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Abstract—We investigate a compressive sensing system in
which the sensors introduce a distortion to the measurements in
the form of unknown gains. We focus on blind calibration, using
measures performed on a few unknown (but sparse) signals. We
extend our earlier study on real positive gains to two generalized
cases (signed real-valued gains; complex-valued gains), and show
that the recovery of unknown gains together with the sparse
signals is possible in a wide variety of scenarios. The simultaneous
recovery of the gains and the sparse signals is formulated as a
convex optimization problem which can be solved easily using
off-the-shelf algorithms. Numerical simulations demonstrate that
the proposed approach is effective provided that sufficiently many
(unknown, but sparse) calibrating signals are provided, especially
when the sign or phase of the unknown gains are not completely
random.

I. INTRODUCTION

Compressed sensing theory shows that K-sparse signals can

be sampled at much lower rate than required by the Nyquist-

Shannon theorem [1]. More precisely, if x ∈ C
N is a K-

sparse source vector then it can be captured by collecting only

M ≪ N linear measurements

yi = m
′

ix, i = 1, . . . ,M (1)

In the above equation, m1, . . . ,mM ∈ CN are known mea-

surement vectors, and .′ denotes the conjugate transpose op-

erator. Under certain conditions on the measurement vectors,

the signal can be accurately reconstructed by solving, e.g.,

x
∗

ℓ1
=argmin

z

‖z‖1

subject to yi = m
′

iz, i = 1, . . . ,M

where ‖·‖1 denotes the ℓ1-norm, which favors the selection

of sparse signals among the ones satisfying the measurement

constraints. It has been shown that the number of measure-

ments needed for accurate recovery of x scales only linearly

with K [1]. Note that the above minimization problem can

easily be modified to handle the presence of additive noise on

the measurements.

Unfortunately, in some practical situations, it is some-

times not possible to perfectly know the measurement vectors

m1, . . . ,mM . In many applications dealing with distributed
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sensors or radars, the location or intrinsic parameters of

the sensors are not exactly known, which in turn results in

unknown phase shifts and/or gains at each sensor [2], [3].

Similarly, applications with microphone arrays are shown to

require calibration of each microphone to account for the

unknown gain and phase shifts introduced [4]. Unlike additive

perturbations in the measurement matrix, this multiplicative

perturbation may introduce significant distortion if ignored [5],

[6].

In this paper, we investigate the problem of estimating

the unknown gains introduced by the sensors when multiple

unknown but sparse input signals are measured. We extend the

convex optimization approach dealing with positive real gains

proposed in [7] to the case of signed real-valued and complex-

valued gains which is more realistic from the application

perspective. In addition to identifying the additional challenges

introduced by the more difficult problem, we further demon-

strate the performance of the proposed algorithms in cases

where the unknown phase shifts (or sign changes) introduced

by the sensors are not completely random.

II. PROBLEM DEFINITION

Suppose that the measurement system in (1) is perturbed by

complex gains at each sensor i and there are multiple sparse

input signals, xl ∈ CN , l = 1 . . . L, applied to the system

such that

yi,l = die
jθi

m
′

ixl i = 1 . . .M, θi ∈ [0, 2π), di ∈ R
+

(2)

For a real valued system, the phase term ejθi is replaced by

∓1 (or θi ∈ {0, π}). We focus only on the noiseless case for

the sake of simplicity.

It should be noted that, unlike the case with positive real

gains, ignoring the unknown gains during recovery is not a

viable option when dealing with signed real or complex gains

even when the magnitude of the gains are constant. This is

due to the significant distortion introduced by the change

in sign (and phase). Therefore it is essential to employ a

reconstruction approach that deals with the unknown gains.

In a traditional recovery strategy, one can enforce the

sparsity of the input signals while enforcing the measurement

constraints in (2). However, when dealing with unknown gains,

the measurement constraints are non-linear with respect to

the unknowns di and xl. This non-linearity can be dealt



with by using an alternate minimization strategy where one

iteratively estimates x while keeping di fixed and vice-versa

[2]. However, the convergence of this alternating optimization

to the global minimum is not guaranteed since there is a chance

that the algorithm gets stuck in a local minimum.

