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NONLOCAL AND MULTIVARIATE MATHEMATICAL MORPHOLOGY

O. Lézoray, A. Elmoataz

Université de Caen Basse-Normandie, GREYC - UMR CNRS 6072, Caen, FRANCE

ABSTRACT

The generalization of mathematical morphology to multivari-

ate images is addressed in this paper. The proposed approach

is fully unsupervised and consists in constructing a complete

lattice from an image as a rank transformation together with

a learned ordering of vectors. This unsupervised ordering of

vectors relies on three steps: dictionary learning, manifold

learning and out of sample extension. In addition to provid-

ing an efficient way to construct a vectorial ordering, nonlocal

configurations based on color patches can be easily handled

and provide much better results than with classical local mor-

phological approaches.

Index Terms— Mathematical morphology, nonlocal,

multivariate, manifold learning.

1. INTRODUCTION

Mathematical Morphology (MM) is a nonlinear approach to

image processing that relies on a fundamental structure, the

complete lattice (L,≤) [1]. The construction of morpholog-

ical operators therefore needs an ordering between the ele-

ments to be processed. Theoretically, a partial ordering is

sufficient to construct complete lattices. However, total order-

ings are preferred since they are vector preserving [2]. With

the acceptance of complete lattice theory, it is possible to de-

fine morphological operators for any type of multivariate im-

age data once a proper ordering is established [2]. However,

if MM is well defined for binary and gray scale images, there

exist no general admitted extension that permits to perform

morphological operations on multivariate data since there is

no natural ordering on vectors. Therefore, the extension of

Mathematical Morphology to multivariate images is a very

active field. Many different approaches have been proposed

in literature for color and hyperspectral images [2, 3, 4]. This

paper introduces a systematic approach towards the construc-

tion of complete lattices for any kind of multivariate data.

Following recent approaches [3, 4], we propose to use un-

supervised manifold learning to construct complete lattices

on multivariate data by considering the theoretical framework

of h-orderings [5]. We also consider the case of associating

patches vectors to pixels and show how our proposal can be

naturally used to obtain a innovative nonlocal formulation of

morphological operators.

2. COMPLETE LATTICES IN R
P

A complete lattice L is a non-empty set equipped with a (par-

tial or total) ordering relation, such that every non-empty sub-

set P of L has a lower bound ∧P and an upper bound ∨P .

In this context, images are modeled by functions mapping

their domain space Ω, into a complete lattice L. Within this

model, morphological operators are represented as mappings

between complete lattices in combination with matching pat-

terns called structuring elements that are subsets of Ω.

In the sequel, we consider the general case of multivari-

ate images. A multivariate image can be represented by the

mapping f : Ω ⊂ Z
l → T ⊂ R

p where l is the image dimen-

sion, p the number of channels, and T is a non-empty set.

One way to define an ordering relation between vectors of T
is to use the framework of h-orderings [5]. This corresponds

to defining a surjective transform h from T to L where L is a

complete lattice equipped with the conditional total ordering

[5]. With h : T → L and x → h(x), ∀(xi, xj) ∈ T × T ,

xi ≤h xj ⇔ h(xi) ≤ h(xj). Then, T is no longer required

to be a complete lattice, since the ordering of L can be in-

duced upon T by means of h [2]. When h is bijective, this

corresponds to define a space filling curve that goes through

each point of the set T just once and thus induces a total or-

dering. Therefore, there is an equivalence: (total ordering on

T )⇔(bijective application h : T → L)⇔(space filling curve

in T ) [2]. Moreover, we previously shown that another equiv-

alence can be considered [4]: (total ordering on T )⇔(rank

transformation on T ). Indeed, since a total h-ordering ≤h or-

ders all the vectors of the set T , it is possible to sort all these

vectors and obtain their rank in the ordering, creating explic-

itly the complete lattice (T ,≤h) [4]. Once the complete lat-

tice is created, each element of the multivariate image can be

replaced by its rank, creating a rank image. This (scalar) rank

image is the lattice representation of the multivalued image

according to the ordering strategy ≤h.

3. COMPLETE LATTICE LEARNING

Usual approaches to mathematical morphology do not explic-

itly construct the complete lattice: they first define a total

ordering relation (usually a specific lexicographic ordering)

that induces a complete lattice. In this paper, we take an op-

posite approach and we explicitly learn the complete lattice



from a multivariate image f : Ω → R
p using h-ordering

h : Rp → L. It is obvious that h cannot be linear since a dis-

tortion of the space topology is inevitable. As a consequence,

we choose to focus our developments on manifold learning

to construct h. Obviously, constructing the complete lattice

of an image with manifold learning directly from all the pix-

els is computationally unfeasible. Therefore, we propose a

three-step strategy towards construct the h-ordering.

3.1. Data Quantization

Since the complexity of manifold learning is highly depen-

dent on the number of input data, we first reduce the amount

of data of a multivariate image by Vector Quantization (VQ).

