
HAL Id: hal-00813295
https://hal.science/hal-00813295v1

Submitted on 29 Jul 2019 (v1), last revised 30 Jul 2019 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From subsets of model elements to submodels
Bernard Carré, Gilles Vanwormhoudt, Olivier Caron

To cite this version:
Bernard Carré, Gilles Vanwormhoudt, Olivier Caron. From subsets of model elements to submodels:
A characterization of submodels and their properties. Software and Systems Modeling, 2015, 14 (2),
pp.861-887. �10.1007/s10270-013-0340-x�. �hal-00813295v1�

https://hal.science/hal-00813295v1
https://hal.archives-ouvertes.fr

Manuscript.

The final publication is available at Springer via:
http://dx.doi.org/10.1007/s10270-013-0340-x

To cite this paper:
B. Carré, G. Vanwormhoudt, and O. Caron. From sub-
sets of model elements to submodels, a characterization
of submodels and their properties. Software and Systems
Modeling, 14:861–887, Springer, May 2015.

http://dx.doi.org/10.1007/s10270-013-0340-x

Software and Systems Modeling manuscript No.
(will be inserted by the editor)

From Subsets of Model Elements to Submodels

A Characterization of Submodels and their Properties

Bernard Carré1, Gilles Vanwormhoudt1,2, Olivier Caron1

1 LIFL, UMR CNRS 8022
University of Lille
France - 59655 Villeneuve d’Ascq cedex
e-mail: {Bernard.Carre, Gilles.Vanwormhoudt, Olivier.Caron}@lifl.fr

2 Institut TELECOM

The date of receipt and acceptance will be inserted by the editor

Abstract Model-Driven Engineering (MDE) general-
ized the status of models from documentation or MDA
(Model Driven Architecture) modeling steps to full arti-
facts, members of a so-called structured “model space”.
We concentrate here on the submodel relationship which
contributes a lot to this structuring effort. Many works
and MDE practices resort to this notion and call for its
precise characterization, which is the intent of this pa-
per. A typical situation is model management through
repositories. We start from the definition of a model as
a set of model elements plus a set of dependency con-
straints that it asserts over these elements. This allows
to isolate the notions of closed, covariant and invariant
submodels. As a major result, we show that submodel
transitivity can be guaranteed thanks to submodel in-
variance. This formalization offers keys to analyze op-
erations which manipulate submodels. For example, we
deeply study the operator which consists in extracting
a model from another one, when selecting some sub-
set of its elements. The same can be applied to many
other model operations and the last part of the paper
is dedicated to a synthesis on related works which could
profit from this characterization. More practically, we
show how the results were exploited in our Eclipse mod-
eling environment.

Key words Submodel – Set-Theoretic Formalization
– Model Extraction – Model Composition

1 Introduction

Model-Driven Engineering (MDE) generalized the status
of models from documentation or MDA (Model Driven
Architecture [1]) modeling steps to full first-class soft-
ware objects, members of a so-called multi-dimensionnal

“model space” [27]. This space is gradually gaining its
own structure, thanks to proper internal relationships
with their properties and rules, allowing rich composi-
tion and transformation operations. We concentrate here
on the submodel relationship which contributes a lot to
this structuring effort. Many works and MDE practices
call for some submodel notion, for example:

– Incremental model construction (or editing) processes
which gradually build and transform intermediate
submodels up to the final required one [3,15].

– Model composition, through model assembly [16,14],
AOM (Aspect Oriented Modeling) [6,38,50] or Tem-
plate application [13,36], use model components as
contributing submodels in the construction of the re-
quired model.

– Model querying, extraction and slicing [35,26,32] al-
low to present submodels of an overall model as sim-
plified, more comprehensive and checkable model parts,
when selecting model elements.

All these practices call for precise definition and prop-
erties of the submodel notion. Recurring questions are:

– How far a subset of model elements of some model
m can form a submodel of m?

– What about the submodel relationship transitivity?
The quest for transitivity is important because it
guarantees qualities such as locality and modularity
to the model space and its processing.

– Given a model m, how to produce a consistent sub-
model from the selection of any subset of its model
elements? In the same vein, what about the transi-
tivity, so the qualities, of this operation?

It is worth noting that, in most situations, submodels
may range from full entire models to unspecified model
parts, that is models which do not respect exactly the
structure imposed by their metamodel. Figure 1 depicts
a typical example of such “degenerated” models. Con-
sider the model inter which is the common part of m

From Subsets of Model Elements to Submodels 3

∩

m'

A

B

D

=

inter

A

B

m''

A

B

X

-

inter

A

B

delta

=

m

A

B

C

Y

X

Y

Fig. 1 Intersection and difference of models

and m′. This model could have been used in the con-
struction of other models and model differencing allows
to retrieve model fragments that were added. This pro-
cess may produce models with “dangling edges” such as
delta in the figure, when applied to m′′. Model differenc-
ing is currently used in model versioning [3,48], collabo-
rative design [46] and more generally model management
[35].

