About prediction error, several estimates have

been proposed in Efron and Tibshirani [19]. No more explanation

is given here because, in this paper, the bootstrap will be rather

used to estimate variations of RS predictions (cf. Section 2.3.2).

2.1.3. Terms selection

It has been already noticed that the number of terms in RS

should be limited in order to make good predictions (to avoid

overfitting). As previous section has presented tools which quan-

tify prediction error, the aim of this one concerns selection of

terms which minimize it.

This procedure is classical in statistics and consists in testing,

one by one, subsets of terms [32]. Since it is not possible to do it

with all subsets, several methods have been proposed to add

or remove terms, in order to test them, in an iterative manner.

The most used ones are known as forward, backward or stepwise

selections. Forward selection consists in adding terms one by one

in the RS with respect to a given criterion: in turn the term which

improves at best the criterion is included. Backward selection

starts from a given RS (generally with all terms) and remove

terms in turn with respect to the criterion. Finally, stepwise

selection uses both techniques and thus can add or remove terms

at each step. At the end of the procedure, the RS is often sparse as

all terms are not generally usefull. The selection criterion can be

any of the previously described estimates of prediction error. The

choice made in this paper will be discussed in next section.

2.2. Response surface construction

In order to build a predictive RS, a strategy of terms selection

and an estimate of prediction error must be chosen. Penalized

criteria are convenient for selection since they depend on the

number of terms and do not require more computations than one

RS construction. However, they are based on normality assump-

tion which is not justified in our applications. Indeed, this

assumption holds for physical experiments because repeating

same experiments does not give same results. In our case,

experiments are deterministic simulations and residuals between

predicted responses and true ones only represent the RS lack of

fit. Therefore, penalty methods cannot be used to validate a RS in

an absolute manner. Conversely, simulation methods do not

require any assumption but are more computationaly demanding

as the RS is built several times. Consequently, they are not

convenient for terms selection in RS.

For these reasons, a mixture of all estimates of prediction error

will be used: penalty methods for terms selection and simulation

methods for RS validation. Among penalized criteria, none is

really better than another and it is not possible to know a priori

which one provides the best RS. Therefore, they will be all used.

Finally, selection procedure will provide four potential RS and the

best one will be chosen with cross-validation method, as it is

generally convenient to discriminate between several models.

About selection procedure, the backward selection has the

drawback to start from a given a priori RS (generally the complete

RS), which needs a high enough statistical sample. With forward

and stepwise selections, a small sample can be first formed, even

smaller than the number of potential terms. However, if four

penalized criteria are used, stepwise selection needs repeating

four times the procedure, whereas only one can be performed

with forward selection. Indeed, since criteria depend on SSE and

number of terms in the RS, the selection can be performed with

respect to SSE in order to build RS of different sizes (with one

term, two terms, three terms, etc) and criteria can be calculated

on each RS. The four best RS, with respect to the four criteria, are

then selected. Consequently, forward selection will be prefered in

order to reduce computational time. As said before, the best RS

among the four, will be selected with cross-validation, i.e. the RS

with the highest predictive coefficient Q2 will be chosen. This RS

construction is summarized in Fig. 1.

2.3. Response surface validation

2.3.1. Motivations

When a reliability analysis is performed with RS method and if

no information is available on the domain of failure location, it is

natural to sample the input space around mean values. However,

failure of mechanical structures is generally a consequence of

extreme behavior, which means that probability of failure is often

low. Thus, the limit state function is located in tail probabilities.

Consequently, even if predictive coefficient is a robust global

criterion of the RS quality, it is not representative of its quality

close to the limit state. Therefore, a more precise validation

criteria seems necessary; it is the objective of present section.

Another important point is the difficulty to validate a probability

of failure, estimated with RS, when only a measure of the RS

quality is available. The validation step described here aims also

Fig. 1. Procedure of the response surface construction.



at calculating the influence of RS error on the probability of

failure. The bootstrap method will be used for this purpose.

Let us recall that bootstrap method [17] is a resampling

technique, which consists in building several data samples by

sampling with replacement in the original data set. It thus enables

to estimate a lot of statistical propreties. Here, it will be used in

order to estimate variations of RS predictions. Then, two indica-

tors will be deduced and will allow to determine how the

probability of failure is affected by RS error.