VQ maps a vector x to another vector x� that belongs to n

prototype vectors the set of which is named a dictionary. A

dictionary D is built from a training set I of size m (m � n).

A VQ algorithm has to produce a set D of prototypes x� that

minimizes the distortion defined by 1

m

m
�

i=1

min
1≤j≤n

�xi − x�
j�2.

LBG [6] is one algorithm that can build such a dictionary. It

is an iterative algorithm that produces n = 2k prototypes af-

ter k iterates. Given a multivariate image of m pixels, VQ

is applied to construct a dictionary D = {x�
1
, . . . , x�n} where

x�i ∈ R
p.

3.2. Manifold learning

Once the dictionary D is obtained, we construct the transfor-

mation h on D with manifold learning. Manifold learning is

the counterpart to Principal Component Analysis which aims

at finding a low dimensional parametrization for data sets that

lie on nonlinear manifolds in a high-dimensional space. In

the last few years, many manifold learning algorithms have

been proposed that share the use of an eigen-decomposition

for obtaining a lower-dimensional embedding of the data. In

this paper, we choose to use Laplacian Eigenmaps [7]. Let

{x�
1
, · · · , x�n} with x�i ∈ R

p be the n vectors of the dictionary

D. Manifold learning consists in searching for a new repre-

sentation {y
1
, · · · , yn} with yi ∈ R

n. One starts by comput-

ing a similarity matrix W that contains the pairwise similar-

ities between all the input vectors x�i: Wij = k(x�
i, x�j) =

e
�

−
||x�i−x�j ||

2

σ2

�

. To have a parameter free algorithm, σ is

set to the maximum distance between the vectors of the dic-

tionary. The degree diagonal matrix is denoted by D with

Dii =
�

j Wij , L = D − W is the Laplacian matrix and L̃

is the normalized Laplacian defined by L̃ = D− 1

2LD− 1

2 =
I − D− 1

2WD− 1

2 . Laplacian Eigenmaps manifold learning

consists in searching for a new representation obtained by

minimizing 1

2

�

ij

�

�yi − yj
�

�

2
Wij = Tr(YT L̃Y) with Y =

[y
1
, · · · , yn]. This cost function encourages nearby sample

vectors to be mapped to nearby outputs. This is achieved by

finding the eigenvectors y
1
= φ1, · · · , yn = φn of matrix

L̃. A low-dimensional representation is obtained by consider-

ing the q lowest eigenvectors (the first eigenvector being dis-

carded) with q � p and is defined by the following operator

hD : x�
i → (φ2(x

�
i), · · · , φq(x

�
i))

T where φk(x
�
i) is the ith co-

ordinate of eigenvector φk. This obtained projection operator

corresponds to constructing a h-ordering.

3.3. Out of sample extension

To dispose of a complete lattice, we have to define the projec-

tion h on all the vectors of the image and not only its dictio-

nary with hD. The dictionary D being a sub-manifold of the

complete lattice, we need to extend eigenfunctions computed

on the dictionary to new unexplored vectors from the origi-

nal image. This can be achieved by the Nyström method that

interpolates the value of eigenvectors computed on n sample

vectors x�i to m novel vectors xi. To extrapolate a new vector

x, the Nyström estimator with n samples for the k-th eigen-

vector is

φk(xj) =
1

λk

n
�

i=1

φk(x
�
i)k(xj , x�i) (1)

where λk is the k-th eigenvalue of the normalized Laplacian

L̃ and φk(x
�
i) is the i-th element of the k-th eigenvector of

L̃. Let us instantiate Equation (1) in the context of the nor-

malized Laplacian. First, note that if λk is an eigenvalue of

of L, then 1 − λk is an eigenvalue of D− 1

2WD− 1

2 . Apply-

ing the Nyström extension to compute the eigenvectors of the

normalized Laplacian L̃φk = λkφk, we get

φk(xj) =
1

1− λk

n
�

i=1

k(xj , x�
i)

�

d(xj)d(x�
i)

(2)

where d(x) =
n
�

i=1

k(x, x�
i). With this formulation, we are

now in position to compute the projection h for any pixel of

the image.

3.4. Complete lattice construction

With these three sequential ingredients, we can now con-

struct a rank transformation that expresses explicitly the

complete lattice of the vectors of a multivariate image.

Given a multivariate image f : Ω → R
p that provides a

set I = {x1, · · · , xm} of m vectors in R
p, a dictionary

D = {x�
1
, · · · , x�n} of n vectors in R

p is computed. Manifold

learning is performed on the dictionary and a new repre-

sentation hD is obtained for each element of the dictionary.