It is the intent of this paper to offer an algebraic
tool which helps in a better understanding and control
of the submodel notion. It allows to cover and compare
all the forms of submodels, being well-formed or not, in
an homogeneous and consistent way. Before its formu-
lation, we sketch in Section 2 a typical and motivating
situation which does call for such submodels and their
relationships, namely model management as offered by
repositories [8,19,34].

Then the formalism is presented. As a starting point
(Section 3), models are defined as sets of model elements
plus the dependencies constraints that they assert over
these elements, reflecting their proper structure. This
formulation is simple but powerful enough to define mod-
els and submodels, being well-formed or not, and char-
acterize their inclusion properties (Section 4). We isolate
the concepts of covariant and invariant submodels, de-
pending on the variation of the submodel structuring
constraints compared to the overall ones. As a major re-
sult, submodel transitivity can be guaranteed thanks to
submodel invariance.

This formalism offers keys to analyze MDE practices
and operations which manipulate submodels. As an ex-
ample, we present in Section 5 its application to the for-
malization of “model extraction”. This operation is cur-
rently used in MDE practices and consists in extracting
a submodel from another one when selecting a subset of
its model elements. Thanks to the formalism, properties
of this operation are systematically examined. This al-
lows to precisely position the produced models as qual-
ified submodels compared to the overall models under
consideration.

At a much more practical level, Section 6 presents
a concrete application which directly profits of the re-
sults. It is an Eclipse submodel engine that we use in
our modeling environment in order to manage models
and submodels issued from heterogeneous metamodels.
The engine provides a set of core services which facili-
tate operations that manipulate submodels such as rich
content-driven model querying, browsing, visualization
in the large or model completion. The engine is exten-
sible thanks to plugin-based style promoted by Eclipse.
Adapters were developed for EMOF, UML Class and
UML Collaboration diagrams. But it can easily support
any other kind of model. The only thing to do is to write
and plug the corresponding adapter, with respect to the
framework requirements.

Finally (Section 7), related works are presented. Other
works on the submodel notion are compared and related
applications are examined, before concluding (Section
8).

2 Motivation

A typical situation where submodels are widely used is
model management as offered by model repositories [8,
19,34]. Rationale of model repositories is to facilitate the
storing of modeling design efforts and then their reuse.
Indeed, creating models from scratch requires important
design efforts. To be more effective, it is therefore more
desirable to construct new models from existing ones.
Intents of model repositories are mainly of two kinds:

1. Model capitalization and the constitution of “off-the-
shelf ” reusable models and model libraries [16,36,7].

2. Storing any modeling design effort. This facilitates
incremental design, versioning, model sharing within
design teams and finally traceability [35,3,46,48].

Intents of kind 1 call for entire model composition
modes as those depicted by standard UML dependency
relationships such as:

– import : which allows to use and refer to modeling
elements of another model in the general case

– merge: whose intent is more accurately dedicated to
model generalization/specialization

– bind : relates a model to “model templates” that were
used in its construction.

These dependencies relate full well-formed models (with
respect to their metamodel) to each other and trace how
they compose in some way.

But model repositories allow to capitalize and reuse
much more fine grained forms of modeling design efforts,
following intents of kind 2. This calls for the management
of not only full well-formed models but also unspecified
model fragments. Samples are:

– simple (unstructured) sets of model ingredients

4 Bernard Carré et al.

add

select

∪

Repository population

diff

Repository querying

organize
Repository

extract

∩

Fig. 2 Repository Population and Querying

– “model deltas” due to incremental design and ver-
sioning

– results of operations such as intersection, difference
of models (Figure 1) and more primitively model el-
ement deleting

– more generally any intermediate model, being well-
formed or not, envisaged in the project.

It is worth noting that such kinds of artifacts are fre-
quently not well-formed, i.e they do not respect their
metamodeling constraints, such as cardinalities or con-
tainment hierarchy ones. In particular this requires the
handling of models with “dangling edges” [46], for ex-
ample “delta” in Figure 1, which is the result of model
difference. This operation is very similar to graph dif-
ferencing and makes the representation of such models
with graphs difficult, as identified in [33,48].

Model repositories have to mix and compare all these
forms of models in their operation (Figure 2). Reposito-
ries must allow to register and classify model artifacts re-
sulting from any design effort through population prim-
itives and offer reusing facilities through rich querying
operations such as:

– Retrieve ressources that include a specific set of model
ingredients.

– Extract the (partial) model formed by some subset
of its elements.

– Given a model m, possibly partial, retrieve models
whose m is a (contributing) submodel.

– Conversely, retrieve registered model parts (contri-
butions) of a given model.

– Organize the results thanks to inclusion properties.
– ...

All these model management operations lead to model
spaces which call for systematic structuring through com-
parison of all the involved artifacts. The following offers a
formalism for submodels and their corresponding inclu-
sion properties which allows to understand and control
underlying phenomena, illustrated by this typical situa-
tion.

3 Models

In the present formalization, a model is regarded as a
set of model elements plus the dependency constraints
that it asserts over these elements. We will see in the
following sections that, for a subset of model elements of
a model m to be considered as a submodel of m, it must
respect these constraints. Before that, let us introduce
this definition of a model and give a running example.