2.3.2. Bootstrap indicator

Let xref be the learning sample of size N and xnb with b¼ 1 . . .B

the B bootstrap samples of size N obtained by sampling with

replacement in xref . For each bootstrap sample xnb, the RS, whose

terms have been selected with the procedure described in pre-

vious section, is determined and used in order to predict

responses on the learning sample. The RS, built with the b-th

bootstrap sample xnb, is denoted f̂
nb

and predictions on xref are

ŷ
nb

¼ ðŷ
nb
1 , . . . ,ŷ

nb
N Þ. After B repetitions, variations of the i-th pre-

diction can be observed and, particularly, minimum and max-

imum values: minb ¼ 1,...,Bðŷ
nb
i Þ and maxb ¼ 1,...,Bðŷ

nb
i Þ. However,

if only one bootstrap sample is badly formed, these minimum

and maximum predictions could be very pessimistic. It is thus

prefered to introduce the 95% confidence intervals, widely used in

statistical literature. An easy and intuitive manner is to sort ŷ
nb
i ,

for b¼ 1, . . . ,B, in order to obtain the 0.025B-th and the 0.975B-th

values, which will be denoted ŷ
n

ilow
and ŷ

n

iup
. This confidence

interval is known as percentile bootstrap confidence interval [18].

From this interval, bootstrap indicators are derived. They corre-

spond to the maximum variations between extreme and nominal

predictions

êlow ¼ max
i ¼ 1,...,N

ð9ŷ iÿŷ
n

ilow
9Þ

êup ¼ max
i ¼ 1,...,N

ð9ŷ iÿŷ
n

iup
9Þ:

8

>

<

>

:

ð13Þ

These bootstrap-based indicators can be added to the limit state

function in order to evaluate their influence on the probability of

failure. Let us consider X the input random vector, f̂ the RS function

and Gðf̂ðXÞÞ the performance function, such as Gðf̂ðXÞÞr0 is the

domain of failure. The following probability interval is defined

Pf low
¼PðGðf̂ðXÞÿêlowÞr0Þ

Pf up
¼PðGðf̂ðXÞþ êupÞr0Þ:

8

<

:

ð14Þ

This interval is the final information to validate the probability of

failure estimated with RS. Consequently, it should be low enough if

the RS must be accepted. Of course, this interval does not contain,

for sure, the true probability of failure but it reflects the quality of

the estimated probability. However, since bootstrap-based indica-

tors are determined over the whole sampling space, they could be

very constraining if selected points are very far from the limit state

area. To avoid this, indicators should be searched in the neighbor-

hood of the design point. The following section aims at defining such

a region of interest.

2.3.3. Definition of the region of interest

The region of interest is the area where it is relevant to

evaluate bootstrap-based indicators because it mostly contributes

to the probability of failure. Therefore, if this region is denoted S,

bootstrap-based indicators defined in (13) become

elow ¼max
iAS

ð9ŷ iÿŷ
n

ilow
9Þ

eup ¼max
iAS

ð9ŷ iÿŷ
n

iup
9Þ,

8

>

<

ð15Þ

which means that sampling points are searched inside S. This

region has been determined in relation with the design point

neighborhood as defined by Dutfoy and Lebrun [16]. Let us recall

that design point is the nearest point to the origin in the normal

standard space of random variables (u-space) which belongs

to the limit state. The change from physical space to standard

normal space can be done with an isoprobabilitic transformation

[30]. The design point is obtained through an optimization

procedure which can be written

un ¼ argminJuJ2 with HðuÞ ¼ 0, ð16Þ

where un is the design point, J � J the euclidian norm and H the

performance function in u-space, such as HðuÞ ¼ 0 is the limit state.

The distance between the design point and the u-space origin is

the reliability index, known as b. It is generally used in the First

Order Reliability Method (FORM) in order to approximate the

probability of failure. The design point probability density is

jnðu
nÞ where jn is the multivariate standard normal distribution.

An importance level, denoted epdf , is defined such as all points u

with jnðuÞrepdfjnðu
nÞ are considered to have a negligible prob-

ability density. The function c is defined such as cðJuJÞ ¼jnðuÞ

and the previous inequality is equivalent to cðJuJÞrepdfcðbÞ.
Introducing the factor depdf such that cðbð1þdepdf ÞÞ ¼ epdfcðbÞ, we

have

depdf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1ÿ
2lnðepdf Þ

b2

s

ÿ1, ð17Þ

Then, for a given value of importance level epdf , the region of

interest S is defined as the hypercube
QM

i ¼ 1½bilow ,biup � which framed

the intersection between the ball Bð0,bð1þdepdf ÞÞ and the limit

state HðuÞ ¼ 0 (see an example on Fig. 2).

