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GENERALIZED FRONTS PROPAGATION ON WEIGHTED

GRAPHS∗

XAVIER DESQUESNES , ABDERRAHIM ELMOATAZ , AND OLIVIER LÉZORAY †

Abstract. In this paper, we propose a general formulation and an algorithm for simultaneous
propagation of several fronts evolving on a weighted graph. This formulation is an adaptation of
the continuous level set formulation for front propagation and uses a Partial difference Equations
(PdEs) framework. The proposed algorithm is a graph-based version of the Fast Marching algorithm
that allows simultaneous inward or outward propagation of several fronts. Experiments illustrate
the behavior of the algorithm and show some application results on several types of data.

Key words. Multiple fronts propagation, weighted graphs, Partial difference Equations, level
sets, inward/outward, Fast Marching.
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1. Introduction. Many applications involve data defined on topologically com-
plex domains. These data can be defined on manifolds or irregularly shaped domains,
defined on network-like structures, or defined as high dimensional point clouds such
as collections of features vectors. Such organized or unorganized data can be con-
veniently represented as graphs, where the vertices represent initial data and the
edges represent interactions between them. Hence, it is very important to transfer
many tools which were initially developed on usual Euclidean spaces and proven to
be efficient for many problems, to graphs. In this paper, we consider the level set
method for front propagation, as it was introduced by Osher-Sethian [1] and extend
it to weighted graphs. This transcription is based on a framework of PdEs [2] along
with a family of weighted gradients. Then, using the advantages of our graph-based
front representation, we extend the initial formulation (that considers a single front
evolving outward), to obtain a very general formulation that allows to consider the
simultaneous propagation of several fronts evolving inward or outward.

2. Partial difference Equations on graphs. All operators and definitions
presented in this Section were previously introduced in [2] and [3].

A weighted graph G = (V,E,w) consists in a finite set V of vertices and a finite
set E ⊆ V ×V of weighted edges. An edge (u, v) ∈ E connects two adjacent (neighbor)
vertices u and v. The neighborhood of a vertex u is noted N(u) = {v ∈ V \ {u} :
(u, v) ∈ E}. The weight w(u, v) of an edge (u, v) can be defined with a function
w : V × V → IR+ if (u, v) ∈ E, and w(u, v) = 0 otherwise. For the sake of simplicity,
w(u, v) will be denoted by wuv. Graphs are assumed to be simple, connected and
undirected implying that function w is symmetric. Let f : V → IR be a real-valued
function that assigns a real value f(u) to each vertex u ∈ V . We denote by H(V ) the
Hilbert space of such functions.
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2.1. Differences and gradients operators on weighted graphs. Let f :
V → IR be a function of H(V ). The gradient or difference operator of f , noted

Gw : H(V )→ H(E), is defined on an edge (u, v) ∈ E by (Gwf)(u, v)
def.
= γ (wuv) (f(v)

−f(u)) , where γ : IR+ → IR+ depends on the weight function (in the sequel we
denote γ(wuv) by γuv). Based on the previous definitions, the two upwind gradients

G±w : H(V ) → H(E), are expressed by G±w f(u, v)
def.
= γuv

(

f(v) − f(u)
)±

, with the
notation (x)+ = max(0, x) and (x)− = −min(0, x).

The discrete weighted gradient of a function f ∈ H(V ), noted ∇w : H(V ) → IR,
is defined on a vertex u ∈ V as the vector of all differences with respect to the set

of edges (u, v) ∈ E by (∇wf)(u)
def.
=

(

(Gwf)(u, v)
)T

v∈V
. Similarly, discrete upwind

weighted gradients are defined as (∇±
wf)(u)

def.
=

(

(

(Gwf)
±f

)

(u)
)T

v∈V
.

