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ABSTRACT

In many industrial processes or natural phenomena coupkst ind mass transfer and fluid flow take place
in configurations combining a clear fluid and a porous medi@imce the pioneering work by Beavers and Joseph
(1967), the modelling of such systems has been a contral&sue, essentially due to the description of the inter-
face between the fluid and the porous domains. The validittyeofo-called one-domain approach - more intuitive
and numerically simpler to implement - compared to a two-giondescription where the interface is explicitly ac-
counted for, is now clearly assessed.

This paper reports recent developments and the currerg sfiathe art on this topic, concerning the numerical sim-
ulation of such flows as well as the stability studies. Theioaity of the conservation equations between a fluid
and a porous medium are examined and the conditions for &cblhrandling of the discontinuity of the macroscopic
properties are analyzed. A particular class of problemslidgawith thermal and double diffusive natural convec-
tion mechanisms in partially porous enclosures is preskrdad it is shown that this configuration exhibits specific
features in terms of the heat and mass transfer characiesjsiepending on the properties of the porous domain.

Concerning the stability analysis in a horizontal layer wéna fluid layer lies on top of a porous medium, it is shown

that the onset of convection is strongly influenced by theguree of the porous medium. The case of double diffusive
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convection is presented in detalil.

Keywords : Double diffusion - Fluid/porous layer - Stability analysiConvection onset

NOMENCLATURE

d* total thicknessm

d*™ thickness of the horizontal porous laysr,

d  depth ratio(d = d?/d;;)

Dt  molecular diffusivityn?s—!

Da Darcy numberDa= K /d*?)

g gravity constantm s-2

Grr thermal Grashof numbéGrr = gBrAT d*3/v?)

Grs solutal Grashof numbeiGrs = gBsASd3/v?)

K permeability of the porous mediumy

K thermal conductivityyv nT K —1

Le Lewis numberLe= ays D)

Pr  Prandtl numbetPr=v/ar)

Rar thermal Rayleigh numbéRar = Gry Pr Da)

Sc  Schmidt numbefSc=v/Dy)

T temperature fieldk

T1(T,) temperature of the upper or left (bottom or right) boundéry,
S1(S) concentration at the upper or left (bottom or right) bougdzivt. ~*
V  velocity field,m s

u(w) horizontal (vertical) velocity component) s*

Xp thickness of the vertical porous layen,

Greek symbols

a slip coefficient



ar thermal diffusivity,m?s 1

B stress jump coefficient

Bs solutal expansion coefficient, Ws.—*
Br thermal expansion coefficieri, "1

£ porosity

er ratio of diffusivities,ars/atm
K dimensionless wave number

u dynamic viscosity of the fluid<g m1s~1

v kinematic viscosity of the fluidy?s 1
P fluid density,Kg m—3

o growth rate

e dimensionless temperature

[0)] dimensionless concentration

Subscripts

0 reference
eff effective property
f fluid property

m  porous medium property

1. INTRODUCTION

Processes involving heat and mass transfer and fluid flowterdmgeneous domains consisting of a porous layer with
an adjacent fluid may be found in a great number of industpplieations (thermal insulation, filtration processesyage
of nuclear waste, drying processes, dendritic solidificgtspreading on porous substrates, biofilm growth, gaaéific of
biomass, fuel cells ...) or in the context of environmentalbtems (geothermal systems, benthic boundary layersingro
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water pollution ...). In this context the problem of dealiwith momentum conservation at a fluid-porous interface has
been studied for many years. The simple situation of a Pillsélow in a partially porous channel, initiated by Beavérs
Joseph [1] followed by many other studies [2—4] allows tantifg two classes of problems: 1 - the macroscopic model to be
used in the porous domain, and 2 - the interface conditiotafagential velocity and stress.

The present presentation deals more specifically with problof natural convection in layers or cavities partiallidl
with a saturated porous medium. The problem has receiveeé sttention in the case of purely thermal convection, but we
will more specifically focus on double diffusive problemsiethpresent specific features.

The purpose of this paper is first to discuss the differeptmiditives proposed in the literature to describe the ceasen
equations in such heterogeneous domains, basicalljwhelomain formulatiorwhich considers the porous medium and
the fluid as two distinct domains separated by a discretefate where specific boundary conditions have to be exilicit
written, versus thene domain formulatiomombining the terms for the porous and the fluid domains irt afsgeneralized
conservation equations valid for both domains. In the sgéc@ction of the paper, fluid flow and heat and mass transfer due
to thermosolutal convection in a partially porous vertieatlosure are analyzed and it is shown that the presenceeviean
very thin porous layer has a strong influence on the beha¥ithisodouble diffusive system. Finally, both formulatioase
compared to study the stability problem at the onset of otfie in an double diffusive horizontal layer where the fluid

layer lies on top of the porous medium.

