
HAL Id: hal-00813313
https://hal.science/hal-00813313v1

Submitted on 16 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-scale design of interactive music systems : the
libTuiles experiment

David Janin, Florent Berthaut, Myriam Desainte-Catherine

To cite this version:
David Janin, Florent Berthaut, Myriam Desainte-Catherine. Multi-scale design of interactive music
systems : the libTuiles experiment. SMC 2013, 2013, Stockholm, Sweden. pp.123-129. �hal-00813313�

https://hal.science/hal-00813313v1
https://hal.archives-ouvertes.fr

LaBRI, CNRS UMR 5800
Laboratoire Bordelais de Recherche en Informatique

Rapport de recherche RR-1471-13

Multi-scale design of interactive music systems : the

libTuiles experiment

April 16, 2013

David Janin, Florent Berthaut, Myriam Desainte-Catherine

LaBRI, Université de Bordeaux, CNRS UMR 5800 351,

cours de la libération

F-33405 Talence, FRANCE

2

Multi-scale design of interactive music systems :

the libTuiles experiment

D. Janin ∗, F. Berthaut, M. Desainte-Catherine

LaBRI, Université de Bordeaux, CNRS UMR 5800

351, cours de la libération

F-33405 Talence, FRANCE

{janin|berthaut|myriam}@labri.fr

April 16, 2013

Abstract

The design and implementation of an interactive music system is a

difficult task. It necessitates the description of complex interplays between

two design layers at least : the real time synchronous layer for audio

processing, and at the symbolic event based layer for interaction handling.

Tiled programming is a recent proposal that aims at combining with a

single metaphor: tiled signals, the distinct programmatic features that are

used in these two layers. The libTuiles experiment presented in this paper

is a first experimental implementation of such a new design principle.

1 Introduction

1.1 Background

Nowadays, many specialized languages can be used for the design and imple-
mentation of musical systems. Be them textual like Supercollider/chuck [16]
or Faust [7], or visual like Max/Msp or PureData [6], these languages mostly
inherit from the synchronous programming language paradigms that allow for
powerful descriptions of signal processing mechanisms.

However, programming interactive musical systems remains a delicate task.
In particular, maintaining the time/rhythmic coherence of musical systems gov-
ern by the unpredictable arrival of asynchronous events is a task that easily
becomes intractable. This can be partly explain by the heterogeneous time
scales or layers at which such systems need to be described. Audio processing
necessitates low level real time synchronous programming mechanisms while
interaction handling necessitates high level event based system design tools.

∗This work is partially supported by the french project INEDIT, ANR-12-CORD-0009.

3

mailto:janin@labri.fr

Such a difficulty, partially adressed by the GALS design style [15], remains
a challenging issue. Despite considerable effort, there is still a lack of high level
metaphors or paradigms allowing for a hierarchical, multi-scale and modular
description of dynamic time structuring mechanisms.

Among other proposals, the i-score sequencer [2] integrates an explicit spec-
ification mechanism that allows for the high level description of the relative
positioning of musical objects, hence their potential overlapping. Together with
explicit input control points and dynamic mechanisms for solving position cons-
trains, the i-score sequencer thus already offers an abstract description of dy-
namic time structuration. However, by lack of additional control flow structures
such as conditionals and loops, its applicability remains limited.

Independently, in the lines of the structuralist approach developed for musi-
cal linguistic [14], recent studies [9] emphasis the fact that, for computer assisted
music systems, a key issue lays in the precise modeling of behaviors overlaps that
recurrently occur in such (multi-agent) musical systems. Further studies, more
oriented towards abstract and untimed models, provide evidences that an entire
and well-developed mathematical field, inverse semigroup theory [13], is suitable
for developing an associated language theory of overlapping structures [8,10,11].

1.2 Outline

The work presented here aims at combining the high level time specification
mechanisms offered by the i-score approach with the modeling power provided
by languages of overlapping structures, and with the efficient signal processing
provided by the synchronous languages.

