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Abstract. We present a method for the automatic analysis of whole slide his-

tological images of equine tendinopathy. This computer-aided analysis is a pre-

screening tool that helps veterinarians doctors to evaluate the efficacy of new

treatments. A set of textural, arrangement, and alignment features are extracted

to reproduce visual histological criteria, each of them representing different fea-

ture views of the initial data. To efficiently combine these different views of the

data for clustering, tensor-based multi-view spectral clustering is considered and

provides an unsupervised classification of the tissue zones.

1 Introduction

Tendons are dense bands of fibrous connective tissue that act as intermediary in the

attachment of muscle to bone. During locomotion, they act as viscoelastic structures

submitted to great tensile strength [1]. These biomechanical properties arise from a

specific spatial architecture reflecting the requirements of this tissue. The main con-

stituents of tendons are thick, closely packed parallel bundles of longitudinally oriented

collagen fibers. Cells, mainly fibroblasts and vessels, are arranged in a healthy tendon

in long parallel rows in the spaces between the collagenous bundles [2]. In sport and

racing horses, the two flexor tendons of the equine hand (the superficial digital flexor

tendon and the deep digital flexor one) are submitted to high forces during the stance

phase of the stride. Intense and repeated stresses on these tendons can lead to over-

stress injuries, from simple tendonitis to rupture. Tendinopathies in sport and racing

horses are a major cause of reduced performance and temporary or permanent break-

down of the athletic horse career. Up to 10 to 15% of the horse population is affected

by tendinopathies, which represents a major impact of several millions euros a year.

Diagnostic imaging (high resolution ultrasonography and magnetic resonance imaging)

of these diseases [3] has enabled major diagnosis advances during the last 15 years.

Meanwhile, experimental studies have been conducted to validate the efficacy of new

therapeutic approaches to improve the healing of injured tendons [4].In such studies,

assessment of positive effects of new treatments on the tendon healing process is fre-

quently demonstrated using detailed histological analysis on tendon samples. However

these histological analysis are based on either subjective or semi-quantitative analysis

performed by an expert operator. Moreover the analysis of the entire slide of the ten-

don sample is particularly difficult in such an expert-based approach. Consequently, the



purpose of our study is to develop an objective and quantitative method using criteria

close to those used by expert operators for analyzing whole histological slides of equine

tendon samples. Such an approach may be extremely useful for assessing objectively,

with a non-operator dependent method, the efficacy of new tendon treatments.

2 Unsupervised analysis of equine tendon samples

Whole slides of Hematoxylin-Eosin (HE) stained equine tendon samples were scanned

at 40× magnification using a ScanScope CSTM(Aperio R©, San Diego, CA) digital mi-

croscopical scanner. To facilitate visualization and processing, scanned samples are

directly stored as a multi-resolution image [5] where each level of resolution is an

under-resolved version of the highest resolution image. The image being very large

(40000 × 30000 at the highest resolution), each resolution level is split into image

tiles (of size 512 × 512) in a non-overlapping layout. We take advantage of this tiled

multi-resolution organization in our approach to analyzing the tendon samples. First,

the lowest resolution image is processed to discriminate tissue versus background. The

corresponding partition enables to retain, at the highest resolution, only tiles that con-

tain tissue. Second, on the retained tiles, cells are extracted according to their color.

Third, for each high-resolution tile, three different feature vectors are computed to re-

produce visual histological criteria used to quantify tendon injury (texture, arrangement

and alignment of the cells). Fourth, having tiles described by three different sets of

features, a tensor-based multi-view spectral clustering is considered to discriminate the

different tissue areas.

2.1 Tissue segmentation

Scanned samples contain two main elements at the lowest resolution: tendon tissue and

slide background. The tendon tissue can be easily discriminated from background on the

lowest resolution picture (Figure 1). Following the strategy developed in our previous

works [5], the tiles of the lowest resolution image are processed in the following way.

Each tile is simplified by weighted Laplacian regularization and a 3D color histogram is

constructed from the RGB color vectors of all the tiles. This histogram is clustered with

a 2-means classification (see in [5] for details and motivations on this whole strategy).