2. MATHEMATICAL MODELLING

Two different approaches are used for dealing with the fhodsus interface treatment. Tieo-domainapproach
consists in writing the conservation equations in both tie tind the porous regions with the associated interfaciahfary
conditions. Generally, these boundary conditions oftamsi®r continuity of both the fields (temperature, congsitn,
velocity) and fluxes at the interface. However, as commelattent in the present section, recent studies show that at the
macroscopic scale, continuity is only obtained under galdir conditions often related to the theoretical positifrihe
interface (dividing surface) [3,5]. When this position & known, jump boundary conditions could be considered uigipe
on the physical nature of the problem under consideratipn If6this context, the momentum transport at a fluid-porous
interface deserves a special attention due to the fact thatdary conditions also depend on the macroscopic modigling
the porous region. In order to illustrate this problem, kettonsider the one-dimensional fluid flow past a porous nahteri
studied by Beavers and Joseph [1]. The analytical solutiothie flow is obtained by considering a Stokes flow while the
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momentum transport in theomogeneouporous layer is described by the Darcy law. Due to the diffeeein the order of

the corresponding partial differential equations a sempieical slip boundary condition has been proposed [1]:

Jdu a
32|, ~ @ -uo) (1)

whereu andU are the velocities in the fluid and porous regions, respagtiK is the permeability of the homogeneous
porous region andr represents a dimensionless slip coefficient which dependsie microstructure and location of the
interface. When the Darcy-Brinkman equation is used in thveys layer [7], continuity of both velocity and shear strean

be imposed at the interface and the analytical solutionHerBeavers and Joseph configuration giwres (ueﬁ/uf)*l/2 =
£~ 12 wherepef is the effective viscosity ane the porosity. Due to the domain of validity of the Brinkmarnrestion, most

of the studies devoted to the determination of the effeatigeosity concern sparse porous structures or dilute sigspEs
for which the reduced viscosity is found to be close to thesteim’s law [8, 9]. More recently, using a volume averaging
method at the fluid-porous inter-region where the lengtiesconstraints are not satisfied, Ochoa-Tapia and WhifaRel 1]

derived a stress jump boundary condition such as:

au

UfE

I ou
— Ueff—
z=0 ) 0z

_ B
20 - \/KU(O) (2)

where the stress jump coefficiefitis found to be on the order of one. For conciseness, the derivaf this boundary
condition will not be presented in the present communie references [6,10, 12] for details), neverthelesphysical
meaning deserves some comments. Indeed, it is importaet#d that the jump condition given by Eq. (2) is actually an
equivalent representation of momentum transport throhglvery thin interfacial region characterized by continuepatial
variations of the averaged properties (porosity, perniggbof the porous structure [8]. In fact, Eq. (2) resultsrin the
difference of the integration (over the inter-region) of tBeneralized Transport Equation (GTE) and the integratfdhe
transport equations in both homogeneous regions, resplctiTherefore, Eq. (2) applies at the so-caltididing surface
(e.g.z= @m the stress jump coefficieBitis logically found to be dependent both on the spatial viamabf the averaged
properties of the inter-region [3, 6,12, 13]. Let us rechlttunder its present form, Eq. (2) has been derived assuming
continuity of the intrinsic average velocities. The reles@ of this assumption has been addressed by using the matche
asymptotic expansion method [3, 5] and more recently in tmtext of volume averaging method [6]. Both analysis lead to
general formulations involving jump conditions for the digland the fluxes. However, depending on the physical prgblem

5


benoit
Note
paper

benoit
Note
(whose location has to be determined)


@ jump coefficients can be equal to zero and in that casénodytof fields and/or fluxes can be imposed. An alternative
model to deal with the presence of fluid and porous regionsaemne-domaimapproach. This latter considers the porous
region as a pseudo-fluid and the whole domain is viewed astlaom where the transition from the fluid to the porous
regions is performed through spatial variations of prapertl4]. Using this mathematical formulation avoids thel&xt
formulation of the boundary conditions at the fluid/poronteiface. For this reason, the one-domain approach has been
extensively used in numerical simulations or stability lgsia of natural convection. Let us note that, in this apphpa
the derivatives of the macroscopic properties of the potayer at the interface are distributional derivatives [1F] that
case, the one- and the two-domain approaches are shown tivalent and very good agreement is actually found when
comparing the results obtained with both approaches [16 Ar¥illustration of the equivalence between the one- anoktw
domain approaches is presented in section 4. Except fordbis, in the forthcoming sections, ihree-domairapproach will

be used for performing the simulations presented in thigpap

3. THERMOSOLUTAL NATURAL CONVECTION IN A VERTICAL PARTIALL Y POROUS CAVITY

Among the problems involving natural convection in palyigilorous domains, we will tackle here the simulation of
double diffusive convective flows in a binary fluid, confineda vertical enclosure divided into sub-domains: a vertical
porous layer and an adjacent fluid layer. This configuratiay mafer to many practical but complex situations (solidificn
of binary alloys, sewage treatment ...) and we will limit iterest in the present paper to very simple boundary ciomdit

typically imposed uniform temperatures and concentratairthe vertical walls.