The Lp norms, 1 6 p < ∞ of these gradients : ‖∇wf‖p and ‖∇±
wf‖p, allow to

define the notion of the regularity of a function around a vertex. They are expressed

as : ‖
(

∇±
wf

)

(u)‖p =
[
∑

v∈V

γp
uv

(

f(v)−f(u)
)±p]1/p

. With the property ‖
(

∇wf
)

(u)‖pp =

‖
(

∇+
wf

)

(u)‖pp + ‖
(

∇−
wf

)

(u)‖pp. Similarly, the L∞ norm of these gradients is expressed

as : ‖
(

∇±
wf

)

(u)‖∞ = max
v∈V

(

γuv|
(

f(v)− f(u)
)±
|
)

. With the property ‖
(

∇wf
)

(u)‖∞ =

‖
(

∇+
wf

)

(u)‖∞ + ‖
(

∇−
wf

)

(u)‖∞.
All these definitions are provided according to our definition of a weighted graph.

2.2. PdE-based morphological processes. Let A be a set of connected ver-
tices with A ⊂ V such that for all u ∈ A, there exists a vertex v ∈ A, with (u, v) ∈ E.
We denote by ∂+A and ∂−A: the external and internal boundary sets of A, respec-
tively ∂+A = {u ∈ A : ∃v ∈ A with (u, v) ∈ E} and ∂−A = {u ∈ A : ∃v ∈ A with
(u, v) ∈ E}, where A = V \ A is the complement of A.

Let f : V → IR be a function of H(V ). Morphological dilation and erosion pro-
cesses on f are defined using the previously introduced gradients as the following Par-

tial difference Equations (PdEs) . Respectively δ(f)(u)
def.
= ∂tf(u) = ‖(∇

+
wf)(u)‖p

and ε(f)(u)
def.
= ∂tf(u) = −‖(∇

−
wf)(u)‖p. Intuitively, given a set of vertices A ⊂ V

and using external and internal graph boundaries equation of dilation over A can be
interpreted as a growth process that adds vertices from ∂+A to A. By duality, erosion
over A can be interpreted as a contraction process that removes vertices from ∂−A
to A.

3. Outward fronts propagation on weighted graphs. In this Section, we
will introduce our graph-based equation for outward front propagation. This equation
came from the classical continuous level set formulation and can be easily linked
with the particular case of the eikonal equation. An efficient algorithm to solve
the proposed equation is presented, and an extension to multiple fronts, using the
advantages of the graph-based front representation (as a discrete subset), will also be
given.

3.1. Front representation. Let G = (V,E,w) be a weighted graph. At time
t, a front Γ evolving on G is defined as a subset Ωt ⊂ V , and can be implicitly
represented by a level set function φt = XΩt

− XΩt
, where X : V → {0, 1} is the

indicator function. In other words, φt equals 1 in Ωt and −1 on its complementary.
Let F : V → IR be a speed function, such that the sign of F controls the direction
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Fig. 3.1. Illustration of narrow bands on an arbitrary weighted graph. Left and right: position
of front, subsets and narrow bands at step t, respectively t+ 1.

of the front evolution. The front moves inward when the speed is negative (i.e., vertices
are removed from Ωt) or outward when the speed is positive (i.e., vertices are added
to Ωt).

3.2. Level set formulation. The level set formulation, to describe a front evo-
lution, has been introduced by Osher-Sethian [1], as

∂φ

∂t
= F‖∇φ‖, (3.1)

such that the 0 level set of φ(x, t) provides the position of the front at time t. Trans-
posed on a weighted graph G, and using the framework of discrete operators intro-
duced in [2], the level set formulation (3.1) can be rewritten by the following PdE

{

∂φ
∂t (u, t) = F(u)‖(∇wφ)(u, t)‖p

φ(u, 0) = φ0.
(3.2)

Let Γ be a front represented by the subset Ω0. We denote by N+
0 the narrow

band of vertices u ∈ ∂+Ω0 likely to be added to Ω0 (i.e., F(u) > 0). Similarly, we
denote by N−

0 the narrow band of vertices u ∈ ∂−Ω0 likely to be added to Ω0 (i.e.,
F(u) < 0). See Fig. 3.1 for an illustration of these concepts.