Notation Let ModelElements being the set of all model
elements of the modeling space under consid-
eration. For any model m, we will note m̃ the
set of its model elements, so that:
m̃ ⊆ModelElements.

Definition 1 (Model)
A model is defined as a couple m = (m̃,vm) such as:

– m̃ ⊆ModelElements is the set of model elements of
m

– vm: m̃× m̃ is a partial ordering relationship, local to
m̃, which translates the dependency constraints as-
serted by m on its model elements.

Thanks to MDE technology, a modeling space can
easily be determined by its metamodel which states the

From Subsets of Model Elements to Submodels 5

ClassMetamodel

name : String
Model

Association

Class

*

*
classes

associations

1

Feature

1..*

types

features
*

first second

1

Fig. 3 Simplified Class Metamodel

sets of model elements (ModelElements) and possible de-
pendency constraints which can apply upon these ele-
ments. Take UML:

– When considering its whole modeling space, Mod-
elElements would be the extension of the primitive
Element root metaclass, and possible constraints would
be determined by its overall metamodel.

– When considering particular diagrams such as Class
or Sequence or any other ones, the sets of possibly en-
gaged model elements (ModelElements) and depen-
dencies will be delimited by the specific view (part)
of the overall metamodel.

Consider the simplified Class Metamodel in Figure
3: ModelElements = C ∪ F ∪ A where C, F , A corre-
spond respectively to the sets of all Classes1, Features
(attributes or operations) and Associations. Then, for
any model m = (m̃,vm) such as m̃ ⊆ ModelElements,
possible dependency constraints are:

– Feature f ∈ m̃∩F is a constituent of class c ∈ m̃∩C,
noted f vm c (see the features association between
Class and Feature in the figure).

– Feature f ∈ m̃ ∩ F (attribute or operation) depends
on type t ∈ m̃ ∩ C, noted f vm t (see the types
association between Feature and Class).

– Association a ∈ m̃ ∩ A relates to some end (first or
second in the figure) c ∈ m̃ ∩ C, noted a vm c.

Finally, vm being a preorder, it is reflective so that we
must have2: ∀x ∈ m̃, x vm x.

For example, the model HeatingSystem in Figure 4,
which will be used as a running example throughout the
paper, can be represented as

HeatingSystem = (˜HeatingSystem,v
HeatingSystem

)
where:

1 To simplify, primitive data types are considered as classes,
their typing function being approximated by the association
between Feature and Class, under the types role. This has no
consequence in this paper.

2 For the sake of simplicity, these systematic reflective con-
straints will not be listed in the examples.

HeatingSystem

on()
off()

temperature : float
Boiler

up()
down()
link(Boiler)

position: int
Radiator

*

setExpectedT(float)
regulate()

expectedT : float
Regulator

pipes

*

controls

getT() : float
connect(Regulator)
notify()

ambientT : float
Sensor

*sensitives

1

1

1

Fig. 4 Heating System

– ˜HeatingSystem ={Boiler, temperature, float, on, off,
pipes, Radiator, position, int, up, down, link, con-
trols, Regulator, expectedT, setExpectedT, regulate,
sensitives, Sensor, ambientT, getT, connect, notify}

– vHeatingSystem:

– temperature vHeatingSystem float
– temperature vHeatingSystem Boiler
– on vHeatingSystem Boiler
– off vHeatingSystem Boiler
– pipes vHeatingSystem Boiler
– pipes vHeatingSystem Radiator
– position vHeatingSystem int
– position vHeatingSystem Radiator
– up vHeatingSystem Radiator
– down vHeatingSystem Radiator
– link vHeatingSystem Boiler
– link vHeatingSystem Radiator
– controls vHeatingSystem Radiator
– controls vHeatingSystem Regulator
– expectedT vHeatingSystem float
– expectedT vHeatingSystem Regulator
– setExpectedT vHeatingSystem float
– setExpectedT vHeatingSystem Regulator
– regulate vHeatingSystem Regulator
– sensitives vHeatingSystem Regulator
– sensitives vHeatingSystem Sensor
– ambientT vHeatingSystem float
– ambientT vHeatingSystem Sensor
– getT vHeatingSystem float
– getT vHeatingSystem Sensor
– connect vHeatingSystem Regulator
– connect vHeatingSystem Sensor
– notify vHeatingSystem Sensor

It is important to note that the model definition is
general enough to represent full models, such as the pre-
ceding one, but also any partial ones as far as a set of
model elements and a set of dependency constraints over
these elements are provided.

6 Bernard Carré et al.

m2

Boiler
temperature : float

Radiator

HeatingSubCircuit

on()
off()

temperature : float
Boiler

up()
down()
link(Boiler)

position: int
Radiator

*pipes1

m1

Boiler

Radiator

*pipes

Regulator

controls

*

sensitives *

Sensor

1

m3

Boiler

Radiator

*pipes

Regulator
connect(?)