Implementing an advanced synchronization algebra of audio or musical pat-
terns [5], the libTuiles, first appears as a fairly versatile multi-scale and hierar-
chical mixing tool. In the long run, the libTuiles also aims at becoming the first
execution engine for the T-calculus [12] : the programming language theoretic
counterpart of the experiment presented here.

The libTuiles can be connected to the real time synchronous audio thread
provided by the JACK audio server. An additional granular synthesis module
for producing audio signals that can be stretched makes it even more easy to
use with tiled sound files. It is also linked with other existing tools such as the
Faust [7] synchronous programming language.

Last but not least, a graphical interface, the simpleTuilesLooper, inspired by
live looping interfaces such as Drile [4], allows for live performance experiments
of the underlying metaphors and concepts.

2 Modeling of musical processes

Modeling musical system behaviors, be them on time when systems are run-
ning, or off time when systems are being designed, one faces the long standing
and complex question of musical objects representation. Many proposals, often
incomparable, are available. The libTuiles presented in this paper is based on a

4

rather formal model : tiled signals, that have been formalized as an attempt to
clarify the situation.

2.1 The structure space of musical objects

There already exist many formalisms applicable to the modeling of music. Each
of them provides answers for specific application perspectives, usage constraints
and thus approximates the musical objects that are described. An immediate
difficulty is therefore to understand what the characteristic of these models are
and which one of their features we truly need for designing interactive music
systems.

For instance, in a western music score, notes and rhythms are pictured in
such a way that, in particular, the fast reading of melodic and rhythmic lines
by musicians is made easier. In particular, bars and metric structures indicate
on every system how musicians should synchronize their plays.

When modeling music for designing a music system, the visual aspect of
music score is probably of a fairly low interest. However, there already appear
two dimensions of some abstract modeling space where the various models of
music lay. The first one, the time axis (T), is depicted by the sequence of notes,
the succession of bars, and so on. The second one, the parallel axis (P), appears
in the many music systems that are to be played in parallel by musicians.

Analyzing further music scores such as, for instance, popular melody an-
notated with chords as in jazz music scores, a third dimension appears, the
abstraction dimension (A). Indeed, music is often described at various level of
abstractions such as melodic lines, chords progressions, stylistic annotations,
and so on.

Though often implicit, a fourth dimension also appears when modeling in-
teractive (or improvised) music. It is the interaction (or alternative) axis (I)
that allows, for instance, the descriptions of how musicians (say in a jazz band)
can adapt their plays to the real time performance of a given soloist according
to some stylistic rules.

In other words, music models adapted to the design of interactive music
systems lay in an at least four dimensional space that is depicted in Figure 1.

Of course, such a four dimensional modeling space for musical objects is
highly debatable. Even more, there may be some description of music that mix
so much these dimensions that it no longer make sense to distinguish them.
Still, positioning a given musical model in such a space may help clarifying our
understanding of its features.

For instance, standard piano roll that are displayed on computer screens
typically lay in the two dimensional space formed by the time axis (T) and
the parallelism axis (P). Another typical example is the musical transcription
and analysis of a recorded performance. As all possible interactions have been
resolved during the performance, it lays in the three dimensional space formed
by time (T), parallelism (P) and abstraction (A).

Typical models of reactive systems are, in computer science, branching struc-
tures (or input/output discrete automata) that describe, in every state, the po-

5

•

(A)

(T)

(I)

(P)

Figure 1: The four dimensional music space

tential behaviors of those systems that depend and evolve with the external
events that are received. Such branching structures typically lay in the two
dimensional space formed by the (abstract) time axis (T) and the interaction
axis (I).

2.2 Time scale types

Designing interactive musical systems, another major source of difficulty is that
the nature of modeling features may change depending on the level of abstrac-
tion. This is especially clear in the two dimensional modeling space defined by
time (T) and abstraction (A) where various heterogeneous time scales can be
used to describe music.