Proposition 3.1. On narrow bands of Ω0, one has the following property

‖(∇wφ)(u, t)‖p =

{

‖
(

∇+
wφ

)

(u, t)‖p ∀ u ∈ N+
0

‖
(

∇−
wφ

)

(u, t)‖p ∀ u ∈ N−

0 .
(3.3)

Proof. According to the relation between gradient norms, one has

‖(∇wφ)(u, t)‖p =
[

‖
(

∇+
wφ

)

(u, t)‖pp + ‖
(

∇−
wφ

)

(u, t)‖pp

]1/p

. (3.4)

In the case where u ∈ N+
0 , we have φ(u, 0) = −1. Then according to the gradient

norms definition, we have ‖
(

∇−
wφ

)

(u, 0)‖p = 0. Similarly, in the case where u ∈ N−

0

we have ‖
(

∇+
wφ

)

(u, 0)‖p = 0.

In order to take advantages of Prop.3.1, we will now consider a front propagation
as a succession of very small steps of evolution. Then, the propagation of front Γ on
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a thin narrow band NB = ∂+Ω0 ∪ ∂−Ω0 can be represented by the level set function
φ : ∂+Ω0 ∪ ∂−Ω0 × [0, τ ]→ IR and described by the following morphological process



















∂φ
∂t (u, t) =











F(u)‖(∇+
wφ)(u, t)‖p ∀u ∈ N+

0

F(u)‖(∇−
wφ)(u, t)‖p ∀u ∈ N−

0

0 otherwise (the front doesn’t move)

φ(u, 0) = φ0,

(3.5)

where τ is a small enough step of time to ensure that Γ does not step out of ∂+Ω0 ∪
∂−Ω0. At time τ , the relation between the function φ and the front is given by

u ∈

{

Ωτ if φ(u, τ) > 0

Ωτ if φ(u, τ) < 0.
(3.6)

Then, the next step of evolution is performed by replacing Ω0 by Ωτ in equation (3.5)
and a function φ : ∂+Ωτ ∪ ∂

−Ωτ × [τ, 2τ ]. This, until the front is fully propagated. A
general iterative scheme to solve this morphological process has been introduced in
[4].

3.3. Link with the eikonal equation and Fast Marching algorithm. Con-
sidering the case where the sign of F is always non negative, equation (3.5) can be
rewritten as

∂φ(u, t)

∂t
= F(u)‖

(

∇+
wφ

)

(u, t)‖p ∀u ∈ N+
0 . (3.7)

Let T : V → IR be the arrival time function of Γ (i.e., T (u) is the arrival
time of Γ at u). By analogy to the continuous case, where the relation between
the level set formulation and the eikonal equation stems from the change of variable
φ(x, t) = t− T (x), equation (3.7) can be rewritten as

∂φ(u, t)

∂t
= F(u)‖

(

∇+
w(t− T )

)

(u)‖p

= F(u)‖
(

∇−
wT

)

(u)‖p,
(3.8)

which is a discrete adaptation of the eikonal equation on weighted graphs. Finally,
with P = 1/F , the static outward front evolution equation is given by

{

‖
(

∇−
wT

)

(u)‖p = P (u) ∀u ∈ Ω0

T (u) = 0 ∀u ∈ Ω0,
(3.9)

where P is a potential function. Numerical schemes and an efficient algorithm to
solve this equation have been previously provided in [5]. The algorithm is a general-
ized version of the Fast Marching method proposed by Sethian in [1], which has the
advantage to be monotonic so that each vertex is visited only once.

On an arbitrary graph, the Fast Marching consists in an active list (A) of vertices
for which the solution is already known and fixed, and in a narrow band (NB) of
vertices which are not yet fixed and have at least one neighbor in the active list. The
active list and narrow band are respectively initialized with vertices of Ω0 and N+

0 .
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Vertices that are neither active nor in the narrow band are said far away (FA). The
narrow band is built as a sorted heap, so that vertices are added in the active list
in the order of increasing arrival time. When a vertex is added to the active list,
the arrival times of it’s not yet fixed neighbors are updated, and the narrow band is
refreshed. One can remark that at any time t we have NB = N+

t . This is iterated
until the narrow band is empty. More details on this algorithm can be found in [5].