Sensor

sensitives *
?

controls

*
1

1

1

1 1

Fig. 5 Four Partial Models of the Metamodel of Figure 3

Figure 5 shows samples of partial models, which in-
tuitively raise the issues. Model HeatingSubCircuit can

be defined as (˜HeatingSubCircuit,vHeatingSubCircuit):

– ˜HeatingSubCircuit ={temperature, float, Boiler, on,
off, pipes, Radiator, position, int, up, down, link}

– vHeatingSubCircuit:
– temperature vHeatingSubCircuit float
– temperature vHeatingSubCircuit Boiler
– on vHeatingSubCircuit Boiler
– off vHeatingSubCircuit Boiler
– pipes vHeatingSubCircuit Boiler
– pipes vHeatingSubCircuit Radiator
– position vHeatingSubCircuit int
– position vHeatingSubCircuit Radiator
– up vHeatingSubCircuit Radiator
– down vHeatingSubCircuit Radiator
– link vHeatingSubCircuit Boiler
– link vHeatingSubCircuit Radiator

This model appears to be a full well-formed submodel
of the overall HeatingSystem model. The same applies

to the model m1 which is unaware of classes constituent
details but concentrates on their relationships. Model
m1 is defined as:

– m̃1 ={Boiler, Radiator, pipes, Regulator, controls,
Sensor, sensitives}

– vm1:
– pipes vm1 Boiler
– pipes vm1 Radiator
– controls vm1 Radiator
– controls vm1 Regulator
– sensitives vm1 Regulator
– sensitives vm1 Sensor

Models m2 and m3 are samples of incompletely spec-
ified ones due, for example, to intermediate models en-
visaged in the construction of the Heating System, or to
the selection of some part of its resulting model:

– m2 = (m̃2,vm2)

– m̃2 ={temperature, float, Boiler, Radiator}
– vm2:
• temperature vm2 float

– m3 = (m̃3,vm3)

– m̃3 ={Boiler, Radiator, pipes, Regulator, controls,
Sensor, sensitives, connect}

– vm3:
• pipes vm3 Boiler
• pipes vm3 Radiator
• controls vm3 Radiator
• controls vm3 Regulator
• sensitives vm3 Sensor
• connect vm3 Sensor

4 Submodels and their properties

Based on the preceding model definition, this section
presents the concepts of closed, covariant and invariant
submodels. These nested concepts allow to precisely qual-
ify the inclusion relationships that may apply between
two models and progressively obtain submodel transi-
tivity. As a starting point the notion of closed submodel
focusses on the sets of model elements. The notion is not
transitive but an intermediate property (“Bound Clo-
sure”), with interesting qualities, can be stated. Then,
the notions of covariant and invariant submodels allow
to compare models depending on the variation of their
dependencies constraints. It will be shown that the tran-
sitivity of the submodel notion can be guaranteed thanks
to invariance.

4.1 Closed Submodel of a Model

Definition 2 (Closed Subset of a Model)
Let m = (m̃,vm) a model, s ⊆ModelElements a set of
model elements, we will say that s is closed in m iff:

1. s ⊆ m̃

From Subsets of Model Elements to Submodels 7

2. s is transitively closed by the vm relationship, that
is: closurevm(s) = s

Where closurevm
(s) = {x ∈ m̃ | ∃y ∈ s, y v∗m x},

that is the set of model elements of m whose elements
of s transitively depend, with respect to the dependency
constraints asserted by m.

And, by extension:

Definition 3 (Closed Submodel of a Model)
We will say that a model m = (m̃,vm) is a closed sub-

model of a model m′ = (m̃′,vm′) (or simply m is closed
in m′), iff

– m̃ ⊆ m̃′

– m̃ is closed in m′, that is: closurevm′ (m̃) = m̃

For example, consider Figure 6 which shows possible
parts of the HeatingSystem model. Following are their
formulation as m = (m̃,vm):

– m0 = (m̃0,vm0)

– m̃0 ={temperature, float}=s
– vm0:
• temperature vm0 float

– m1 = (m̃1,vm1)

– m̃1 ={temperature, float, Boiler, on, off, Radia-
tor, up, down}

– vm1:
• temperature vm1 float
• on vm1 Boiler
• off vm1 Boiler
• up vm1 Radiator
• down vm1 Radiator

We have:

– m0 (or s) is closed in m1
– m1 is closed in HeatingSubCircuit and HeatingSys-

tem:

m1

m0

s = {temperature, float} temperature : float

HeatingSubCircuit

on()
off()

temperature : float
Boiler

up()
down()
link(Boiler)

position: int
Radiator

*pipes

on()
off()

Boiler

temperature : float
up()
down()

Radiator

1

Fig. 6 Closed/Not Closed Submodels

– HeatingSubCircuit is closed in HeatingSystem

But m0 is not closed in HeatingSubCircuit (nor
HeatingSystem) due to the dependency between tempe-
rature and Boiler in this model:
closurevHeatingSubCircuit

({temperature, float})
= {temperature, float,Boiler} 6= m̃0.