A. Proposed Approach

The recovery of xl, l = 1 . . . L and di, i = 1 . . .M with

convex optimization when ejθi are known has been studied in

[7]. In this paper, we extend the same approach to systems

with signed real-valued and complex-valued gains. Therefore

the term die
jθi will henceforth simply be represented as di ∈

R for real-valued systems and di ∈ C for complex-valued

systems.

As an alternative to the alternating non-linear optimization

described above, the measurement equation (2) can be reorga-

nized in a bi-linear fashion such that

yi,lτi = m
′

ixl i = 1 . . .M , l = 1 . . . L (3)

τi ,
1

di

assuming that di 6= 0 ∀i. Consequently, one can attempt

to recover the sparse signals and the gains with the convex

optimization

x
∗

1, . . . ,x
∗

L

τ∗1 , . . . , τ
∗

M

= argmin
z1,...,zL
t1,...,tM

L∑

n=1

‖zn‖1 (4)

subject to yi,lti = m
′

izl
l = 1, . . . , L
i = 1, . . . ,M

M∑

n=1

tn = c

for an arbitrary constant c > 0. The actual gains can be set

as d∗i = 1

τ∗

i

after the optimization. Note that even though the

minimized objective function is equivalent to the alternating

non-linear optimization, the problems with local minimums are

now eliminated thanks to the convexity of the formulation.

We can make several observations regarding the optimiza-

tion in (4):

1) The constraint
∑

n tn = c ensures that the trivial

solution (τi = 0, xl = 0, ∀i, l) is excluded from the

solution set.

2) The constraint
∑

n tn = c also excludes the solutions

where the sum of the gains are zero. When dealing with

signed real or complex valued gains, this may result

in excluding the actual solution in rare cases where

the sought out gains actually sum up to zero. How-

ever, the probability of encountering this phenomena

in real applications is often infinitesimally small. For

the applications in which this possibility is higher, an

alternative approach to deal with this case is discussed

in Section III.

3) The measurement constraints are satisfied up to a global

scale factor (and phase shift for complex signals), there-

fore the constant c can be set arbitrarily. Unfortunately,

the global scale (and phase) factor cannot be determined

with the given optimization approach, although this is

often not an issue in practical systems.

4) The successful recovery of the gains and the signals re-

quire availability of more than one input signal (L > 1).

Although this may seem like a restriction, acquiring data

from multiple sources is often straightforward in many

application fields.

III. EXPERIMENTAL RESULTS

In order to test the performance of the proposed algorithm,

phase transition curves as in the compressed sensing recovery

are plotted for a signal size N = 100 with the measurement

vectors, mi, and all the non zero entries in the input signals,

xl, randomly generated from an i.i.d. normal distribution. The

positions of the non-zero coefficients of the input signals, xl,

are chosen uniformly at random in {1, . . . , N}. The magnitude

of the gains were generated using |di| ∼ exp(N (0, σ2)),
where σ is the parameter governing the amplitude of decal-

ibration. For real valued experiments, the sign of the gains

are randomly assigned such that the probability, pr, of setting

a negative gain is adjusted to be pr ∈ {0, 0.16, 0.33, 0.5}.

Similarly for complex valued gains, the phase of the gains are

chosen uniformly at random from the range [0, 2πpc) where

pc ∈ {0, 0.33, 0.66, 1}. Note that the parameters pr and pc
determine the scale of ambiguity in the signs and phases where

maximum possible ambiguity is observed when pr = 0.5 and

pc = 1 respectively.

The signals (and the gains) are recovered for different

amount of decalibration amplitude (σ = 0.1, 0.3, 1) with

sufficiently high number of input signals (L = 5, 10, 20
respectively). The proposed optimization in (4) is performed

using an ADMM [9] based algorithm. The perfect reconstruc-

tion criteria is selected as 1

L

∑
l µ(xl,x

∗

l ) > 0.9999, where

the absolute correlation factor µ(·, ·) is defined as

µ(x1,x2) ,
|x′

1x2|

‖x1‖2‖x2‖2
(5)

so that the global phase and scale difference between the

source and recovered signals is ignored.