Although a great number of studies have been dedicated 4aydtmetry, the bibliography mostly refers to the case
of thermal convection [18—-20]. Our main focus in the preg®Epyer is to consider the case of double diffusive convection
where the number of publications is more limited. Among tH2#j most studies have been concerned with gaseous binary
fluids for which the Prandtl and Lewis numbers on the order ahd thus extremely limited since the relevant features of
double diffusion are linked to rather high Lewis numbersdule ~ ¢(10?) for liquids). The case of liquid metallic alloys
(Le ~ 0(10%) will not be examined here. We will analyze some specificuiest of double diffusive convection in such a
partially porous enclosure, emphasizing the influence @fctiaracteristics of the porous layer and the separate fdhe o

double diffusive parameters.
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3.1. Mathematical formulation

In the two-dimensional rectangular cavity (height H, tatadth L) sketched in Figure 1, the porous layer (thicknggs
along the left wall is assumed to be homogeneous and isotrdpie porous medium is saturated by the binary fluid which
fills the remaining of the enclosure. Different uniform teengtures and concentrations are specified at the extemale
walls of the cavity, and zero heat and species fluxes are &sbkatrthe horizontal boundaries. The flow is assumed to be

laminar and incompressible, and the binary fluid to be nei&toand to satisfy the linear Boussinesq approximation :

P =po[l—Br(T—To) —Bs(S—S)] 3

Another classical assumption is to suppose that the poratidxnis in thermal equilibrium with the fluid, and that ther8b
and Dufour effects are negligible. The macroscopic comdienv equations both use the Darcy-Brinkman formulation in
the porous layer and the Navier-Stokes equation in the Wifdd. The resulting mathematical model with the one-damai
approach (the expression of the permeability is thus a pbestfunction of space) leads to the following set of codple

equations in terms of the dimensionless variables defindteinomenclature:

0.vV=0 (4)
%(v.m%) :—DP+(GrT6+Grgfp)k—%V+% may, (5)
v.m:%m. (%ﬂ DQ) (6)
V.0p= SicD' (% qu) (7)

At the boundaries, zero heat or species flux conditions ascpbed at the horizontal walls and Dirichlet boundary
conditions at the vertical walls@ = ¢ = -0.5 at the porous medium external wall=£ 0) andg = ¢ = 0.5 at the vertical
wall in contact with the fluidX= 1/A).

The problem is characterized by the set of dimensionlesanpeters generally defined for double diffusive convection
in fluids:

1. the thermal Rayleigh number defined with fhed propertiesRar,
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2. the buoyancy ratidl = BsAS/BrAT,
3. the Prandtl and Lewis numbers of the fluRt,andLe,
plus the parameters characterizing porous media:
4. the Darcy number (dimensionless permeability) of th@psiayerDa,
5. and geometrical parameters, the aspect ratio of thesmeld, and the reduced thickness of the porous layet x5 /L.
L, ke and Z; refer to the dynamiduid viscosity, thermal conductivity and molecular diffusyitespectively, while subscript
‘eff’ refers to the correspondingffectiveproperties of the porous medium. The Nusselt and Sherwoatbers are the
dimensionless average heat and mass fluxes along the Verits

The set of equations (4-7) is solved using a standard finitenw® procedure described elsewhere [22]. The method has
been successfully used by the authors to solve heat and fhwidpfloblems in fluids and porous media in similar ranges of
parameters. It has been first verified that thermal and theshatal natural convection results s — 1 at any value of the
Da number were in agreement with the standard Darcy-Brinkneaision of the code and it has checked that at high values
of the Darcy number the results at any valuexpfwere identical to the results obtained for the pure fluid fmob The
calculations in the non-homogeneous cavity have been caagar thermal convection against the existing resultg.[19
Depending on the permeability of the fluid layer, the stramgperature, concentration or velocity gradients may batéot
in the vicinity of the fluid-porous interface. Consequentlyr low permeabilities compound meshes are used in order to
limit the computational cost, and two distinct irregulaeigrally sinusoidal) horizontal grids are taken in the perlayer
and in the fluid cavity. The number of nodes in each domain isatfon of the Rayleigh numbers and of the thickness of
the porous region. Typical values range between 145 and @8@snfor the x-direction and from 202 up to 402 regularly

spaced nodes in the z-direction, in order to solve the naliitiar structures.

3.2. Influence of the porous layer thickness and permeabilit y

The first sequence of results for a standard reference coafign (Rar = 106, N = 10, Pr = 10, Le = 100, A = 2)
shows the influence of the thickness and of the permeabilitieoporous layer. The results are displayed in terms of the
Sherwood number (the average mass transfer) at the vewtidial (Figure 2). Three main features may be observed fram th
figure. First it can be seen that the presence of the poroas &g a significant influence on the mass transfer: if ondiseca
that the limit of high Darcy number$@ = 1) corresponds to a fully fluid cavitgé = 0), it may be noted that a porous layer
of any thickness drastically decreases the Sherwood nucdmepared to the pure fluid case. For the present conditions a
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decrease by a factor 3 may be observed over the range of niegermneabilities. The second feature is that the Sherwood
number is practically unsensitive to the thickness of the@ps layer over a large range of Darcy numbers fidar 10~°

to Da ~ 102, corresponding to moderate and high permeabilities. Finlé influence of the porous layer thickness on
mass transfer is essentially noticeable in the low pernlisaange Oa < 10-°). In this range the mass transfer reduction

is enhanced by the porous layer thickness.