3.4. Multiple outward fronts propagation. Now, we will study the case
where many fronts evolve simultaneously on G. We consider that all fronts move out-
ward, can’t overlap and are mutually blocking. We will show that all these fronts can
be represented and handled as a single global front associated with a marker function
(to distinguish each of the fronts).

Let T be the arrival time function of a front Γ (represented by subset Ω0) and
let Tv be the arrival time function of a front starting from a single vertex v.

Lemma 3.2. For any vertex u ∈ Ω0, one has the following property :

T (u) = min
v∈Ω0

(Tv(u)).

Proof. The Lemma is a direct consequence of the Fast Marching algorithm which
visits vertices from the smallest to the greatest distance.

Let Γ1, ..,ΓN be N fronts simultaneously evolving on G, respectively represented
by subsets Ω1

0, ..Ω
N
0 , with Ωi

0 ∩ Ωj
0 = ∅, ∀i 6= j (we recall that fronts move outward,

can’t overlap and are mutually blocking). We define the global front Γ that represents
the simultaneous evolution of every fronts Γi as the subset Ω0 = Ω1

0 ∪ ..∪Ω
N
0 . Let T ,

respectively, T i, be the arrival time function of Γ, respectively Γi.

Proposition 3.3. For any vertex u ∈ Ω0 reached by a front Γi, one has T (u) =
T i(u).

Proof. According to Lem. 3.2 and with the knowledge that u is reached by Γi,
one has T (u) = min

v∈Ωi

0

(Tv(u)) = T
i(u).

Thus, according to Prop. 3.3, the arrival time function T (u) of the global front
Γ gives the arrival time of the front Γi that reaches u at first. Function T can then
be seen as a global arrival time function, which provides at each point u the exact
arrival time of the first front that reaches u.

In order to track every fronts individually, we introduce a marker function L : V →
{0, .., N}. At initial time, L is defined by L(u) = 0 ∀u ∈ Ω0 and L(u) = i ∀u ∈ Ωi

0.
Then, each time a vertex u is visited by the algorithm, the vertex is marked by
the label of the incoming front, i.e., the label of it’s most similar neighbor with the
smallest arrival time, according to the following equation

L(u) = L(v) | T (v)wuv = max
z∈N(u)

(T (z)wuz). (3.10)

Finally, simultaneous outward evolution of every fronts Γi can be performed as
the simple evolution of the global front Γ, using the graph-based version of the Fast
Marching algorithm associated with the marker function L. The no-overlap condition
is ensured by the algorithm, since a vertex cannot be visited more than once.
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Fig. 3.2. Multiple fronts propagation on an arbitrary weighted graph. Initial step: three fronts
(Γ1,Γ2,Γ3) are represented by a unique front Γ. Second step: vertex 1 passes from the narrow band
to the active set, and is marked by label of front Γ1. Third step: vertex 2 passes from the narrow
band to the active set, and is marked by label of front Γ1. Fourth step: vertex 3 passes from the
narrow band to the active set, and because the nearest incoming front (in sense of distance and
weight function) is Γ1, the label of Γ1 is set to vertex 3. One can remark that fronts Γ1 and Γ2

collapse on edge e1.

Due to the multitude of fronts, we have to define one speed per front where the
speed of a front Γi is denoted Fi. Consequently, each time a vertex u is reached by a
front Γi, its neighbors v such that v ∈ A are updated by :

‖(∇−
wT )(v)‖ = Pi(v), (3.11)

where Pi(v) = 1/Fi(v).

The process is illustrated step by step in Fig. 3.2 with the simultaneous propaga-
tion of three fronts.

Remark: The tracking (in position or time) of each front can be easily performed
by a simple thresholding of L, respectively of T .

4. Generalized fronts propagation on graphs. In the case where speeds
Fi can be either positive or negative, the outward equation for fronts evolution and
associated fast algorithm become insufficient to perform the fronts evolutions. To
overcome this outward limitation, we propose to take advantages of both graph-based
front representation and multi-fronts form of the fast algorithm, to transform an
outward/inward front evolution to two outward fronts evolutions.