This extraction of the tissue performs extremely fast and well, but some small tissue

regions as well as holes in the segmented tissue still remain (both artifacts being due

to the tendon cutting). To cope with this, we use a morphological hole filling followed

by an opening by reconstruction. Figure 1 presents two results of tissue extraction on

healthy and injured tendon samples. The detection of the tissue is projected on the high-

est level of resolution and this enables to determine the high-resolution tiles containing

tissue. Only these tiles are further considered for analysis.

2.2 Extraction of cells

Several histological visual criteria assessment of equine tendinopathy rely on the shape,

the arrangement, and the alignment of cells. Therefore, to be able to derive quantita-
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Fig. 1. (a) Transverse healthy superficial digital flexor tendon sample, (b) Transverse injured deep

digital flexor tendon sample, (c)-(d) Segmented tissues of samples (a)-(b).

tive measures for these visual criteria, cells have to be extracted in the retained high-

resolution tiles inside the tissue region. To extract cells, since the coloration of slides

is known (Hematoxylin-Eosin), we can separate the individual dyes. According to the

Beer-Lambert law, the transmission of incident light I0 through a specimen can be mod-

eled as I = I0e
−SX where I is the incident light after passing through the specimen, S

the absorption factors of the dyes and X their concentrations. This can be reformulated

in terms of optical density: Od = −log( I

I0
) = SX. The optical density of each RGB

channel is linear with the amount of dye and can be used, given the absorption fac-

tors S, to extract the amounts of dyes X in a specimen. To achieve correct balancing

of the absorption factors for separate dyes, the columns of S are normalized to unit

length. Then, we obtain X = S
−1

Od. This whole process is often called color decon-

volution [6]. To summarize, we convert vectors f from the RGB color space to vectors

h in a new color space comprising hematoxylin, eosin, and background channels with

h = S
−1 × −log( f

‖f‖ ). For the absorption factors, we used values from [6] and retain

only the hematoxylin channel since this dye stains cells in blue (in our preparation of

the samples, the dye is applied longer than necessary to saturate the staining). The ex-

tracted hematoxylin channel is then binarized using an automated thresholding. Figure

2 shows the segmentation of cells superimposed an initial sample image corresponding

to four adjacent high-resolution tiles.

2.3 Feature Extraction

Once cells have been extracted in all the high-resolution tiles, we are in position of ex-

tracting features to describe the content of each tile with respect to histological visual

criteria assessment of equine tendinopathy. Many visual criteria are used by patholo-

gists to quantify tendinopathy, one can quote, e.g., alignment, arrangement and crimp

of collagen fibers, density and shape of cells, neovascularization intensity, etc. In this



(a) Initial sample. (b) Extracted cells. (c) Local cell alignments.

(d) Global cell alignments. (e) Delaunay triangulation. (f) Minimum Spanning Tree.

Fig. 2. (a) a longitudinal healthy superficial flexor tendon sample, (b) extracted cells, (c) locally

detected alignments, (d) globally detected alignments, (e)-(f) Delaunay triangulation and MST.

paper, we have chosen to extract textural, arrangement and alignment features to quan-

tify the different areas in the tendon tissue.

Textural features Texture is more regular when the tissue is healthy than when the

tissue is injured. We chose here to describe texture with uniform gray-scale and ro-

tation invariant Local Binary Patterns [7] in 3 × 3 squares. From this LBP pattern,

an LBP histogram is constructed for each tile of the highest resolution image. From

these histograms, an N × N distance matrix denoted W
(1) is computed between all

the tiles of the image (N being the number of tiles) with the χ2 distance measure :

dH(h1, h2) =
∑N

i=1
[h1(i)−h2(i)]

2

h1(i)+h2(i)
with h1 and h2 two histograms to compare.

Arrangement features From the extracted cells, it is important to quantify their ar-

chitecture as well as density and shape. These visual features relate to neighboring

properties of the cells and can be quantified using graph based techniques [8]. To use

graphs, the m cell centroids c1, c2, ..., cm in the whole slide are considered as graph

vertices. From this set of vertices, specific graphs are computed on the whole slide. Fig-

ure 2 illustrates the graphs we consider. Then, for each tile, a normalized arrangement

feature vector is computed from the corresponding sub-graphs. With these arrangement

feature vectors, an N ×N distance matrix denoted W
(2) is computed between the tiles

with the Euclidean distance. Features are computed as detailed below.