These results are qualitatively the same for all the valddheoLewis number considered in the studye from 1 to
100) and they are in agreement with the observations madeé&irtransfer characteristics of fluid-porous cavitiesurely
thermal convection. If we now turn our attention to the agerheat transfer variations as a function of permeabiligr tive
same range afp the curves displayed in Figure 3 show a quite different belnalt can first be observed that the Nusselt
number is not monotonically increasing with permeabilit9yne can also note the strong sensitivity of the heat transfer
characteristics to the porous layer thickness at all pebitiges in the[0.1— 0.8] range. Note that for thick porous layers
(xp > 0.8) the average Nusselt number remains very close to the pauction limit Nu= A = 2) over a wide range of
Darcy numbers, indicating the absence of convective haasfer in this range. This shows that the effect of the porous
layer thickness on the boundary layers is not the same faiespdistribution and for the thermal field. It can be infetieat
this is due to the difference in diffusion lengths for tengiare and concentration, that is to the Lewis number. Wengil
refine our analyis by the description of one particular c&& & 10°, N = 10, Pr = 10, Le= 100, A = 2 andxp = 0.1)
shown in white circles in Figs. 2 and 3. The evolution of thevaxtive flow with increasing permeability results from the
competition between two opposing effects. First, the flomgtation in the porous layer is easier at higher permeigsiland
consequently the diffusive damping of the imposed tempegaaind concentration difference by the porous medium liayer
smaller. The effective temperature and composition grasligoverning the buoyancy forces are then expected to gndw a
the flow to be accelerated, resulting in higher heat and nnassfer. This effect may be observed on the Sherwood number.
On the other hand, due to the difference between the themahbpecies diffusivitieslLe = 100), a central recirculation
loop is driven at the scale of the thermal boundary layektiess by a relatively smaller temperature difference. llyptae
ratio of the buoyancy forces decreases, and the intensttyedhternal thermal loop is decreasing, and also the aedragt
transfer. The process is thus dominated by the double difusechanisms. The foregoing analysis is intended to réfime
interpretation of this behavior in terms of the thermosalégatures of the solution. If we observe in detail the flomciure
in the vicinity of the first Nusselt number minimurd$ ~ 10~ /), the streamlines displayed at different values of the Parc
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number (Figure 4) clearly show that the existence of a mininsudirectly related to the flow structure. In the neighbardho

of the minimum, a low velocity zone forms in the bottom parttieé enclosure: this region is characterized by a stable
vertical concentration gradient and the transverse (bota) heat transfer is mainly conductive [23, 24]. So theréase in

the Nusselt is mainly due to the fact that the size of the medirculation cell decreases. With increasing permestittie
height of the stagnant zone increases, the local verticgatartration gradient decreases and the compositionadyifestd
“stagnant” zone gets destabilized by the lateral temperajtadient, resulting in the formation of a secondary datige

cell and a sudden increase of the Nusselt number. Then thwafion process of a stagnhant zone at the bottom of the
enclosure resumes Bia ~ 2 x 10~/ with the related decrease in heat transfer, until the devesmt of a third recirculation

cell (not shown) allows for a new enhancement of the averagéthansfer. Then, the increase in Darcy number results in a
better penetration of the porous layer by the flow, until,exvhigh permeabilities a fully symmetrical tri-cellularcture

characteristic of double diffusion in liquids is recovered

3.3. Influence of the double diffusive parameters

As recalled above, specific features of double diffusiveveotion appear when the characteristic diffusion lengtms f
heat and solute are different. The parameter which govlmsatio between thermal and molecular diffusivity (the issw
number) is currently on the order of46r more, except for gases where~ 1. In the latter case, the scale of heat and solute
boundary layers are similar and the buoyancy forces havaayrelditive effect. No multicellular structure is expedtand
the dependence of the Nusselt number with permeabilitpalthe same variation as the Sherwood number, a smoothly
monotonous increase, as displayed in Figure 2. We now centlid influence of the Lewis number over the range low and
moderate values dfe on the heat and mass transfer characteristics. All parasnate fixed, except for the mass diffusivity,
meaning that the solutal Rayleigh number is increased iisdnge proportion as the Lewis number. The Sherwood number
is uniformly increased with.e (not shown) and we see (Fig. 5) that the Nusselt number i@rigd similar at low values
(Le < 5), and the heat transfer is decreasind-asncreases, as expected from the scaling laws in the sgludalhinated
regime (N > 1) [25]. The Nusselt curve shows only one minimum ff@r= 10. It could be shown that the flow structure
remainsmonocellularbut the mechanism is similar to the second minimum of thereef® case described above and the
decrease in heat transfer is compensated arBang 3 x 10~° by the penetration of the porous layer.