In practice, hypercube boundaries are determined by optimi-

zation. More precisely, for all component ui, with i¼ 1, . . . ,M, the

problem to solve reads

bilow ¼ argminui with
JuJÿbð1þdepdf Þ ¼ 0

HðuÞ ¼ 0

(

ð18Þ

biup is obtained exactly in the same way, except that ui must be

maximized. Finally, the importance level epdf is the only para-

meter which controls the size of the region of interest. It will be

discussed further.

The region of interest is used to calculate bootstrap-based

indicators in a more relevant manner. However, it is necessary

that this region contains sampling points. If it is not the case,

additional sampling points should be included inside in order to

compute the probability interval. If this interval can be calculated

but is too high to validate the RS, this latter has to be refined in

the neighborhood of the design point. In both cases, ED must be

enriched in the region of interest and a new RS must be evaluated.

Fig. 2. Definition of the region of interest.



This refinement is described in the next section as an adaptive

scheme.

2.4. Adaptive scheme

2.4.1. Short description

The principle of the proposed method is to iteratively enrich

the ED in the region of interest determined thanks to the RS. So, at

each step, sampling points are added to ED, the RS is updated and

the region of interest is thus modified. Consequently, procedure is

divided in three main stages:

1. The region of interest must be first located, i.e. it does not have

to move too much from one iteration to another. It is called

region convergence.

2. Once the region is found, the RS must be globally good enough

so that a probability of failure can be estimated. It is the

response surface convergence.

3. This estimated probability of failure must be validated with

the bootstrap method, whose methodology is described in

section 2.3. It is the validation.

The following sections describe the enrichment method and all

steps of the adaptive scheme. But, before all, the choice of an ED is

explained.

2.4.2. Choice of experimental design

In determistic computer experiments, space filling design are

often prefered compared to classical design of experiments used

in physical experiments [40,45,44]. This kind of experimental

designs tries to fill the design space uniformly. A widely used

experimental design, in computer experiments, is Latin Hyper-

cube Sampling (LHS). It is very easy and cheap to generate and

can be used with a lot of input variables. Also, as it will be seen in

the next section, it can be easily enriched, keeping quasi-LHS

properties. That is why it has been chosen here.

In order to build a RS with the statistical sample formed by

LHS, the number of sampling points must be NZx where x is the

number of terms in the RS. However, the use of bootstrap method

involves a larger number of sampling points in order to avoid

conditioning problems. Indeed, bootstrap samples are generated

by sampling with replacement, which means that some points are

redundant whereas other points do not appear. Empirical studies

made on some examples showed that a number of sampling

points N¼ 3x is a good trade-off between accuracy and computa-

tional time. If the number is lower, RS predictions based on

bootstrap samples could be deteriorated; if the number is higher,

computational time is uselessly larger.

The number of terms x is not known before choosing the

number of points in the ED, since terms are selected with the

iterative method described in Section 2.2. Therefore, it is neces-

sary to set an ED of size N and to restrict the number of terms x in

the RS construction such as NZ3x. In order to reduce computa-

tional time, it is better to start the adaptive procedure with a

quite small ED. This one will be enriched at each step if necessary.

So, the initial size of ED has been arbitrary fixed to Ninit ¼ 3M,

where M is the number of input variables, because it enables to

potentially include all linear terms in the RS.

2.4.3. Sequential latin hypercube sampling

At each iteration of our adaptive scheme, the LHS initially

generated is enriched in the region of interest. This enrichment is

described now and is inspired from [46,7]. It consists in adding

sampling points to the initial LHS so that it keeps LHS structure

(or quasi-LHS as mentioned by Blatman and Sudret [7]). Since

ED is only increased in the region of interest S, which is an

Fig. 3. Method to increase LHS - Ideal case.



hypercube, this section considers that design space is restricted to

a unit hypercube
QM

1 ½0,1�, where M is the number of variables.

The method is explained in the two dimensional case, illustrated

in Fig. 3, but can be generalized to a M dimensional problem.

Assume that one point already exists in the design space and that

two more points must be added. As the resultant number of points is

three, the design space is split into a 3�3 equiprobable grid.

Intervals (row and column), represented by the existing point, are

shaded in Fig. 3. It means that no additional point can fall inside.

Conversely, blank spaces point to potential areas for additional

points. These new ones are generated with an independent LHS

and mapped to the real design space with respect to the cell position.

For example, as shown in Fig. 3, the point in cell corresponding to the

first row and the first column, is set at the intersection of the first

blank row and the first blank column, if one counts from the origin.