Voronoi Diagram - The Voronoi diagram V is composed of a set of polygons P =
{P1, P2, · · · , Pm}. Any centroid c is included in polygon Pa if d(c, ca) = minj{‖c −



cj‖} where a, j ∈ {1, 2, ...,m} and ‖c− d‖ is the Euclidean distance between any two

centroids c, d. We calculate the areas of all P ∈ V , and the average and disorder are

calculated for areas of all P , giving two feature values.

Delaunay Triangulation - The Delaunay graph D is constructed such that any two

unique centroids ca and cb, where a, b ∈ {1, 2, ...,m}, are connected by an edge Ea,b

if Pa and Pb share a side in V . We calculate the sides lengths for all triangles in D, and

take the average, disorder, and maximum of these to obtain three feature values.

Minimum spanning tree - Given a connected, undirected graph, a spanning tree S of

that graph is a subgraph that connects all its m vertices with m− 1 edges. Weights wE
S

are assigned to each edge E in each S based on the length of E in S. The sum of all

weights wE
S in each S is determined to give the weight ŵS assigned to each S. The

minimum spanning tree (MST) denoted by S′ has a weight ŵ
′

S less than or equal to ŵS

for every other spanning tree S. We calculate the average and disorder of the branch

lengths in S′ to obtain two features values.

Nuclear features - The shape of cells is also a criterion of arrangement. The shape de-

scriptor we consider is the elongation of cells. This criteria is a major parameter in the

analysis of the cell type and of its functional activity (active versus quiescent fibrob-

lasts particularly). We calculate average and disorder of elongation values to obtain two

feature values.

Alignment features Cell alignment is also a very important histological feature that

describes properties of collagen fibers. To detect alignments of cells, we adapted the

approach proposed in [9]. Let A = {a1, ..., an} be a group of points in R
2. A is aligned

iff there exists an angle θ ∈ [0, π) where for all pairs of points ai and aj(i 6= j),
aj is in the direction θ or θ + π of ai, relatively to the horizontal axis. From the set

of cell centroids on the whole slide, a nearest neighbor graph G is constructed, and

weighted with the angle between two points and the horizontal axis. The dual graph G̃

is then obtained and weighted with the difference between two edges of G. The dual

graph G̃ represents all the alignment distances (in the chosen neighborhood) between

two pairs of points (ai, aj) and (aj , ak). The dual graph is pruned in order to keep

only locally aligned sets of vertices. Therefore, only edges with a weight lower than

an alignment detection threshold β are preserved: G̃TH = (Ṽ , ẼTH) with ẼTH =
{(i, j) ∈ E|ẽij < β}. The connected components Ck of G̃TH correspond to locally

aligned groups of vertices (Figure 2(c)) that are a possible candidates for being globally

aligned groups of vertices. To detect this, if the maximum weight (representing the

degree of global alignment) of Ck is higher than β, the vertex of maximum degree (the

less aligned one) is suppressed and we repeat this until Ck is globally aligned (under

the constraint of containing at least 3 vertices). With the result of the algorithm (Figure

2(d)), we create an histogram of the angles of the detected alignments for each tile in

the highest resolution image. As previously, with these histograms, an N ×N distance

matrix denoted W
(3) is computed between all the tiles with the χ2 distance measure.



2.4 Tensor-based multi-view spectral clustering

In the feature extraction step, textural, arrangement, and alignment feature vectors were

extracted to describe tiles of the tendon tissue region. These feature vectors represent

different views of the data that provide complimentary informations to each-other. In

this paper, we consider a spectral clustering of the data based on some similarity mea-

sure between the data. With multiple views, we have multiple similarity matrices, and

we want to perform a (spectral) clustering based on the combined representation of

similarities. This is known as a multiple-view approach to clustering [10]. Multi-view

spectral clustering can be formalized as the following optimization problem:

max
U

K∑

i=1

||UT
S
(i)
N U||2F , s.t. UT

U = I. (1)

where K is the number of different views of the data (i.e., the number of similarity ma-

trices), S
(i)
N is a normalized similarity matrix for the ith view constructed from the W(i)

distance matrices, and U is the common factor matrix shared by the different views.