The other interesting feature to be analyzed is the influeftee buoyancy ratio. It is also well known that the double
diffusive features of the flow are of mostly visible in theanmhediate regime between the heat transfer dominated< 1)
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and the mass transfer dominatdd>> 1) regimes, where both buoyancy forces are in competitidre fumerical results
presented here concern the cooperating case, that isypasitues ofN ranging from 1 to 10 for the same set of parameters,
including Le = 100 (Fig. 5). Again the Sherwood number (not shown) has thesgualitative behavior at different values
of N except that the increase in mass transfer occurs at snizdléor higher N. If we consider theNu curves (Figure
6), there is almost no difference betwe@\S/BrAT = 1 or 2, for which the Nusselt number variation is monotonotis
minimum may be noticed at = 3, but the limiting values (aba < 10~ or Da > 10~3) are also identical : here only the
solutal Rayleigh number is modified throuthand it is known to have little influence on the Nusselt numizgrN = 3,
one could show that the flow structure remamesnocellular a stagnant zone is formed at the bottom of the enclosure in
the intermediate range of permeabilities, which resulis decrease of the average heat transfer. In this partidtlation
this zone remains stable, because the flow penetration giottoels layer accelerates the fluid before the stratified gete
destabilized. FoN = 5, the flow structure exhibits three minima :

- the first minimum corresponds to the formation of a secotig ce

- in the neighborhood dba = 10° a stagnant zone is formed below the second cell but this zoe bt reach destabiliza-
tion and the second cell increases again,

- aroundDa = 10~* the flow penetration progressively increases the strenfjtheofirst cell and the second cell finally
disappears,

- at high permeabilities the flow is mono-cellular.

TheN = 5 curve shows the transition between a globally monoceliilday structure alN < 3 and the 3-cell structure at

N = 10.

As a conclusion to this section, it can be shown that the inflaeof a thin porous layer along a vertical wall of a rect-
angular enclosure has a remarkable influence on the heatasaltransfer transfers. Even if the conditions are sigmifiga
different from those met in real processes involving couypletween thermally and solutally driven flows, such asigli
cation processes, it seems to be important to carefullyyaeahose features to understand the coupled mechanismbeand
heat and mass transfer characteristics.
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4. ONSET OF THERMOSOLUTAL CONVECTION IN SUPERPOSED FLUID AN D POROUS LAYERS

Another class of studies dealing with transport phenomemiaeainterface between a fluid and a porous layer involves
the onset of convection in heterogeneous horizontal layelarge majority of stability analyses have been carriedusing
a two-domain approach, the conservation equations in tieedhd porous regions being coupled by interfacial boundary
conditions. Indeed, for momentum transport, the studies @srcy’s law in the porous region and Navier-Stokes egusti
in the fluid region [26—29]. In this situation, the couplingtiween the two homogeneous regions is obtained using a slip
boundary condition [1] where the slip coefficient dependshanocal nature and position of the interface [1]. In theeocals
thermal convection, the results using this modeling apgradow a bimodal nature of the marginal stability curvesrehe
each mode corresponds to a different mode of convectivahiilisy [28]: at small wave numbers the convective flow ftart
in the “porous mode”, while perturbations with large wavemers are confined in the fluid layer. The alternative two-
domain approach is based on the use of the Brinkman exteasarcy’s law which allows to satisfy the continuity of both
velocity and stress at the fluid/porous interface [7, 30Jhds been shown that the results obtained using the Beawrs an
Joseph condition [1] are in quantitative agreement depgnaln the value of the slip coefficient [31]. The volume avergg
technique leads to a description of momentum transportecgason at the fluid/porous interface which implies a jamp
boundary condition [10, 11]. This condition involves a jurgefficient3 which is explicitly dependent on the continuous
spatial variations of the effective properties (porogigrmeability) at the fluid-porous inter-region [3, 8]. Instlsection we
will show that this latter model is in perfect agreement with one-domain approach [14,32]. The objective of thisisect
is to provide some results at the onset of thermosolutalralatwnvection in superposed fluid and porous layers with the

one-domain model. The influence of some of the main paramiteiso investigated.