This new representation is interpolated to all the pixels of

the image with the Nyström out of sample extension, defin-

ing h : R
p → R

q as h(x) = (φ2(x), · · · , φq(x))
T . Once

this representation is obtained, the complete lattice (Rp,≤h)

can be explicitly constructed as well as the rank transfor-

mation. First, we sort all vectors of f according to ≤h

(the conditional total ordering on h(x)) and obtain a sorted



image fs. This sorted image fs : [0,m] → R
p defines

the ordering of the vectors of f . From this ordering, we

can deduce the rank of a vector on the complete lattice L
defined as r : R

q → [0,m], and construct a rank image

as fr : Ω → [0,m] with fr(pi) = (r ◦ h ◦ f)(pi) and

pi ∈ Ω. With these elements, the original image is now

represented by the rank image fr and the ordering of the

pixels’ vectors fs. The original image is recovered exactly

since f(pi) = (fs ◦ fr)(pi). Given a specific morphological

processing g, the corresponding processed multivariate image

is obtained by g(f(pi)) = (fs ◦ g ◦ fr)(pi).
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Fig. 1. Illustration of the proposed approach. First part, from

left to right: the standard Barbara image f , the dictionary

D (n = 256), the manifold hD learned from the dictionary,

the manifold h interpolated to all the image vectors. Second

part: the rank image fr and the sorted vectors fs in local and

nonlocal configurations

4. APPLICATION TO LOCAL AND NONLOCAL

MORPHOLOGICAL PROCESSING

The approach we propose is easily applicable to any kind of

multivariate images even if we only provide illustrations with

colors images. Figure 1 illustrates the proposed approach.

The image is first quantized into n = 256 colors and man-

ifold learning is performed on this dictionary D to obtain a

new representation hD. The latter is extended to all the origi-

nal colors of f to construct the global manifold learning rep-

resentation h. From this, the rank image fr and the sorted

set of vectors fs are obtained. The rank image is a grayscale

image of m levels that can be directly used for any classical

morphological processing.

Recently, nonlocal schemes for image processing have re-

ceived a lot of attention [8]. Rather than considering only the

vector associated to one pixel to compute pixel similarities,

patches around these pixels are considered. These patches

capture the dependencies of neighboring pixels and thus can

distinguish textural patterns. In previous works [9], we ex-

tended PDEs-based morphology to nonlocal processing on

images represented by proximity graphs. On the roots of our

works, [10] proposed some nonlocal pseudo-morphological

operators that make use of a nearest neighbors graph. If in-

novative, none of these works enables to extend the classical

flat algebraic morphological operators to nonlocal patch con-

figurations. On the opposite, our approach directly enables

it.

Given a color image f : Ω → R
3, a patch of size w2

represented as a vector of size 3w2 is associated to each pixel

giving the image f � : Ω → R
3w2

. On this image, the com-

plete lattice creation is performed. This enables to construct

the rank image according to the Manifold where patche lives

which is highly nonlinear. Moreover, since the complete lat-

tice is constructed according to patch similarities and not sin-

gle pixel colors, the textured parts of the image are better cap-

tured and the complete lattice has a much better h-ordering.

Once the rank image fr is obtained, this gives a nonlocal (but

scalar) representation of the image that can be used for mor-

phological processing. Finally, to be able to exactly recon-

struct the original image f , the image of sorted vectors fs
stores the color vectors and not the pixel patches.

Figure 1 also illustrates the nonlocal proposed approach.

The image f � is quantized into n = 256 patches and a new

representation hD is obtained by manifold learning. The lat-

ter is then extended to the whole set of pixel patches. As it can

be seen, the ordering of the colors vectors fs is very different

between local and nonlocal configurations. The rank image

is smoother and much more homogeneous in regions of sim-

ilar texture assessing the interest in the use of color patches

information instead of color.

Figure 2 illustrates the interest of the proposed approach

on two textured images. First part of figure 2 presents the

obtained rank images fr in local (color vectors) or nonlocal

(color patches) configurations. Pixels described by similar

(color or patch) vectors have close ranks. However, the nonlo-

cal rank image better exhibit similar textures and is much less

sensitive to small variations. Second and third parts of figure

2 present morphological operator results. As it can be seen

on figure 2, the benefit of nonlocal configurations is evident.

For basic morphological operations such as erosion, dilation

and closing, nonlocal configurations enable to better preserve

textured parts of the image while simplifying it. With mor-

phological gradient and white top hat, the advantage is really

put forward and the nonlocal approach enables to better ex-

hibit salient edges in the original image. Asa consequence,

this permits to obtain better watershed segmentation results.



5. CONCLUSION

This paper introduces an unsupervised approach towards

the construction of complete lattices for multivariate images

and consequently a framework for unsupervised multivariate

mathematical morphology. In contrast to usual approaches,

no prior information (e.g., component prioritization) is re-

quired. The approach relies on dictionary learning, manifold

learning and out of sample extension. In addition to providing

a general approach to multivariate mathematical morphology,

we also introduce novel nonlocal flat algebraic mathemati-

cal morphology operators that have never been investigated

before.
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Fig. 2. Morphological processing of a color image in local or

nonlocal configurations. The dictionary size is 32, the struc-

turing element is a circle of radius 5, patches are 9 × 9. See

text for details.