As expected, closure is not transitive: m0 is closed in
m1, m1 is closed in HeatingSubCircuit, but m0 is not
closed in HeatingSubCircuit. Though, a weaker prop-
erty can be demonstrated:

Property 1 (Bound Closure)

Let two models m = (m̃,vm), m′ = (m̃′,vm′) and a
subset s ⊆ m̃,
s is closed in m and m is closed in m′

⇒ closurevm′ (s) ⊆ m̃

Proof (by contradiction) :

closurevm′ (s) ⊆ m̃ iff: ∀x ∈ s, 6 ∃y ∈ m̃′ \ m̃, x vm′ y.

Suppose: ∃y ∈ m̃′ \ m̃, x vm′ y (y /∈ m̃)
x ∈ s, s ⊆ m̃⇒ x ∈ m̃
x vm′ y ⇒ y ∈ closurevm′ (m̃)
but m is closed in m′ ⇒ closurevm′ (m̃) = m̃
so the contradiction:y ∈ m̃. ut

This property is a step towards submodel transitivity
as we will see later. But far beyond this step, it must be
noted at this stage that this property is interesting on
its own. Indeed it characterizes locality and modularity
qualities of the notion of closed submodels. The following
situations exhibit this.

See Figure 7 and the overall model m′. Then con-
sider any submodel of m′ such as m whose set of model
elements is closed in m′. As a consequence m appears to
be a limit for the closure in m′ of any of its subsets such
as s.

For example (Figure 6), HeatingSubCircuit, which
is closed in HeatingSystem, determines a limit for the
closure in this overall model of any of its subsets of model
elements such as:

– m̃1 which is closed in it
– but also m̃0 which is not, although

closurevHeatingSystem
(m̃0) is bound by

HeatingSubCircuit:
closurevHeatingSystem

(m̃0)
= closurevHeatingSystem

({temperature, float})
= {temperature, float,Boiler}
⊆ ˜HeatingSubCircuit.

This is not true when m is not closed in m′ as de-
picted in Figure 8. Since m is not closed in m′, the closure
in m′ of any of its subsets, let s, cannot be bound by m.
Indeed the closure of s in m′ may expand from s up to
closurevm′ (m̃), this is trivial.

For example, consider the situation shown in Figure
9:

8 Bernard Carré et al.

m'

m

s

closure
⊑m'

(s)

Fig. 7 Bound Closed Subset

m'

s

m

closure
⊑m'

(s)

closure
⊑m'

(m)~

Fig. 8 Unbound Subsets

m2

m1

m0

s = {temperature, float} temperature : float

temperature : float up()
down()

Radiator

*pipes1temperature : float
up()
down()

Radiator

Fig. 9 Unbound Subsets Example

– m0 = (m̃0,vm0)

– m̃0 =s={temperature, float}
– vm0:
• temperature vm0 float

– m1 = (m̃1,vm1)

– m̃1 ={temperature, float, Radiator, up, down}
– vm1:
• temperature vm1 float
• up vm1 Radiator
• down vm1 Radiator

– m2 = (m̃2,vm2)

– m̃2 ={temperature, float, pipes, Radiator, up, down}
– vm2:
• temperature vm2 float
• pipes vm2 Radiator
• up vm2 Radiator
• down vm2 Radiator

We have:

– s = m̃0 closed in m1 and m2
– m1 closed in m2

But m2 is not closed in HeatingSystem (nor
HeatingSubCircuit):

closurevHeatingSystem
(m̃2)

= closurevHeatingSystem
({temperature, float, pipes,

Radiator, up, down})
= {temperature, float, pipes,Radiator, up, down,Boiler}
6= m̃2.

So that m2 does not determine a limit for the closure
in HeatingSystem of its subsets m̃0 and m̃1, indeed:

– closurevHeatingSystem(m̃0)

= {temperature, float,Boiler} * m̃2

– closurevHeatingSystem
(m̃1)

= {temperature, float,Radiator, up, down,Boiler}
* m̃2.

On the contrary, as shown above, HeatingSubCircuit
remains a limit for the closure in HeatingSystem of
these new subset examples m̃1 and m̃2.

4.2 Covariant Submodels

The notion of closed submodels focused on the complete-
ness (the closure) of their sets of model elements rela-
tively to any overall model. Though it only permits to
test whether any model m can be considered as a sub-
model of surrounding ones, based on its set of model
elements dimension. The modeling structure of m and
the question of its conformance with the overall model’s
one are not taken into account. It is the intent of the
present section, which introduces the notion of covariant
submodels and the following one on invariant submodels,
to characterize this phenomenon.

Let a model m = (m̃,vm). Following the closed sub-
model notion, any subset of model elements of m̃ associ-
ated to some combination of the structuring constraints

From Subsets of Model Elements to Submodels 9

imposed by their metamodel can be considered as a sub-
model of m.