4.1. Mathematical model

The configuration of interest in this section consists ofrdimite horizontal porous layer (thickneds) underlying a
fluid layer of thicknessl' = d* —dy, (Fig. 7). The binary fluid is saturating the porous layer sumsed to be homogeneous
and isotropic, newtonian and to satisfy the linear Boussjrapproximation. In the present analysis we assumeBthatO
while Bs < 0. The horizontal walls are impermeable and maintainedfidrdint temperatures and concentratioiis; S
(top) andT,, S (bottom). As in the previous section, the conservation g#gug are set into their dimensionless form using
the following scalesd* for length,d*?/v for time, v /d* for velocity, and(pgv?) /d*2 for pressure, where is the kinematic
viscosity of the fluid. The temperature and concentratidfeidinces(T — Tp) and(S— ), are scaled bAT = T; — T, and
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AS= S — S, respectively.V, 8 and @ represent the dimensionless velocity vector, the temerand the concentration

and the set of dimensionless conservation equations Dwrites

V=0 (8)
%(%)%—%(V-D%):D-(%DV—PI) o
—%V+GrT9k+GrS(pk
%Jrv-mezpirfm.(g—;me) (10)
saa—(tl)%—V-qu:S—lGD-(%D(p) (12)

These equations introduce the usual set of dimensionleaspéers characterizing double diffusive convection kieerhal
and solutal Grashof numbers basedddrand the fluid Prandtl and Schmidt numbers. In the solute pem®quation (11),
due to the absence of solute diffusion in the solid phasegffeetive solute diffusion coefficient in the absence opdision
effect has been taken such Rgz = €Ds (¢ = porosity). In the momentum equation (9) the dimensionjemsneability
Da is the Darcy number while the reduced viscosity in the Briaknterm has be taken such @/ = 1/€ [33]. The
second Brinkman correction term has been neglected. ¥imallin equation (10) is the thermal diffusivityat = ot in
the fluid andat = ot in the porous region). The associated dimensionless boyrdaditions at the external walls are:
V(1) =V(0)=0;0(1) =Ty — To/AT ; 6(0) =T, — To/AT ; (1) = S — S/AS; ¢(0) = S — S/AS. Let us mention that
the effective properties( Da, andat) in equations (8)-(11) are Heaviside functions and theesteir differentiation must
use distributional derivatives [15, 34]. The perturbatemuations are obtained using the classical general detopo
The basic state is assumed to be quiescent with linear nscof z for the temperature and concentration fields. The
linearized system is then written in terms of the followingeession for the vertical velocity component, the tempeea

and concentration:

(W, 6, ¢) = (W(2),0(2), ®(2) €. (12)

K is the dimensionless wave number amds the complex growth rate. Assuming the principle of exg®anf stability
(o = 0) the resulting eigenvalue problem is then solved usingieralized Integral Transform Technique (GITT) [35, 36].
The critical Grashof is obtained by minimization over(see [31, 37] for details). This method has been validated by

comparison with the exact values obtained in full fluid antbps cavities [38].
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4.2. Comparison of the one-domain and the two-domain approa ches

The first feature to be shown in this section is the equivaeithe one- and two-domain approaches. The corresponding
stability analysis conducted using the two-domain apgrd2Q) leads to write the conservation equations in each domain,
and to specify the appropriate interface conditions. Letamind that in order to be consistent with th@ inodel, the
momentum conservation is described by the Navier-Stok#ifluid and by the Darcy-Brinkman formulation in the porous
layer. The comparison is made in the case of thermal comreend the marginal stability curves obtained with both
approaches, that is, the presentation of the critical theRayleigh numbeRar at the onset of convection versus the wave
numberk for different values of the depth ratiaﬂA)( The main feature of the® model is the explicit expression of the

interface conditions, which in dimensionless terms wfite the thermal convection case;:

B 06 106y

& = Om 9z e 0z (13)

VisVm 5 T ez (14)
ows 2 0Wn

Rt =Pt i, (15)

whereer = aT,/ar,,. The results presented in Fig. (8) show a perfect agreenadwelen the @ and the Rpg approaches.

Indeed, both formulation lead to the same bimodal behavivatever the thickness rath Each mode corresponds to a
different structure of the convective flow. Indeed, at smale numbersy ~ 2.5) the convective flow involves the whole
cavity (“porous mode”) while for large wave number pertuityas the convective flow is mainly confined in the fluid layer

(“fluid mode”). A transition between the porous mode and thelfinode is observed dt=0.14.

4.3. Influence of the jump coefficient.

It has been stressed in section 2 that the condition of tdiajjestress continuity (eq. 14) is a particular case of the
general interface condition (2) witB = 0. The influence of the stress jump coefficighon the stability of the system is
thus of interest. In the case of purely thermal convectiamraghis influence is presented in Fig. 9 in terms of the aaiti
thermal Rayleigh numbésry Pr; Dafor d=0.10,Da= 10"5 ande = 0.39. The figure shows that the bimodal nature of the
stability curve is not influenced by the value @f It may be seen that the “porous mode” obtained at small wavebers
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(k ~ 2.5) where the convective flow involves the whole layer thidaies unchanged witheta while increasing the stress
jump coefficient strongly modifies the fluid mode inducing arenonstable situation at larger wave numbers. This is due
to the fact that the jump condition (2) actually takes intoamt the spatial variation of the permeability in the ifdeial
region leading to an increase of the velocity in the vicimfythe interface [3, 8].