These time scales can be classified in four types at least that are described
below, from the more abstract to the more concrete. Somehow worth being
noticed, these types relate to the implicit time granularity they are describing:
from several hours for the most abstract to few 10−5s for the most concrete.

Logical (causal) time. Musical events are units, positioned one relatively
to the other on a logical time scale which structure is described by means of
modalities such as before, after, at the same time, etc. . . The time granularity
goes from a few seconds, e.g. between two chords, to several minutes, e.g.
between two musical movements, or even hours, between two concert’s parts.

Symbolic (quantized) time. Musical objects now have abstract durations
possibly measured in some symbolic units, say beats or bars, or even just atomic
events. They are also positioned in the underlying symbolic time scale(s) that
can remain quite abstract. More subtle modalities such as while, until, or since
may refer to these durations. The associated time granularity is often about
several seconds.

Asynchronous (placed in) real time. Musical objects are now positioned at
real dates, for instance during a musical performance. Such a time positioning,
that can be relevantly be heard by human hears, is measured with a precision
from 10−1s to 10−3s. In this time scale, musical events remains irregular with,
for instance, musical effect of rhythmic tension and resolution that can achieved
by slightly shifting event’s onsets around a theoretical absolute pulse position.

6

Synchronous (or continuous) real time. Cut into regular grains or frames,
musical objects are now described as continuous (with real instruments) or dig-
itized (with DSP) signals that refer to some regular real time clock with periods
ranging from 10−2s to 10−5s. At that level of precision, specific techniques must
be used when combining/processing musical objects in order to avoid undesir-
able artifacts such as, for instance, clicks that may be product by sudden phase
changes at the signal level.

Designing tools for the conception of computerized music systems therefore
requires to handle the modeling of all these heterogeneous time scales.

2.3 From signals to tiled signals

In every music systems, be it for mixing signals, or more generally for arbitrary
multi-channel signal processing, one of the most fundamental operation consists
in positioning in time, one relative to the other, the signals to be processed.
This feature is depicted in Figure 2. Such an operation, that lays in the two

A
B

s

Figure 2: External synchronization

dimensional space of time (T) and parallelism (P), is often performed by means
of an external synchronization mechanism where the relative positioning of the
signals depends on the result of their combined analysis, for example relying on
onset detections.

Commonly used by sound engineers in music studios, such an approach how-
ever lacks compositionality. Some audio or musical analysis may need to be
performed again and again each time a new signal (or musical object) has to be
positioned with respect to the previous ones. In order to avoid such a useless
repeated analysis, audio processing applications are thus equipped with various
and somehow adhoc notions of time stamps or sync. marks that annotate the
tracks onto which these signals are positioned. It occurs that such technical
tricks can be formalized with great benefits via the notion of tiled signals. In-
deed, tiled signals appear when one wants to internalize such synchronization
marks.

Simply said, a tiled signal is a signal equipped with two additional bars
that delimit what are called the synchronization window of the tiled signal. By
contrast, the position in time of the entire signal is called the realization window.
More formally, for every signal A, the relative positioning of the synchronization
window with respect to the realization window can be modeled by specifying
two values : the left offset lA and the right offset rA, as depicted in Figure 3.
With sA the duration of the synchronization window, the resulting duration of
the realization window is given by lA +sA +rA. The resulting triple (lA, sA, rA)

7

is called the synchronization profile of the tiled signal A. With this model,

lA sA rA

A

Figure 3: Synchronization vs realization windows

synchronizing two tiled signals only amounts to positioning the second bar of
the first tiled signal right at the same time as the first bar of the second timed
signal. This is depicted in Figure 4. The resulting synchronized product of two

A

lA sA rA

B

lB sB rB

sA;BlA;B rA;B

Figure 4: Internal synchronization

tiled signals A and B is denoted SEQ(A, B) or simply A; B. An immediate
observation is that the synchronization product A; B of two tiled signals A and
B is indeed compositional since, as depicted in Figure 4, the new built signal is
again a tiled signal.