The probability of recovery (computed through 10 indepen-

dent simulations for each set of parameters) of the proposed

method with respect to δ , M/N and ρ , K/M are

shown in Figures 1 and 2 for real valued and complex valued

systems respectively. The first thing to notice from the results

is that the performance for pr = 0 (or pc = 0) is consistent

with the results presented in [7] as expected. The effect of

increasing sign (or phase) ambiguity can be observed in the

results as pr (or pc) increases. Although the performance is

acceptable for pr as high as 0.33 (pc up to 0.66), there is a

significant degradation when dealing very high sign (or phase)

ambiguity such that signal recovery is impossible regardless of

the sparsity, unless the measurement system is overcomplete

(M > N ). This phenomena can best be observed in the last

row of complex-valued results, Figures 2(m)-2(p), where the

number of input signals is very large (L = 50) with respect to
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(c) L = 5, σ = 0.1, pr = 0.33
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(l) L = 20, σ = 1, pr = 0.5

Fig. 1: The probability of perfect recovery in the real valued system for N = 100 with respect to δ , M/N and ρ , K/M .

The solid yellow line indicates the Donoho-Tanner phase transition curve for fully calibrated compressed sensing recovery

[8]. The dashed yellow line indicates the boundary to the region where K > N . Each row of figures display the change in

recovery performance with increasing sign ambiguity from left to right for a fixed set of L and σ.

the variance in the gain magnitudes (σ = 0.1). The degradation

in the results can be attributed to the significant increase in

the contamination of the information in the measurements

as the sign or phase ambiguity increases. Therefore recovery

becomes possible only when there are sufficient number of

measurements to overcome the high distortion. For the maxi-

mally ambiguous case (pr = 0.5, pc = 1), this is only possible

for M > N . Even though this is a drawback of the presented

approach, it should be noted that in many practical systems

the sign (or phase) ambiguity is often not as severe as fully

random, but within a limited range. Therefore the presented

algorithm can still be applied in various scenarios.

As an alternative to the proposed method in this paper,

a phase calibration algorithm (in which gain magnitudes are

assumed to be known) that can recover the sparse signals along

with the unknown phases distributed within the entire [0, 2π)
range has been presented in [10], [11]. This approach for phase

calibration can be combined with the proposed method in this

paper in order to recover signed real-valued or complex-valued

gains with maximum sign and phase ambiguity. It is also

possible to use this combined approach for signal recovery

in applications where the sum of the gains are likely to be

zero.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we have investigated the problem of estimating

the unknown gains at each measurement sensor along with

sparse input signals in a compressed sensing measurement

system. We have extended the use of convex recovery strategy

suggested for positive real gains to the more general cases

of signed real-valued and complex-valued gains, and demon-

strated the change of recovery performance with increasing

sign and phase ambiguity.

The performance of the proposed algorithm is shown to

be approaching to that of the unperturbed compressed sensing

recovery when there are sufficient number sparse input signals

unless the distribution of the sign changes or the phase shifts

are maximally varying among the sensors. This drawback

of the proposed algorithm can still be ignored for many

application fields in which the ambiguity in the sign changes

or the phase shifts at the sensors are within a limited range.

For other applications, it is possible to combine the proposed

method with other approaches employed for phase calibration

to improve the recovery performance which is considered as

a future work. The theoretical justification of the limitation of

the proposed method for maximum sign and phase ambiguity

is also a work in progress.
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(b) L = 5, σ = 0.1, pc = 0.33
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(c) L = 5, σ = 0.1, pc = 0.66
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(d) L = 5, σ = 0.1, pc = 1
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(e) L = 10, σ = 0.3, pc = 0
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(f) L = 10, σ = 0.3, pc = 0.33
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(g) L = 10, σ = 0.3, pc = 0.66
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(k) L = 20, σ = 1, pc = 0.66
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(l) L = 20, σ = 1, pc = 1
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(m) L = 50, σ = 0.1, pc = 0
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(o) L = 50, σ = 0.1, pc = 0.66
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(p) L = 50, σ = 0.1, pc = 1

Fig. 2: The probability of perfect recovery in the complex valued system for N = 100 with respect to δ , M/N and ρ , K/M .

The solid yellow line indicates the Donoho-Tanner phase transition curve for fully calibrated compressed sensing recovery [8].

The dashed yellow line indicates the boundary to the region where K > N . Each row of figures display the change in recovery

performance with increasing phase ambiguity from left to right for a fixed set of L and σ. The last row, (m)-(p) shows the

performance limit for very high L.
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