Similar conclusions may be drawn for higher depth ratioe fdduction of the critical Rayleigh number is also coupled
to a decrease of the critical wave number of the fluid mode Tabée 1). Finally, the influence of the stress jump coeffi-
cient depends on the magnitude of the Darcy number. For smlaiés ofDa (not shown) or for very large values of the
dimensionless permeabilitpb — =), the stress coefficient hardly influences the marginallgtaburves. For small Darcy
numbers the porous layer tends towards a solid wall and dimeendition holds at the interface while f@a — o the
porous media behaves as a fluid, and in that case, the irdetifagppears. For intermediate values of the permeability,
is shown that the influence of the jump coefficient on the nmadgitability curves may be important. These results gfearl
illustrate the importance of the fluid-porous interfaciadwlling. This is particularly true for very irregular imtaces where
the complexity of the microstructure has to be taken intmant As previously noted, the jump coefficightan be related
to the spatial variations of the average properties of therficial region (mesoscopic representation). Howevenoee
accurate description would consist, for a given interfaciecrostructure, in determining the jump coefficient byessing

and solving the local closure problems associated to theadien of the jump boundary condition.

4.4, Onset of thermosolutal convection

This section is dedicated to the problem of double diffusiwavection in horizontal fluid-porous layers. In a first step
the solution procedure has been validated by comparinguheerical results to the exact values for the Rayleigh-Bi&na
problem both in a pure fluidda — o, € = 1) and in a full porous IayerdA(: d¢/d;, — 0). As expected, in both cases, the
marginal stability curves plotted in th&ar, Ras) plane are straight lines [39R&r = Grr Pr; Da andRas = GrsSgDa).
According to the boundary conditions given in section g,ftuid case leads teRays + Rasf = 1707.77 with an associated
wave numbek = 3.12. The full porous configuration leads t6Rarm + Rasm = 47 ~ 39.48, withk = m~ 3.14. From
the definitionsAT =T; — T, andAS=§; — S, it is possible to identify the regions where the temperand concentration
gradients are stabilizing or destabilizing. One verifiegt tine curvesRas x Rar obtained with the present analysis are
straight lines intersecting the axes(81707.77);(—1707.77,0) and (0,39.48);(—39.48 0). Unless otherwise specified,
all the results presented here have been obtained with thwsviiag parameters:Pr; = 10, Da = 1072, £ = 0.39, and
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er = at/otm = 1. Figure 10 shows the stability curves obtained for difiénealues of the depth ratio. Rar = 0 and
Ras = 0 correspond to the pure solutal or thermal cases, respictivis shown that aRay increases (the thermal buoyancy
forces are more stabilizing) higher concentration gradieme needed to destabilize the system. Contrarily to tbgeab
limiting cases, the evolution of the stability curves aré¢ siwaight lines forRar > 0. This change can be explained by
representing the critical wave numberas a function of the thermal Rayleigh numta (Figure 11). Two regions are
clearly identified: for negative values Bfar, the critical mode corresponds to convection cells at largee numbers while
the critical mode foRar > 0 corresponds to cells at small wave numbers. These resdltsate that the bimodal nature of

the marginal stability curves obtained for the pure theroomlvection case [28, 36] is also present in the thermodaiate.

At small wave numbers the convective flow takes place in thelevbavity (“porous mode”) while perturbations of
large wave numbers lead to a convective flow mainly confinetthénfluid layer (“fluid mode”). The streamline patterns
and the vertical velocity profiles fat = 0.8 and different values dRar are presented in Figures 12a to 12d. Contrarily to
the pure thermal case where a single convection cell is ebdethe onset of the thermosolutal case is characterizead by
multi-layer regime foRar < 0. This change is illustrated in Figures 12a and 12b. Indeed®ar = —20 (Figure 12a), three
contrarotating cells are present in the fluid region whike ¥Rlocity field in the porous region is close to zero. Wk
increases, the wave length of the cell also increases (the muamber decreases) andRat = 0 (Figure 12b) a monocellular
flow is obtained (pure solutal case). Rar = +20 (Figure 12c) the flow starts to penetrate in the porous unedb finally
occupy more or less the whole cavity leer = +50 (Figure 12d). Note that the multi-cellular regime of thertnosolutal
case, had been already observed by Chen & Chen [28] using-ddmain approach. Zhao & Chen [32] also have observed
this type of multi-cellular structures using a one-domaiodel but they were not able to capture the two convective siode
It seems to us that one of the possible origin of this diffeeshes in the fact that the differentiation of the discontins
functions at the interface was not taken in the sense ofildigitons. In addition, in both studies, only one value of the
thermal Rayleigh number was consider&#y{ ~ 50). Finally, the influence of the thermal diffusivity ratifor d=08is
presented in Figure 13. It is shown that a lower valuerdeads to a more unstable situation whatever the thermalkiRgy!
number. As expected, in the absence of thermal buoyancgddRar = 0) &1 has no influence on the stability of the system.
Moreover, it can be seen that the differences between theeswbtained foer = 0.7 and 1 increases witfRar|. The
marginal stability curvesRas versusk) for two different values oRar have been computed (not shown). Ra = —20
(the temperature gradient is destabilizing) and= 1, it is important to remember that the convective flow is aoetdiin the
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fluid region (see streamline patterns on Figure 12a).¢fret 1 heat diffusion is easier in the porous medium and therefore
the temperature at the interface increases. Under thesengiances, the temperature gradients in the fluid become mo
important, giving rise to a smaller value of the criticaligal Rayleigh number. On the other hand, Rar = 20 it is shown
that the critical mode is obtained for small wave numbersi@ps mode”). Decreasing hardly destabilizes the “porous
mode” while the “fluid mode” (large wave numbers) is found ®rhore stable. This behaviour can be explained by the

stabilizing effect of the temperature gradient.