2.4 External vs internal time specifications

In an interactive sequencer such as i-score [2], the notion of external synchro-
nization specification can be abstracted. More precisely, one may specify that
some properties are satisfied by s, be it positive or negative. For instance, one
may require that s > 0, meaning that the beginning of the signal B occurs
before the end of signal A.

Doing so, one shifts from a concrete and quantitative specification of syn-
chronization to an abstract and qualitative specification of signals positioning in
time. The model is shifted up along the abstraction axis (A). To some extent,
it even allows to combine both the realtime scale (for music performance) and
symbolic time scale (for music system description) [3]. It relies on qualitative
temporal logics of intervals such as Allen’s logic [1].

A

B•
s > 0

Figure 5: External synchronization constraints

8

It occurs that using tiled signals, such qualitative approaches, à la Allen, are
still possible. Indeed, specifying that s > 0 as depicted in Figure 5 can equiv-
alently be expressed with internal synchronization specifications as depicted in
Figure 6. Indeed, this just amounts to requiring that rA = 0 and lB ≥ 0. In

A

lA sA rA = 0

B

lB > 0 sB rB

Figure 6: Internal synchronization constraints

that case, the value of s in the first encoding just equals the value of lB in the
second encoding. Even better, in that encoding, the left offset lA of A (resp.
the right offset rB of B) remains unconstrained. It follows that both offsets
can be used later for further internalized synchronization specifications of the
resulting tiled signal A; B with additional tiled signals, be them on the left or
on the right.

In other words, with the increase of compositionality provided by the tiled
signal approach, we still preserves the possibility of qualitative abstract reason-
ing on relative positioning.

2.5 The induced synchronization algebra

It occurs that the synchronization product A; B defined above over tiled signals
is an associative operation over tiled signals. The resulting algebraic structure
is thus a semigroup. Aiming at defining interactive signal handling, with signals
that are dynamically received, processed or synthesized, this is a much welcome
property.

From a programing paradigm point of view, the synchronized product A; B

of two tiled signals A and B can be understood in two ways:

• at the abstract event-based layer : A; B means that “event” A is followed
by “event” B,

• at the concrete synchronous layer: A; B means that “signal” A is synchro-
nized with “signal” B with possible overlaps.

In other words, depending on the chosen time scale, every tiled signal can be seen
both as an asynchronous event (on the logical time scale) or as a synchronous
signal (on the synchronous realtime scale). In other words, the tiled signal
approach is multi-scale.

The resulting algebra is described further in [5]. It is shown, in particular,
that additional left and right RESYNC operators can be derived from the struc-
ture of tiled signals. They are depicted in Figure 7. Together with sequential

9

L(A)

A

R(A)

Figure 7: Left and right RESYNC operators

product, these resets operators considerably increase the expressive power of
tiled signal expressions.

Indeed, one can define FORK(A, B) = L(A); B with a synchronization of
A and B at the beginning of their synchronization windows. On can also define
JOIN(A, B) = A; R(B) with a synchronization at the end of their synchroniza-
tion windows. This situation is depicted in Figure 8.

L(A)
B

A
R(B)

Figure 8: The FORK and JOIN derived operators

In other words, handling multi-channel signals that can seen both at the
synchronous scale and at the event-based scale, our proposal thus provides de-
scriptions of musical object in the three dimensional space (T)× (P)× (A). The
way the interaction dimension (I) is handled and experimented is the purpose
of the remaining sections.

Remark. In the T-calculus presented in [12], the synchronization algebra
is extended further with additional typed operators that can be applied to the
synchronized product of tiles. Additional and rather subtle signal processing
operators can then be derived.