Therefore, the new ED still depicts a LHS.

However, this previous case is ideal in the sense that no

existing point is redundant in the intervals when the design

space is split. A second example is illustrated in Fig. 4, where two

points fall in the same interval (second row). Normally, only two

additional points should be generated but, here, the red row

would not be represented. Therefore, three points are generated

instead of two. The two first ones are placed as presented above.

The third one, say A in Fig. 3, enables to represent the red row.

But, since all columns are already filled, the cell along this row is

randomly chosen. Although this method involves more additional

points than the expected number, it enables to get a quasi-LHS

scheme and thus better covers design space. In this example, only

one additional point was needed but more could be necessary. In

that case, the procedure automatically adjust the number of

additional points in order to represent each interval.

2.4.4. Stages description of adaptive method

Initial step. A first LHS is generated with Ninit ¼ 3M sampling

points, where M is the number of input variables. A RS is

determined where the number of allowed terms is such as x0rM.

Region convergence. This stage consists in locating the region of

interest. Assume that a RS is built at step i. The reliability index,

say bi, and the region of interest, say Si, are determined on the RS

(the region is calculated as explained in Section 2.3.3). For a given

threshold, denoted eb, the criterion which specifies if the region

has changed compared to the previous step, reads

biÿbiÿ1

bi

�

�

�

�

�

�

�

�

reb: ð19Þ

If it is satisfied, the region of interest is located and can be fixed.

The converged region is denoted Sconv and is not updated any-

more. One can go to the response surface convergence stage. If

criterion (19) is not satisfied, the region Si is used in order to

enrich the ED at step iþ1, following the procedure given in

Section 2.4.3, and a new RS is built. At each step, all sampling

points from the initial ED are kept for the RS construction. Since

the number of allowed terms in RS depends on ED size (3xirNi),

the RS can grow up iteratively. Steps of region convergence are

summarized in Fig. 5. In this one, the number of additional points

at each iteration is denoted Nadd. In following applications, it will

be arbitrarily fixed to the number of input variables, but it must

be recalled that more sampling points can be added in order to

keep a quasi-LHS structure (see Section 2.4.3).

Response surface convergence. Now, the region of interest,

known as Sconv, is located and the RS quality is of main interest.

The chosen convergence criterion is based on the predictive

coefficient Q2 (cf. Section 2.1.2). Note that cross-validation does

not involve more computation since it has already been per-

formed in RS construction procedure (cf. Section 2.2). At the i-th

iteration, Q2
i is compared to a threshold, say ers, according to

Q2
i Zers: ð20Þ

If it is satisfied, iterative procedure is stopped and validation step

takes place. Otherwise, the RS must be improved by adding more

sampling points in ED, inside region Sconv.

Suppose now a case where limit state is far from the mean

point. Sampling points are scattered over a large area because the

region of interest has changed several times before convergence.

Then, sampling points out of Sconv could prevent the RS quality to

reach the required value ers. To avoid it, a second RS is built on a

local ED, i.e. which only contains sampling points inside Sconv.

Fig. 4. Method to augment LHS - Case of redundant points.

Fig. 5. Flowchart of region convergence steps.



This ED is denoted EDlocal and the predictive coefficient estimated

on its RS is Q2
local. Conversely, EDglobal is used to speak about the

whole ED, i.e. with all sampling points, and Q2
global is its associated

predictive coefficient. If Q2
localZQ2

global, EDlocal is used until the end

of the procedure. It means sampling points out of Sconv are not

used anymore to build RS. In such a case, criterion (20) is applied

to Q2
local. This ‘‘test of deletion’’ is applied at each iteration until

convergence. Main steps of response surface convergence are

summarized in Fig. 6.

Validation. This last step is based on Section 2.3. The bootstrap is

performed on RS with the selected ED (global or local) and indicators

elow and eup are determined. They are used to calculate Pf low
and Pf up

(cf. (14)) on RS with a simulation method (crude Monte Carlo or

Importance Sampling). This probability interval is the final validation

criterion. If it is not low enough, the algorithm can be restarted with a

higher value of ers, in order to obtain better quality RS. All steps of

adaptive scheme are summarized in Fig. 7.

2.4.5. Discussion on parameters

Main parameters, which control the algorithm, are: Impor-

tance level epdf , connected to the region of interest size, eb
governing the region of interest location and ers, for the RS

quality. Validation step ensures that ers is high enough. Indeed,

if ½Pf low
,Pf up

� is too large, ers can be adjusted and the algorithm is

restarted so that RS quality is improved. epdf characterizes the

region of interest size: lower it is, bigger is the region of interest.