For example, consider Figure 10 which adds to Figure
6 the models m2 and m2′ as alternative extensions of m1:

– m2 = (m̃2,vm2)

– m̃2 ={Boiler, temperature, float, on, off, Radia-
tor, up, down}

– vm2:
• temperature vm2 float
• temperature vm2 Boiler
• on vm2 Boiler
• off vm2 Boiler
• up vm2 Radiator
• down vm2 Radiator

– m2′ = (m̃2′,vm2′)

– m̃2′ ={Boiler, temperature, float, on, off, Radia-
tor, up, down}

– vm2′ :
• temperature vm2′ float
• temperature vm2′ Radiator
• on vm2′ Boiler
• off vm2′ Boiler
• up vm2′ Radiator
• down vm2′ Radiator

Note that m2 and m2′ have the same set of model
elements (m̃2 = m̃2′). The only difference is the attribu-
tion of temperature either to Boiler or Radiator in the
respective dependency constraints of m2 and m2′. Both
submodels are closed in the HeatingSubCircuit model.
But m2 conforms to this model, contrary to m2′, which
attributes temperature to Radiator rather than Boiler,
as specified in HeatingSubCircuit.

This leads to take into account the dependency con-
straints of the candidate submodels in order to test whether
they also respect the modeling structure of the overall
model under consideration. So the following concept of
covariant submodel.

Definition 4 (Covariant Submodel)

Let m = (m̃,vm) and m′ = (m̃′,vm′) two models, we
say that m is a covariant submodel of m′ (or more simply
m is covariant in m′) iff:

– m is closed in m′

– and the dependency constraints of m are covariant
with the m′ ones, that is: ∀x, y ∈ m̃, x vm y ⇒ x vm′

y.

An equivalent formulation can be done using the
graph of the relation vm. For any model m = (m̃,vm),
let us note Gr(m) this graph: Gr(m) = {(x, y) | x, y ∈
m̃, x vm y}. Then the other formulation:

Definition 5 (equivalent to Definition 4)

Let m = (m̃,vm) and m′ = (m̃′,vm′) two models, we
say that m is a covariant submodel of m′ (or more simply
m is covariant in m′) iff:

– m is closed in m′

– and the dependency constraints of m are covariant
with the m′ ones, that is: Gr(m) ⊆ Gr(m′)

Figure 11 summarizes the closed and covariant rela-
tionships that apply to the models of Figure 10:

– m0 is a covariant submodel of m1, but m1 is not
covariant in m0: m̃1 * m̃0.

– m1 is a covariant submodel of m2, but m2 is not
covariant in m1. Indeed, m2 is closed in m1 but
Gr(m2) * Gr(m1):
– Gr(m1) ={(temperature,float), (on,Boiler),

(off,Boiler), (up,Radiator), (down,Radiator)}
– Gr(m2) ={(temperature,float), (on,Boiler),

(off,Boiler), (up,Radiator), (down,Radiator),
(temperature,Boiler)}

– (temperature,Boiler) /∈ Gr(m1).
– m1 is a covariant submodel of m2′, but m2′ is not

covariant in m1 for the same reason.
– m2 and m2′ are mutually closed (more, m̃2 = m̃2′)

but not covariant in each other, because of their struc-
turing constraints:
– Gr(m2′) ={(temperature,float), (on,Boiler),

(off,Boiler), (up,Radiator), (down,Radiator),
(temperature,Radiator)}

– Gr(m2) * Gr(m2′)
((temperature,Boiler) /∈ Gr(m2′))
and Gr(m2′) * Gr(m2)
((temperature,Radiator) /∈ Gr(m2)).

– m2 and m2′ are closed in HeatingSubCircuit but
m2 is also covariant in HeatingSubCircuit contrary
to m2′, Gr(m2′) * Gr(HeatingSubCircuit):
(temperature,Radiator) ∈ Gr(m2′) but
(temperature,Radiator) /∈ Gr(HeatingSubCircuit).

– and finally m1 is covariant in HeatingSubCircuit
contrary to m0 which is not closed in this model,
though Gr(m0) ⊆ Gr(HeatingSubCircuit).

Note that the latter case (m0 covariant in m1, m1 co-
variant in HeatingSubCircuit, but m0 not covariant in
HeatingSubCircuit) is a counter-example which proves,
as expected, that submodel covariance is not transitive
due to closure non-transitivity.

4.3 Invariant Submodels

The notion of invariant submodel is the cornerstone of
this paper which will allow submodel transitivity. Let us
introduce the problem intuitively. Thanks to the notions
of closed and covariant submodels, it was possible to test
whether models were included in an overall one in some
way. The point is that some of these submodels appear to
be “stable”, when considering their structure, relatively
to the overall model contrary to other ones.