3 Implementing the algebra

In this section, we describe the software components of the libTuiles library. In
particular, we present the libTuiles API, the synchronous sound engine that is
controlled by the asynchronous execution of the tuile, and an object-oriented
architecture dedicated to messaging between musical threads.

10

3.1 LibTuiles: building and playing trees of tiles

LibTuiles is a C++ software library that allows for the creation and the execu-
tion of trees of synchronized tiles. In these trees, each tile is given an unsigned
integer as unique identifier. The following methods of the class TuileManager
are used to build and play the tiles.

addLeaf(const float& d, unsigned int& id) creates a new leaf tile with an
initial length set to d and assigns its identifier to the id variable.

addLoop(const unsigned int& idChild, unsigned int& loopID) creates
a new tile by applying the LOOP operator to the tile with the idChild identifier
and assign the new identifier to the loopID variable.

addSeq(const unsigned int& idChild1, const unsigned int& idChild2,
unsigned int& opID), addFork(. . .) and addJoin(. . .) create a tile by
applying respectively the SEQ, FORK and JOIN operators to the tiles with the
identifiers idChild1 and idChild2. The id of the resulting tile is assigned to the
variable opID.

setTuileLength(const unsigned int& id, const float& l) applies the STRETCH
operator with value l to the tile identified by id.

setTuileLeftOffset(const unsigned int& id, const float& lo) applies the
RESYNC operator in order to set the left offset of the synchronization window
of the tile with the id identifier.

setTuileRightOffset(const unsigned int& id,const float& ro) applies the
RESYNC operator in order to set the right offset of the synchronization window
of the tile with the id identifier.

setBpm(const float& bpm) sets the tempo at which the tree is played.

setRoot(const unsigned int& id) sets the tile with identifier id as root of
the tree.

play() et stop() respectively starts and stops playing the tree.

removeTuile(const unsigned int& id) removes the tile with identifier id
from the tree.

clear() removes all the tiles from the tree.

Internally, the manipulation and execution of the tree are done in a separate
thread, in order to avoid slowing down when computations are done in the main
application thread, for example within a graphical interface. The inter-threads
communication mechanism is described in section 3.3.

When playing the tree, the temporal progression is computed in the root
tile and spreads down the tree. Each operator computes the progression of
its children based on the parameters of their synchronization and realization
intervals. The play position in each tile is computed at any time t. Therefore,
it is possible to know the absolute position of each tile within the tree. Because
the temporal progression is computed for each node of the tree relatively to its
parent node, it is also possible to dynamically modify the tree while playing it.

11

Activation and deactivation commands are sent from the playing thread
respectively when tiles enter and leave their realization intervals. Lengths com-
mands are also sent when STRETCH operators are applied or when the main
tempo is modified. Absolute position commands are also sent whenever the
tree is modified. Therefore, a synchronous audio synthesis/processing engine,
such as the one described in section 3.2, receives all the commands required to
temporally manage the processes associated to tiles.

Tiles properties can be accessed by calling the method getTuileProps(const
unsigned int& id) which returns a structure associated to the tile with the
identified id. This structure contains the various properties of the associated
tile such as the length of the realization interval, the left and right offsets of the
synchronization interval and the absolute position in the tree. This mechanisms
allows for example for the update of tiles representations in a graphical user
interface, as these properties may be impacted by manipulations of other tiles
of the tree.

3.2 A synchronous engine for temporal structuring of mu-

sical processes

LibTuiles is connected to a synchronous synthesis/ processing engine based on
the JACK sound server. This engine receives tiles activation/deactivation/length
commands sent by the libTuiles. It then correspondingly activates/deactivates
processes associated with the leaf tiles, these processes being nodes of an audio
rendering graph.