Following its definition, the chosen value should be relatively low,

i.e. 0.05 or 0.1. Actually, this importance level defines the region

above which the probability density is considered as negligible.

The interval ½Pf low
,Pf up

� is impacted by this parameter as the

number of sampling points, used to determine elow and eup, may

be different with respect to the region size. If the region is small

(high epdf ), few confidence is given to ½Pf low
,Pf up

�. eb is intermediate

and must not be neither too high nor too low. If it is too high, the

region can converge quickly towards a bad location. Conversely, a

very low value could involve more computational time. However,

additional iterations, which are done when eb is too low, should

involve a faster convergence of RS quality in RS convergence step.

Examples of classical values are presented in next section.

Another parameter, which does not clairly appear, is the spread

of the initial ED. In literature, it is always arbitrarily chosen as a

function of standard deviation of random variables, i.e. 7ks, where

k is often taken equal to 3. Intuitively, one can imagine that different

values of k may change the adaptive method progress during

iterations. If k is low, a small region is initialized and moves at each

step. If k is high, a larger region is initialized and then refined. The

choice of k is difficult to rigorously justify but some numerical

experiments, done by authors, have shown that, on common cases,

the number of simulation runs and accuracy of estimated results are

very close whatever the value of k is between 1 and 5.

3. Numerical applications

3.1. Analytical example

3.1.1. Description

First, a two dimensional analytical case is used in order to

illustrate the adaptive scheme and its progress. This example has

been already used by Kang et al. [26] and Nguyen et al. [35]. The

two input random variables, say X1 and X2, are assumed to follow

Fig. 6. Flowchart of response surface convergence steps.

Fig. 7. Flowchart of adaptive method.



standard normal distributions. The performance function reads

GðxÞ ¼ expð0:4ðx1þ2Þþ6:2Þÿexpð0:3x2þ5Þÿ200, ð21Þ

and the domain of failure is such as GðxÞr0. The reference value

of the probability of failure, say PREF
f , is obtained with FORM

followed by Importance Sampling with 500,000 simulations.

Corresponding generalized reliability index is given by bREF
¼

ÿFÿ1ðPREF
f Þ, where F is the normal cumulative distribution func-

tion, and its reference value is bREF
¼ 2:686.

3.1.2. Analysis and results

The previously described adaptive method is performed on this

analytical function in order to estimate the probability of failure. The

initial ED contains 6 sampling points and the number of additional

points is set to 2 (the number of input variables as mentionned in

Section 2.4.4). The importance level is chosen to epdf ¼ 0:05, the

convergence criterion on reliability index is eb ¼ 0:01 and the

convergence criterion on RS quality is ers ¼ 0:99. The probability of

failure is calculated on the RS with FORM followed by Importance

Sampling with 500,000 simulations. The generalized reliability index

bgen is then deduced. Results are presented in Table 1 and Fig. 8

shows the progress of the method at each iteration. In Table 1, bgenlow

and bgenup
stand for generalized reliability indexes, which correspond

to Pf low
and Pf up

, calculated with bootstrap method during the

validation step (cf. Section 2.4.4).

The algorithm converges in 4 iterations and the number of

estimates of the original performance function, say Ncalc, is 15. It

can be observed that sequential LHS procedure has added more

than 2 sampling points during steps 2 and 3. Estimated general-

ized reliability index bgen is very close to the reference value and

the interval given by bgenlow
and bgenup

is small enough. The

predictive coefficient of the final RS is Q2 ¼ 0:998, i.e. much larger

than the required value ers ¼ 0:99. Actually, when the region of

interest has converged, RS quality was already good enough to

converge immediately, i.e. without adding more sampling points

in ED. Finally, note that, in this example, Q2 coefficient has been

evaluated from leave-one-out cross-validation since first ED only

contains 6 sampling points.

3.2. Truss structure

3.2.1. Description

This example is taken from [7] and consists in a truss structure

with 23 bar elements. The structure is shown Fig. 9. There are 10

input random variables: Young’s moduli and cross sections, denoted

Table 1

Results of analytical example.

bREF bgen bgenlow
bgenup

Q2 Ncalc

2.686 2.677 (0.3%)a 2.593 (3.1%)b 2.717 (1.5%)b 0.998 15

a Relative gap with bREF .
b Relative gap with bgen .