5. CONCLUSION

This note recalls the main results concerning the problemoable diffusive convection in partially porous domains,
and the interaction between heat and mass transfer and ftwididl a fluid and a porous layer. It had been seen that
the discussion raised by the formulation of the problem w otarified, in the limit of validity of the Darcy-Brinkman
macroscopic description. A specific behavior of the heat miads transfer characteristics and its dependance upon the
double diffusive parameters has been explored in the cagertiéal layers. The consequences on the stability prolatem
horizontal layers have been analyzed and the influence aohtitel parameters have been assessed.

The limitation of the study lies in the choice of very simplauibpdary conditions at the external walls and only general
trends may be drawn in this limited frame. More efforts aguested for the solution of more specific problems. In paldic
many fields of applications deal with processes where thaseective problems are coupled with phase change mechsnism
such as in solidification processes [40—43] or in envirortadgaroblems at the interface between seawater and unelenatt
ponds in the arctic polar ocean [44,45]. Such problems aseptly under study as developments of the studies prelsente

above.
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Figure Captions

Figure 1. Schematic description of the problem.

Figure 2. Mass transfer variation with permeability andousrlayer thicknessRar =10°-N =10-Pr=10-A=2)
Figure 3. Heat transfer variation with permeability andquer layer thicknesRar =10°-N=10-Pr=10-A=2-lLe=
100)

Figure 4. Heat transfer and flow structure around the firsirmim: 5«10 < Da< 5%10°"; Ay = 0.1 (Rar = 1P,
N =10,x, =0.1,Le= 100,Pr = 10, A= 2). For comparing the flow structures, the streamlines haea Iplotted using the
maximum value of th&lmax for all cases @ = 0 at the walls andy = 0.1).

Figure 5. Heat transfer variation with permeability forfeient Lewis numbersRar =10°-N =10 -x=0.1-Pr=10-
A=2)

Figure 6. Heat transfer variation with permeability forfeient buoyancy ratiofRar = 10° - xo =0.1 - Pr =10 -Le= 100
-A=2)

Figure 7. Geometric configuration of the problem.

Figure 8. Marginal stability curves : comparison betweesn 12 and the ®pg approaches fod = df/d;, = 0.08 and
d=0.10 (Da= 7.44 10°C.

Figure 9. Influence of the stress jump coeffici@rior d=0.10. Da= 1075, € = 0.39.

Figure 10. Critical solutal Rayleigh number versus thertt@Rayleigh number, for three values of the depth rdtio
Figure 11. Wave number versus the thermal Rayleigh numtrethifee values of the depth ratio

Figure 12. Streamline patterns and vertical velocity peefibrdA: 0.8: (a)Rar = —20,Ras = —35.1 andk = 10.2; (b)
Rar = 0, Ras = 0 andk; = 6.0; (c) Rar = 20, Ras = 24.7 andk; = 3.5; (d) Rar = 50, Ras = 38 andk = 4.0. The thick
horizontal line represents the fluid/porous interface.

Figure 13. Influence of the thermal diffusivity ratég for d = 0.8 and different thermal Rayleigh numbers.

Figure Captions

Table 1. Minimum values of the Rayleigh number for the “fluidde”. Da= 10>, £ = 0.39.
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d=0.10 d=0.14

—Rarer | Ker | —Rarer | Kor

B=0 | 132.98| 29.0| 43.48 | 22.0
B=1 | 121.77| 28.0| 40.48 | 22.0
B=15]| 110.68 | 27.0| 37.16 | 21.0
B=2 88.20 | 24.0| 29.18 | 19.0

TABLE 1. Minimum values of the Rayleigh number for the “fluid modB&a= 105, £ = 0.39.

22



Adiabatic impermeable wall

H |
|
i
T i T,
I
S, Porous ! 2
Domain i
I
I
i
! Fluid
I
i Layer
I
I
I
i
z |
X % L

Adiabatic impermeable wall

FIGURE 1. Schematic description of the problem.
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FIGURE 4. Heat transfer and flow structure around the first minimum168 < Da < 5% 10~'; Ay = 0.1 (Rar = 10°, N = 10,
Xp=0.1,Le=100,Pr=10,A=2).

For comparing the flow structures, the streamlines have pested using the maximum value of thig,ax for all cases
(@ = 0 at the walls andy = 0.1).
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FIGURE 13. Influence of the thermal diffusivity ratier for d = 0.8 and different thermal Rayleigh numbers.
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