Mainly two types of processes are handled by this engine. Sound file pro-
cesses allow for the reading of sound files of any format handled by the libsndfile
library. They also handle time stretching in order to match the changes in tempo
and in tiles length without impacting the pitch of the sound, by relying on gran-
ular synthesis. At the initial speed, grains overlap by half and the position step
between two grains is equal to half a grain. When the length of a tile increases,
grain overlapping is increased and the step between grains is reduced and com-
bined with a random offset in order to avoid artificial frequencies created by the
proximity of grains. On the contrary, when the tile length decreases, the posi-
tion step is increased together with the overlapping between grains in order to
reduce amplitude variations between successive grains. This synthesis method,
despite its quality being lower than other common time stretching methods,
allows for both real-time stretching at a very low processing cost and also for
click-free repositioning in sound files.

Leaf tiles may also be associated with FAUST processes. Connexions can
then be made between processes or with the sound card inputs and outputs.
Processing is only done when the input process and FAUST process temporally
overlap, i.e. when the associated tiles are both active. Therefore the composition
and properties of tiles allow for a fine temporal adjustment of the audio rendering
graph.

12

3.3 Multi-scale object oriented system architecture

CommandsHandler

Emitter
Thread

Receiver
Thread

Command

clone

clone

clone

clone

<- RingBuffer

RingBuffer ->

pop
add

clean all commands

run all commands

Figure 9: Software architecture for passing commands between two threads at
different time scales.

One important aspect of the libTuiles architecture is the use of Commands,
as depicted on Figure 9. These software modules allow for efficient communi-
cation between the event-based scale, the asynchronous real-time scale and the
synchronous real-time scale, each of these scales being handled by a separate
thread. In particular, the synchronous real-time thread that renders the audio
signal does not tolerate interruptions that might be created by memory alloca-
tions and locking mechanisms. The proposed architecture relies on well-known
object-oriented design patterns among which are the Prototype, the Abstract
Factory and the Command. It also makes use of the ring buffer mechanism
provided by the JACK library.

An instance of the CommandsHandler class handles the creation and ma-
nipulation of instances of classes that inherit from the Command class as well
as their transmission from a sender thread to a receiver thread. This instance is
therefore shared between the twothreads. Mappings between commands names
and commands are first added to this class. For example the synchronous en-
gine CommandsHandler includes commands such as ActivateProcess and Deac-
tivateProcess. When a mapping is added, a prototype of the Command class
is created. This prototype creates and holds a list of pointers to clones. In
turn, each clone keeps a pointer to its prototype. For each message that needs
to be passed from one thread to the other, a command can be simply defined
by inheriting from the Command class and by redefining the run() method in
order to manipulate data structures handled by the receiver thread, for example
activating / deactivating processes.

During runtime, the emitter thread gets a pointer to a clone of a specific

13

Command by calling the popCommand(commandName) method of the Com-
mandsHandler. The requested instance is then removed from the list of clones
in the Command prototype and can be tweaked with various parameters, in our
case the tile identifier, the new length of the tile and so on. As all clones are
generated beforehand, no memory allocation is done in this call. The pointer to
the clone is then given to the CommandsHandler and shared with the receiver
thread using a ring buffer, in order to avoid locking mechanisms.

The receiver thread periodically calls the runCommands() method of the
CommandsHandler. This method reads the Commands in the ring buffer, calls
their run() method and send them back to the emitter thread through a second
ring buffer. Finally, the emitter thread periodically calls the cleanCommands
of the CommandsHandler which reads pointers from the second ring buffer and
puts each clone back in the list of available clones of its prototype.

This object-oriented software architecture allows for passing commands be-
tween threads without memory allocation nor locking mechanisms. In addition,
only pointers are passed through the ring buffer thus minimizing the memory
consumption and transferring time. The Commands architecture is therefore
particularly efficient for applications mixing different time scales, especially if
these do not tolerate interruptions.

4 Interactive experiments

In this section we describe the interactive experiments conducted with the lib-
Tuiles. This is done via the SimpleTuilesLooper interface. Completing the text
given below, a presentation video of this interface is also provided1.