Fig. 8. Evolution of the method on an analytical example.



A1, E1 for horizontal bars and A2, E2 for sloping bars, and applied

loads from P1 to P6. All these variables are assumed to be indepen-

dent. Their distributions, mean values and standard deviations are

given in Table 2. Response of interest is the deflection of the

midspan, say v.

3.2.2. Analysis and results

The structure is studied for reliability analysis with the

following performance function

GðxÞ ¼ 0:14ÿ9vðxÞ9, ð22Þ

where x are realizations of X, which are standard random

variables obtained with an isoprobabilistic transformation of

physical random variables. The domain of failure is defined such

as GðxÞr0. Reference value of the probability of failure, say PREF
f ,

has been estimated by Blatman and Sudret [7] with FORM

followed by Importance Sampling with 500,000 simulations. The

corresponding generalized reliability index is bREF
¼ 3:98.

The adaptive method has been used in order to estimate the

probability of failure. The initial LHS contains 30 sampling points

and the number of additional points at each step is 10, since 10

variables are considered here. The importance level is epdf ¼ 0:05,

criterion on region convergence is eb ¼ 0:01 and criterion which

controls RS quality is set to ers ¼ 0:99. The probability of failure is

still obtained by Importance Sampling with 500,000 simulations,

and results are provided with respect to generalized reliability

indexes. They are presented in Table 3. It can be observed that the

global procedure takes place as follows:

� First, 62 computations of the finite element model have been

performed to reach the targeted RS quality, i.e. ers ¼ 0:99. The

predictive coefficient obtained is Q2
¼ 0:992. But the interval,

estimated around bgen with bootstrap-based indicator, is quite

large. Note that no sampling point has been removed, i.e. final

RS is built with ED global.

� The algorithm is restarted from the already performed ED,

with an increasing value of ers, namely ers ¼ 0:995, in order to

improve RS quality. Only 16 additional simulations were

necessary to reach the criterion and EDglobal is still conserved.

� Finally, the procedure is launched a last time with ers ¼ 0:999.

The predictive coefficient obtained for the final RS is Q2
¼

0:9994 and 64 additional simulations have been performed.

Here, sampling points out of region of interest have been

removed to reach the required criterion, i.e. final RS is built on

EDlocal. Therefore, 142 computations have been performed

from the first step but 103 sampling points are used to build

the RS. Interval obtained around bgen is considered as

sufficiently small.

3.3. Frame structure

3.3.1. Description

Now is considered the frame structure presented in Fig. 10. It

was already studied in several papers such as [7,47,35]. There

are 21 studied variables, namely 3 horizontal loads (P1 to P3),

8 moments of inertia and cross-sections corresponding to differ-

ent mechanical properties (from A1, I1 to A8, I8) and 2 Young’s

moduli (E1 and E2). These properties, associated to beam ele-

ments, are detailed in Table 4. Distributions, mean values and

standard deviations of variables are given in Table 5. Here, some

variables are assumed to be correlated:

� Cross section and moments of inertia of the same element

with a coefficient rAi ,Ii
¼ 0:95;

� All others geometrical properties with coefficient rAi ,Aj
¼ rIi ,Ij

¼ rAi ,Ij
¼ 0:13;

Fig. 9. Truss structure (unit m).

Table 2

Properties of random variables—Truss structure.

Variable Distribution Mean Standard deviation

E1, E2 (Pa) Lognormal 2.10�1011 2.10�1010

A1 (m2) Lognormal 2.0�10ÿ3 2.0�10ÿ4

A2 (m2) Lognormal 1.0�10ÿ3 1.0�10ÿ4

P12P6 (N) Gumbel 5.0 �104 7.5�103

Table 3

Results for truss structure.

bREF Target Q2 Obtained Q2 bgen bgenlow
bgenup

Ncalc

3.98 0.990 0.9920 3.80 (4.7%)a 3.37 (11.3%)b 4.06 (6.8%)b 62

0.995 0.9970 3.90 (2%)a 3.67 (5.8%)b 4.09 (4.9%)b þ 16¼78

0.999 0.9994 3.99 (0.3%)a 3.87 (3%)b 4.09 (2.4%)b þ 64¼142c

a Relative gap with bREF .
b Relative gap with bgen .
c Only 103 sampling points (EDlocal) are used in the RS construction.

Fig. 10. Frame structure (unit m).



� Correlation of Young’s modulus is equal to rE1 ,E2
¼ 0:9;

� All remaining variables have no correlation.