4.1. Link between outward and inward propagation. In this Section, for
the sake of clarity, we consider the case of a single front to present the idea. Let Γ be
an evolving front (according to a speed function F) defined as a subset Ω ⊂ V and
represented by the level set function φ. Let Ω be the complementary of Ω, represented
by the level set function φc. We denote by Γc, the front defined by the subset Ω.

In order to simplify the problem of inward/outward front propagation, we pro-
pose to express an inward evolution equation considering set Ω as an outward one
considering the complementary of Ω (Ω), and then only consider outward evolution
equations.

Proposition 4.1. The inward evolution of Γ (when F < 0) can be expressed as
an outward evolution of Γc.

Proof. In the case where F < 0, according to Prop.3.1 and as φ(u) = −φc(u) the
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A A

B B

Fig. 4.1. Illustration of inward/outward front propagation for a single front. Initial step:
the narrow band is initialized with vertices of N+ ∪ N−. Subset Ω− is ignored and the two only
considered fronts are Γ+ and Γ−. Second step: vertex A is reached by Γ− and removed from Ω.
This corresponds to an inward evolution of Γ. Third step: vertex B is reached by Γ+ and added to
Ω. This corresponds to an outward evolution of Γ.

level set formulation (3.5) can be rewritten as

∂φ

∂t
= F‖

(

∇−
wφ

)

‖p = F‖
(

∇+
wφ

c
)

‖p

= F‖
(

∇−
wT

c
)

‖p,

with T c : V → IR is the arrival time of Γc, defined by φc = t − T c. Finally, with
P = 1/|F|, we obtain

‖
(

∇−
wT

c
)

(u)‖p = P (u),

which is the outward equation for front evolution.

Thus, according to Prop. 4.1, and using the duality between fronts and subsets
of V , inward or outward fronts evolution can be simply expressed by the single static
outward front evolution equation (3.9).

Let V − be the subset of V where F is negative and V + the subset of V where F
is non-negative. Let Ω+ be a subset of V +, and Ω− a subset of V −. Let Ω− be the
subset of V − such that Ω− ∩ Ω− = ∅ and Ω− ∪ Ω− = V − .

Proposition 4.2. Inward/outward evolution of a front Γ defined by Ω = Ω+∪Ω−

is equivalent to outward evolution of Γ′ defined by Ω′= Ω+ ∪ Ω−.

Proof. According to Prop. 4.1, inward evolution of a front defined by Ω− is equiv-
alent to outward evolution of a front defined by Ω−.

Then, considering fronts Γ+ defined by the subset Ω+ and Γ− defined by the
subset Ω−, and according to Prop. 4.2, the propagation of front Γ can be performed
by the simultaneous propagation of fronts Γ+ and Γ−. Such a process is illustrated
in Fig. 4.1. In next Section, we extend this formulation to the case of several fronts
and present a detailed version of the graph-based inward/outward Fast Marching
algorithm.
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4.2. General formulation and algorithm. Finally, we will consider the most
general case, where several inward/outward fronts evolve simultaneously on a weighted
graph.

Let Γ1, ..,ΓN be N fronts simultaneously evolving on G, respectively represented
by Ω1

0, ..,Ω
N
0 and driven by speeds F1, ..,FN without restriction on their sign. We

consider that all these fronts are mutually blocking and can’t overlap. According to
Prop. 3.3 and Prop. 4.2, the propagation of these fronts can be performed as the
propagation of a unique front Γ defined as

Ω0 = Ω1+
0 ∪ Ω1−

0

⋃

..
⋃

ΩN+
0 ∪ ΩN−

0 ,

where Ωi+
0 is the subset of Ωi

0 where Fi is non negative and Ωi−
0 is the subset of Ωi

0

where Fi is negative. The arrival time function T associated to front Γ gives the
exact arrival time of each inward/outward fronts evolving on the graph.

Remark: Pseudo fronts Γi− can overlap with real fronts Γk (with k 6= i). This
does not contradict the no-overlap condition for real fronts Ωi.