For example, consider Figure 11 again. Models m1
and m2 have the same subset of model elements of Heating-
SubCircuit and are covariant in this model. Though, one

10 Bernard Carré et al.

m2

m0

s = {temperature, float} temperature : float

HeatingSubCircuit

on()
off()

temperature : float
Boiler

up()
down()
link(Boiler)

position: int
Radiator

*pipes

on()
off()

temperature : float
Boiler

up()
down()

Radiator

1

m2'

on()
off()

Boiler

up()
down()

temperature : float
Radiator

m1

on()
off()

Boiler

temperature : float
up()
down()

Radiator

Fig. 10 Covariant/Not Covariant Submodels

m2

m0

temperature : float

HeatingSubCircuit

on()
off()

temperature : float
Boiler

up()
down()
link(Boiler)

position: int
Radiator

*pipes

on()
off()

temperature : float
Boiler

up()
down()

Radiator

1

m2'

on()
off()

Boiler

up()
down()

temperature : float
Radiator

m1

on()
off()

Boiler

temperature : float
up()
down()

Radiator

covariant closed, not covariant

covariant covariant

covariantnot closed

not closed

not closed
covariant

not covariant

closed

Fig. 11 Closed/Not Closed, Covariant/Not Covariant Submodels

From Subsets of Model Elements to Submodels 11

can see that the structure of m2 is stable in HeatingSub-
Circuit contrary to that of m1. Indeed the structur-
ing constraints imposed by m2 on this common sub-
set of model elements is the same in HeatingSubCircuit
whereas those of m1 were under-specified.

The notion of invariant submodel captures this situ-
ation and characterizes the phenomenon.

Definition 6 (Invariant Submodel)

Let: m = (m̃,vm) and m′ = (m̃′,vm′) two models, we
say that m is an invariant submodel of m′ (or more sim-
ply m is invariant in m′) iff:

– m is closed in m′

– and the dependency constraints of m are invariant
with the m′ ones, that is: ∀x, y ∈ m̃, x vm′ y ⇔
x vm y

Similarly to covariant submodels, an equivalent defi-
nition can be done using the notion of graph of the rela-
tion vm, with the following notation.

Notation Let a model m = (m̃,vm), for any subset s
of its model elements (s ⊆ m̃), we will note
Gr(m)/s the restriction of Gr(m) to s, that
is: Gr(m)/s = {(x, y) | x, y ∈ s, x vm y}

Then the other definition of Invariant Submodel :

Definition 7 (equivalent to Definition 6)

Let m = (m̃,vm) and m′ = (m̃′,vm′) two models, we
say that m is an invariant submodel of m′ (or more sim-
ply m is invariant in m′) iff:

– m is closed in m′

– and the dependency constraints of m are invariant
with the m′ ones, that is: Gr(m′)/m̃ = Gr(m)

For example, Figure 12 is an extension of Figure 11
by taking into account the notion of Invariant Submodel.
We have:

– m2 is invariant in HeatingSubCircuit
– contrary to m1: the constraint temperature vm1 Boiler

does not exist in m1.

Note also that:

– m0 is not invariant in HeatingSubCircuit: m0 is not
closed in this model (Boiler is missing) so that the
constraint temperature vm0 Boiler should not ap-
ply.

– m2′ is not invariant in HeatingSubCircuit: the con-
straint temperature vHeatingSubCircuit Boiler was
“replaced” by temperature vm2′ Radiator, that is
why m2′ was not covariant in this model:
Gr(HeatingSubCircuit)/m̃2′ ={(temperature,float),
(on,Boiler), (off,Boiler), (up,Radiator),
(down,Radiator), (temperature,Boiler)}
6= Gr(m2′)

Note that submodel invariance implies submodel co-
variance, which is trivial.

Property 2 Let two models m and m′,
m is invariant in m′ ⇒ m is covariant in m′

Proof For m to be covariant in m′:

– m must be closed in m′, that is guaranteed by defi-
nition

– and the dependency constraints of m must be covari-
ant with the ones of m′, indeed:
Gr(m′)/m̃ = Gr(m)
⇒ Gr(m) ⊆ Gr(m′)/m̃ ⊆ Gr(m′) ut
Preceding model m2 is an example, m0 and m2′ are

counter-examples:

– m2 is invariant so covariant in HeatingSubCircuit.
– m0 which is not closed in HeatingSubCircuit cannot

be covariant nor invariant (a fortiori) in this model.
– m2′ is not invariant in HeatingSubCircuit because

it is not covariant (though closed) in this model.

More generally, models which are not covariant (even
more, not closed) in another one have no chance to be
invariant in it.

But this time, submodel transitivity is found, thanks
to the invariance of the dependency constraints. Before
the demonstration, take a few intuitive examples to be
convinced (see Figure 12):

– m2 is invariant in HeatingSubCircuit which itself is
invariant in HeatingSystem, and indeed m2 is in-
variant in HeatingSystem

– but m1 which is not invariant in m2, is no more in-
variant in these surrounding models

– the same applies one level below: m0, which is invari-
ant in m1, is not invariant in m2 (nor in the preceding
surrounding models, a fortiori), because m1 is not.

Here is the property:

Property 3 (Invariance Transitivity)

Let three models m = (m̃,vm), m′ = (m̃′,vm′) and

m′′ = (m̃′′,vm′′),
m is invariant in m′ and m′ is invariant in m′′

⇒ m is invariant in m′′

Proof : m is invariant in m′′ iff:

I. m is closed in m′′.
II. The dependency constraints of m are invariant with

the m′′ ones.