Response of interest is the horizontal top displacement, say D.

3.3.2. Analysis and results

The structure is studied for reliability analysis with the follow-

ing performance function

GðxÞ ¼ 0:06ÿDðxÞ, ð23Þ

where x are realizations of X, which are independent standard

random variables obtained with an isoprobabilistic transformation

of physical random variables. The domain of failure is defined as

GðxÞr0. As in previous example, reference value of the generalized

reliability index has been estimated by Blatman and Sudret [7]

with FORM followed by Importance Sampling with 500,000 simu-

lations, and is bREF
¼ 3:51.

This example shows somehow a limit of the proposed adaptive

method. Actually, if we use the same parameters than in other

examples, i.e. epdf ¼ 0:05, eb ¼ 0:01 and ers ¼ 0:99, the procedure

does not converge. The reason is that, with high uncertainties

(large values of standard deviation) and high correlated input

random variables, the region of interest, defined with epdf ¼ 0:05,

is very large. Moreover, the response behaviour is too non-linear so

that it cannot be well approximated with a quadratic RS. Conse-

quently, the required RS quality is never reached. However, in [35],

authors obtain good results with a complete quadratic RS and with

259 numerical simulations. Actually, it has been observed that

parameters, used by these authors for their own adaptive ED, are

equivalent to choose, in our case, epdf ¼ 0:6. Consequently, if our

method is applied with this value, the procedure converges in 149

finite element simulations with a good accuracy. Corresponding

results are presented in Table 6.

Although this example is particular with such a level of

uncertainty, it shows the difficulty involved by the region of

interest. Basically, the algorithm does not converge with classical

importance level (small values of epdf ), but may converge with

specific values (high values). It is because the response is highly

non-linear over a large region, whereas it is more smooth on a

small one. In [5], this frame structure has been treated with a LHS

around the mean point, and a sparse polynomial chaos of

maximum degree 6 was necessary to obtain accurate enough

results on the performance function (23). In [35], an accurate

result is obtained on the same function with a complete quadratic

RS but with a refinement strategy. These two methods are quite

different, but it shows this frame structure can be difficult to

handle, strongly depending on which size of design space is

considered. From a practical point of view, what occurred here

(non convergence with small epdf and convergence with high epdf )
can be useful to reveal a difficulty, particularly a limitation in the

use of sparse quadratic RS. In such a case, it should be better to

use other kinds of meta-models or methods in order to compare

results.

4. Conclusion

4.1. Summary

This paper introduces a method based on response surface (RS)

for reliability analysis. It consists in an adaptive scheme where

the RS is iteratively refined in the region which mainly contribute

to the probability of failure, i.e. close to the design point.

The methodology, used to build the RS, is a selective procedure

of the most important terms with respect to statistical criteria. As

several RS are determined, cross-validation technique is used

to choose the best one. The region of interest, wherein the RS

must be refined, is determined from an importance level on the

probability density at the design point. In this manner, it is sized

with respect to the result of interest, i.e. the probability of failure.

In order to reduce the number of simulations, the algorithm starts

from a small initial experimental design and proceeds in three

steps:

1. The experimental design is enriched inside the region of

interest and the RS is updated (so the region of interest also),

while the design point is not precisely determined (region

convergence);

2. The experimental design is enriched inside the region of

interest, fixed at the end of previous step, while RS quality,

determined with cross-validation, is not good enough;

3. Finally, bootstrap method is used to calculate variations of RS

predictions and leads to the interval ½Pf low
,Pf up

�, containing the

estimated probability of failure.

Table 4

Finite element properties—Frame structure.

Elements Young’s modulus Moment of Inertia Cross section

1 E1 I5 A5

2 E1 I6 A6

3 E1 I7 A7

4 E1 I8 A8

5 E2 I1 A1

6 E2 I2 A2

7 E2 I3 A3

8 E2 I4 A4

Table 5

Properties of random variables—Frame structure.