4.1 The SimpleTuilesLooper Interface with four leaf tiles

among witch are three sound file tiles and one FAUST

tile.

As depicted on Figure 10, SimpleTuilesLooper is an application that allows for
the experimentation of temporal composition of sound processes, relying on
libTuiles and on the synchronous engine described in the previous section.

This application sets a Loop tile as the root of a tiles tree, with a first leaf
as child. All the other tiles added in the application are synchronized with this
first leaf tile. Its synchronization interval, dynamically manipulable, defines
the synchronization interval of the loop and therefore the looped interval when
playing the tree. SimpleTuilesLooper allows one to create tiles associated with
sound files and FAUST dsp files and to combine these tiles in order to build
the tree using a drag and drop metaphor. These files are dragged from a file
browser and dropped onto the score. Either they are placed freely on the score
and internally composed using a fork operator with the root tile, or they are

1http://hitmuri.net/SimpleTuilesLooper

14

Figure 10: SimpleTuilesLooper allows for the temporal composition of sound
processes by relying on libTuiles.

placed in fork, seq or join composition with an existing tile and properly inserted
in the tiles tree.

The interface also allows for tweaking the FAUST effects parameters and
for defining the connections between processes. The tree can then be played
and dynamically modified by applying the RESYNC and STRETCH operators
directly on the graphical tiles.

4.2 Monitoring tiled inputs and conditional tiles

Interactive dynamic tree manipulations are made possible by the use of moni-
toring tiles. These tiles are attached to listener processes that receive flows of
audio samples or of MIDI or OpenSoundControl events and compares them with
a number of predefined conditions. When one of these conditions is matched, a
command can be sent to the TuilesManager to control either a monitor tile or
a switch tile.

The monitor tile allows for dynamic sequential composition of tiles. It is
similar to what can be done with trigger points in the i-score sequencer. When
activated, this tile waits for a trigger event (or for the end of its realization
interval). During that time, it does not play its child tile. When the event
arrives, the monitor tile sets the length of its synchronization interval so that
the end is at the current position, it then sequentially composes its child tile, and
plays it when the child enters its realization window. The monitor tile therefore
provides a way to adapt the progression in the composed tree to external events,
for example coming from a musician or from the conductor.

The switch tile only plays one of its children, set by a method or command,

15

and uses the synchronization interval of the chosen child. Therefore, this tile
allows for dynamic selection of a subtree among several subtrees, which is in-
teresting for example in the case of structured improvisation with conditional
branchings.

4.3 Loop tiles

Loop tiles are defined as infinite sequential compositions of children tiles with
themselves. However, these tiles do not only repeatedly play their child, and
therefore the associated subtree, within the synchronization interval. They also
allow for interesting overlapping effects as described in [5], when a RESYNC
operator is applied to the child of the loop tile. In the case of sound processes,
this overlapping results in multiple instances of the audio result being played at
the same time. It is therefore essential to provide a polyphony parameter for loop
tiles. Interestingly, this parameter somehow provides a control over the resulting
musical complexity. On the contrary to existing loop based formalisms such
as the hierarchical live-looping [4] and to looping implementations in popular
software instruments, here the looping mechanisms inherits from the properties
of the composition operation defined within the tiles model, allowing for rich
musical variations of simple patterns.

5 Conclusion

We described the implementation of an advanced synchronization algebra for
audio or musical patterns. This software library, called the libTuiles, allows for
the interactive creation, manipulation and execution of trees of tiled signals that
embed a synchronization mechanism. Furthermore, it offers new musical possi-
bilities, thanks to the underlying algebra, which can be experimented through
a dedicated graphical interface. One of the perspectives of this work is to adapt
the libTuiles so that it becomes the execution engine for the T-calculus [12] that
extends the synchronization algebra.