The propagation is performed using the graph-based version of the Fast Marching
algorithm with some adaptations to consider the case where a vertex u is reached by
an inward front Γi−. Indeed, on the contrary of an outward front Γi+ that adds
vertices to Ωi, an inward front Γi− removes vertices from Ωi.

Let u ∈ Ωi be a vertex reached by Γi−. First, the vertex u is leaved by front
Γi and removed from Ωi but is still eligible for another front. Therefore, u is not
added to the active list A, but added to FA (or inserted in the narrow band if there
is another front in it’s neighborhood). Second, in order to track the position of front
Γi, the marker function has to unmark u (instead of marking it) and becomes

L(u) =







L(v) | T (v)wuv = max
z∈N(u)

(T (z)wuz) if FL(v)(u) > 0

0 otherwise,
(4.1)

as the label 0 means “not marked”. The entire algorithm is detailed in Algo. 1.
The general formulation and the algorithm for multiple fronts propagation on

weighted graphs, presented in this paper, provide several advantages. First, the
graph-based formulation of the algorithm extends applications of the Fast Marching
algorithm to data defined on non-Euclidean domains (as social newtorks). Moreover,
most types of discrete data (images, meshes, networks, unorganized data, etc.) can
be represented as weighted graphs, and then can be processed by this single general
algorithm. Second, the proposed algorithm allows to propagate simultaneously sev-
eral fronts with the only one condition that fronts do not overlap. Finally, the last
advantage is the efficiency of the algorithm since its complexity does not depend on
the number of fronts and is given by O(cNlog(N)) with c≪ N .

A similar approach that proposes an adaptation of the Fast Marching algorithm
for a single front with velocity-changing sign can be found in [6]. Interested readers
can also find an extension of the Fast Marching algorithm to the particular case of
triangulated domains in [7].

4.3. Experiments. Before concluding this paper, we present some experiments
involving the generalized front propagation formulation and algorithm on weighted
graphs. First, Fig. 5.1 illustrates the behavior of the algorithm to propagate several
fronts on a weighted graph, with different combinations of weight and speeds functions
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Algorithm 1 Generalized fronts propagation algorithm

0. List of variables:

Ω0 : Initial subset of global front Γ;
A : the set of active vertices; NB : the set of vertices in the narrow band;
FA : the set of vertices said as far away; L : the label indicator function;
F i, N i+

0 , N i−
0 : speed function, initial outer and inner narrow bands of front Γi;

1. Initialization:

A = {u | u ∈ N i+
0 and Fi(u) < 0} ∪ {u | u ∈ N i−

0 and Fi(u) > 0}
NB = {u | ∃ v ∈ A ∩N(u) and Fi(v)×Fi(u) > 0}
FA = V \ (A ∪ NB)
T (u) = 0; L(u) = i ∀ u ∈ A; T (u) = min(1/wuv), v ∈ A ∩N(u)
K(u) = i; s(u) = T (u) ∀ u ∈ NB
T (u) = +∞; L(u) = 0; s(u) = −∞ ∀ u ∈ FA

2. Process:

while FA 6= ∅ do
u← first element of NB
remove u from NB and add u in A.
for all v ∈ N(u) ∩A and Fi(v)×Fi(u) > 0 do

compute local solution t← T (v)
if t < T (v) then
T (v) = t
if v ∈ FA then

remove v from FA and add v in NB
else

update position of v in NB
end if

if T (u)wuv > s(v) then
s(v) = T (u)wuv

L(v) = L(u)
end if

end if

end for

end while

(for the sake of visual clarity, the used graph is a regular grid graph). Then, Fig. 5.2
presents direct applications of the algorithm, applied to image segmentation or data
clustering. In both cases, propagation is performed using p = 2.

5. Conclusion. In this paper, we have proposed a general formulation and an
algorithm for simultaneous propagation of several fronts evolving on a weighted graph.
The algorithm extends the Fast Marching algorithm to weighted graphs, what enables
the process of many kinds of data. Experiments have shown the behavior of this
approach so as applications to image segmentation and data clustering.
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