Variable Distribution Mean Standard deviation

P1 (kN) Lognormal 133.454 40.04

P2 (kN) Lognormal 88.97 35.59

P3 (kN) Lognormal 71.175 28.47

E1 (kN/m2) Normal 2.1738�107 1.9152�106

E2 (kN/m2) Normal 2.3796�107 1.9152�106

I1 (m4) Normal 8.1344�10ÿ3 1.0834�10ÿ3

I2 (m4) Normal 1.1509�10ÿ2 1.2980�10ÿ3

I3 (m4) Normal 2.1375�10ÿ2 2.5961�10ÿ3

I4 (m4) Normal 2.5961�10ÿ2 3.0288�10ÿ3

I5 (m4) Normal 1.0812�10ÿ2 2.5961�10ÿ3

I6 (m4) Normal 1.4105�10ÿ2 3.4615�10ÿ3

I7 (m4) Normal 2.3279�10ÿ2 5.6249�10ÿ3

I8 (m4) Normal 2.5961�10ÿ2 6.4902�10ÿ3

A1 (m4) Normal 3.1256�10ÿ1 5.5815�10ÿ2

A2 (m4) Normal 3.7210�10ÿ1 7.4420�10ÿ2

A3 (m4) Normal 5.0606�10ÿ1 9.3025�10ÿ2

A4 (m4) Normal 5.5815�10ÿ1 1.1163�10ÿ1

A5 (m4) Normal 2.5302�10ÿ1 9.3025�10ÿ2

A6 (m4) Normal 2.9117�10ÿ1 1.0232�10ÿ1

A7 (m4) Normal 3.7303�10ÿ1 1.2093�10ÿ1

A8 (m4) Normal 4.1860�10ÿ1 1.9537�10ÿ1

Table 6

Results of frame example.

bREF bgen bgenlow
bgenup

Q2 Ncalc

3.51 3.63 (3.4%)a 3.49 (3.9%)b 3.75 (3.3%)b 0.991 149

a Relative gap with bREF.
b Relative gap with bgen .



This latter validation criterion has the advantage to be very

convenient for reliability analysis. The initial experimental design

is a Latin Hypercube Sampling (LHS) and enrichment in the region

of interest is done in order to keep a quasi-LHS structure.

The algorithm is tested on three examples. The first one is a

two dimensional analytical case, which allows to study the

method progress. The second example shows how the method

can be applied on a real finite element model. Final validation

step enables to justify the required value for the RS quality

criterion. The method is restarted twice, to reduce the interval

around the estimated probability of failure given by bootstrap-

based indicators. Provided results are fairly satisfactory in term of

precision and number of simulations. The last case is also a finite

element model and shows the difficulty involved by the region of

interest size. Actually, it is argued this difficulty is a means of

detecting problematic cases, where it is absolutely needed to

complete the analysis with an other method in order to increase

confidence in estimated results.

4.2. Discussion

The method, proposed here, is intended to be applied to

industrial problems. Of course, these applications must corre-

spond to main hypothesis involved by the method: the response

of interest must not be highly non-linear to be well approximated

with a quadratic RS, and the design point must be unique. Such

hypothesis have been made because they correspond to most of

cases in application considered by authors (and a lot of other

ones), which deals with spacecraft structures. Indeed, in this

domain, uncertainties, taken into account, are relatively low and

the response behavior is often quite smooth. Generally, computa-

tional time of a finite element simulation is not very high, but

sufficiently to make impracticable direct simulation methods. The

number of variables can be moderately large (several tens or

hundreds), but large enough to make more complex kind of meta-

models difficult to use. Consequently, RS appears to be a good

trade-off as a first step towards reliability analysis application is

this domain. However, most of methods, based on RS, are still

expensive even with a moderately large number of variables, and

criteria, used for validation of estimated results, are not really

convenient.

The method is focused on several main points. First, reduction

of computational time is adressed by using sparse RS. Although in

examples presented above, the number of variables is not a real

problem, it is not the case in industrial applications. Indeed,

even with a moderately large number of variables, a complete RS

would need a high number of simulations, as the number of

interaction terms is MðMÿ1Þ=2, if M is the number of variables.

The terms selection procedure combined with an adaptive strat-

egy, to refine the experimental design around the design point,

really reduce computational time. In the recent contribution of

[7], selection of terms to build a sparse polynomial chaos has also

shown a large reduction of simulations.

A second point deals with the area used to refine the experi-

mental design. In most of existing methods, this region is

arbitrarily chosen and often becomes smaller and smaller during

iterations. The region, used in this paper, is defined with respect

to the probability density at the design point. Since the wished

result is the probability of failure, this choice appears as more

suitable in order to have a better confidence in results, estimated

with RS.

Finally, the validation step is a key point. The probability

interval ½Pf low
,Pf up

�, obtained by bootstrap-based indicators, is

an effective measure to know if the approximation is accurate

enough for reliability analysis, more than a RS error estimate. This

method of validation goes in same way that recent contributions

to validate adaptive procedure based on kriging [15] or support

vector machine [12].
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