Since the similarity of each view is computed in different spaces, the normalization of

each similarity matrix is required. Classical single view spectral clustering is recov-

ered for K = 1. A tensor X ∈ R
N×N×3 is build from these three similarity matrices

{S
(1)
N ,S

(2)
N ,S

(3)
N }. Multi-linear singular value decomposition (MLSVD) [11], is a form

of higher-order extension of matrix singular value decomposition. It decomposes a ten-

sor X into a tensor C multiplied by a matrix along each mode. Tensor C, known as the

core tensor, is analogous to the diagonal singular value matrix in conventional matrix

SVD. The matrices of each mode are called factor matrices and can be considered as a

PCA of the tensor along each mode. This leads to the following (Tucker) decomposi-

tion: X = C ×1 U1 ×2 U2 × U3 where U1,U2 ∈ R
N×N and U3 ∈ R

K×K and ×n

is the mode-n product [11]. Given a tensor X , its matrix factors U1, U2 and U3 can be

computed as the left singular vectors of its matrix unfoldings [11]. Then, we can rewrite

Eq. (1) as

max
U

K∑

i=1

||UT
S
(i)
N U||2F = max

U

||C ×1 U
T
1 ×2 U

T
2 ×3 U

T
3 ||

2
F , s.t. UT

i Ui = I ∀i. (2)

A truncated version of this formulation consists in considering [12]

max
U

K∑

i=1

||UT
S
(i)
N U||2F = max

U

||C ×1 U
T ×2 U

T ×3 I||
2
F , s.t. UT

U = I. (3)

This truncated MLSVD obtained by truncating the decomposition on the M dominant

higher-order singular vectors gives in practice a good approximation of the given tensor

[11]. Consequently, we take the columns of U to be the dominant 1-mode singular

vectors that are equal to the dominant left M singular vectors of X(1). The truncated

MLSVD obtained does not minimize exactly Eq. (1) but is easier to implement and

much faster. The principle of the whole algorithm is presented in Algorithm 1.



Algorithm 1 Multi-View Clustering(S(1),S(2), ...,S(K),M )

1: Build a similarity tensor X from {S
(1)
N ,S

(2)
N ,S

(3)
N }

2: Obtain the unfolding matrix X(1)

3: Compute U from the subspace spanned by the dominant left M singular vectors of X(1)

4: Normalize the rows (ui)i=1,...,N of U to unit length

5: Cluster the points (ui) ∈ R
M with the k-means algorithm into k clusters

3 Results

Figure 3 presents the obtained classification on two equine tendons (healthy and in-

jured). The number of final classes is fixed to 4. Each tile is surrounded by a colored

square that shows the class this tile belongs to. One tile of each class is highlighted in

details on the right of each tendon slide. One can see that the classification, even fully

unsupervised, performs well. Indeed, the different classes contain tiles that exhibit sim-

ilar visual histological criteria in terms of cell repartition and texture. For the healthy

tendon, most of the tiles are classified into only one class, assessing the fact that the tis-

sue is almost the same everywhere. For the injured tendon, one can see a concentration

of tiles (colored in magenta) that distinguish a specific area of lesion (confirmed by the

experts) from the rest of the slide.

4 Conclusion

This work has shown that an automatic analysis of whole slide images of equine tendinopa-

thy is possible and can be very effective as a tool for treatment quality assessment.

Indeed our method is able to identify the different similar zones and can be used to

monitor the lesion regression. The system can however be further enhanced. First, we

plan to incorporate other visual histological criteria such as fiber crimp. It is important

to note that the incorporation of new feature views of the data can be easily performed

by simply adding a new similarity matrix to the tensor-based spectral clustering. Sec-

ond, we plan to replace the k-means clustering by a supervised classification with the

help of a ground truth classification of tiles from several images.
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