References

[1] J. Allen and G. Ferguson. Actions and events in interval temporal logic.
In Oliviero Stock, editor, Spatial and Temporal Reasoning, pages 205–245.
Springer Netherlands, 1997.

[2] A. Allombert, M. Desainte-Catherine, and G. Assayag. Iscore: a system
for writing interaction. In Third International Conference on Digital Inter-
active Media in Entertainment and Arts (DIMEA 2008), pages 360–367.
ACM, 2008.

[3] Antoine Allombert, Myriam Desainte-Catherine, and Mauricio Toro. Mod-
eling temporal constrains for a system of interactive score. In G. Assayag

16

and C. Truchet, editors, Constraint Programming in Music, chapter 1,
pages 1–23. Wiley, 2011.

[4] F. Berthaut, M. Desainte-Catherine, and M. Hachet. Drile : an immersive
environment for hierarchical live-looping. In Proceedings of New Interfaces
for Musical Expression (NIME10), pages 192–197, Sydney, Australia, 2010.

[5] F. Berthaut, D. Janin, and B. Martin. Advanced synchronization of audio
or symbolic musical patterns: an algebraic approach. International Journal
of Semantic Computing, 6(4):409–427, december 2012.

[6] Alessandro Cipriani and Maurizio Giri. Electronic Music and Sound Design
- Theory and Practice with Max/Msp. Contemponet, 2010.

[7] D. Fober, Y. Orlarey, and S. Letz. FAUST architectures design and OSC
support. In 14th Int. Conference on Digital Audio Effects (DAFx-11), pages
231–216. IRCAM, 2011.

[8] D. Janin. Quasi-recognizable vs MSO definable languages of one-
dimensional overlaping tiles. In Mathematical Foundations of computer
Science (MFCS), volume 7464 of LNCS, pages 516–528, 2012.

[9] D. Janin. Vers une modélisation combinatoire des structures rythmiques
simples de la musique. Revue Francophone d’Informatique Musicale
(RFIM), 2, 2012.

[10] D. Janin. Algebras, automata and logic for languages of labeled birooted
trees. In 40th International Colloquium on Automata, Languages and Pro-
gramming (ICALP), LNCS. Springer, 2013.

[11] D. Janin. Overlaping tile automata. In 8th International Computer Sci-
ence Symposium in Russia (CSR), volume 7913 of LNCS, pages 431–443.
Springer, 2013.

[12] D. Janin, F. Berthaut, M. DeSainte-Catherine, Y. Orlarey, and S. Salvati.
The T-calculus : towards a structured programming of (musical) time and
space. Technical Report RR-1466-13, LaBRI, Université de Bordeaux, 2013.

[13] M. V. Lawson. Inverse Semigroups : The theory of partial symmetries.
World Scientific, 1998.

[14] F. Lerdahl and R. Jackendoff. A generative theory of tonal music. MIT
Press series on cognitive theory and mental representation. MIT Press,
1983.

[15] P. Teehan, M. R. Greenstreet, and G. G. Lemieux. A survey and taxonomy
of GALS design styles. IEEE Design & Test of Computers, 24(5):418–428,
2007.

[16] S. Wilson. The SuperCollider Book. Cambridge: The MIT Press, 2011.

17

	1 Introduction
	1.1 Background
	1.2 Outline

	2 Modeling of musical processes
	2.1 The structure space of musical objects
	2.2 Time scale types
	2.3 From signals to tiled signals
	2.4 External vs internal time specifications
	2.5 The induced synchronization algebra

	3 Implementing the algebra
	3.1 LibTuiles: building and playing trees of tiles
	3.2 A synchronous engine for temporal structuring of musical processes
	3.3 Multi-scale object oriented system architecture

	4 Interactive experiments
	4.1 The SimpleTuilesLooper Interface with four leaf tiles among witch are three sound file tiles and one FAUST tile.
	4.2 Monitoring tiled inputs and conditional tiles
	4.3 Loop tiles

	5 Conclusion