Proof of I.
m is closed in m′′ iff:

1. m̃ ⊆ m̃′′. Indeed:
– m is invariant (so closed) in m′ ⇒ m̃ ⊆ m̃′.
– m′ is invariant (so closed) in m′′ ⇒ m̃′ ⊆ m̃′′.

2. closurem′′(m̃) = m̃, that is:

∀x ∈ m̃, 6 ∃y ∈ m̃′′ \ m̃, x vm′′ y.
By contradiction, suppose:
∃y ∈ m̃′′ \ m̃, x vm′′ y (y /∈ m̃)

then, two cases must be considered: y ∈ m̃′ or not
(see diagram in Figure 13)

12 Bernard Carré et al.

m2

m0

temperature : float

HeatingSubCircuit

on()
off()

temperature : float
Boiler

up()
down()
link(Boiler)

position: int
Radiator

*pipes

on()
off()

temperature : float
Boiler

up()
down()

Radiator

1

m2'

on()
off()

Boiler

up()
down()

temperature : float
Radiator

m1

on()
off()

Boiler

temperature : float
up()
down()

Radiator

invariant closed, not covariant

covariant, not invariant covariant, not invariant

invariantnot closed

not closed

not closed covariant,
not invariant

not covariant

closed

Fig. 12 Closed/Not Closed, Covariant/Not Covariant, Invariant/Not Invariant Submodels

(a) y ∈ m̃′

– x ∈ m̃⇒ x ∈ m̃′. Indeed by assumption m is
invariant in m′, so closed in m′ ⇒ m̃ ⊆ m̃′.

– So that we have: x, y ∈ m̃′ with (by supposi-
tion) x vm′′ y. Since m′ is invariant in m′′,
x vm′′ y ⇒ x vm′ y. Then: x ∈ m̃ and
x vm′ y ⇒ y ∈ closurevm′ (m̃).

– But m being closed in m′,
closurevm′ (m̃) = m̃

– So the contradiction: y ∈ m̃
(b) y /∈ m̃′ (y ∈ m̃′′ \ m̃′)

This cannot occur:
– m being closed in m′ which itself is closed in

m′′, Property 1 (Bound Closure) applies:

closurem′′(m̃) ⊆ m̃′.
– So the contradiction:

x ∈ m̃ and x vm′′ y (supposition) ⇒ y ∈
closurem′′(m̃) ⊆ m̃′ ⇒ y ∈ m̃′.

Proof of II.
The dependency constraints of m are invariant with the
m′′ ones, that is: ∀x, y ∈ m̃, x vm′′ y ⇔ x vm y. This
can be demonstrated in two steps:

1. ∀x, y ∈ m̃, x vm y ⇒ x vm′′ y, this corresponds
to the necessary covariance of the dependency con-
straints of m in m′′.

2. ∀x, y ∈ m̃, x vm′′ y ⇒ x vm y, this will complete
the demonstration of the property with its sufficient
part.

Then the proof:

m''

x

m

y? (a) y? (b)

m'

Fig. 13 y ∈ m̃′′ \ m̃.

1. Covariance necessity of the dependency constraints:
∀x, y ∈ m̃, x vm y ⇒ x vm′′ y.
Indeed:
– By assumption m is invariant in m′, so m is co-

variant in m′:
– m̃ ⊆ m̃′.
– (∀x, y ∈ m̃, x vm y ⇔ x vm′ y) ⇒ (∀x, y ∈

m̃, x vm y ⇒ x vm′ y).
– By assumption m′ is invariant in m′′, so m′ is

covariant in m′′:
– (∀x, y ∈ m̃′, x vm′ y ⇔ x vm′′ y)

⇒ (∀x, y ∈ m̃′, x vm′ y ⇒ x vm′′ y).

From Subsets of Model Elements to Submodels 13

– Then the covariance: ∀x, y ∈ m̃ ⊆ m̃′,
x vm y ⇒ x vm′ y ⇒ x vm′′ y.

2. And finally the remaining and sufficient condition for
m to be invariant in m′′: ∀x, y ∈ m̃, x vm′′ y ⇒ x vm

y.
Indeed:
– m being invariant in m′ :

– m̃ ⊆ m̃′.
– (∀x, y ∈ m̃, x vm y ⇔ x vm′ y)
⇒ (∀x, y ∈ m̃, x vm′ y ⇒ x vm y).

– m′ being invariant in m′′:
– m̃′ ⊆ m̃′′

– (∀x, y ∈ m̃′, x vm′′ y ⇔ x vm′ y)

⇒ (∀x, y ∈ m̃′, x vm′′ y ⇒ x vm′ y).

– Then the result: ∀x, y ∈ m̃ ⊆ m̃′, x vm′′ y ⇒
x vm′ y ⇒ x vm y.

ut
Examples were given above as an introduction to this

property. Other ones are shown in Figure 14 which also
depicts some interesting covariance and invariance rela-
tionships that apply with regard to this property. Note
that the presented submodels are possible extensions of
the HeatingSubCircuit submodel (in Figure 11) when
one wants to add regulation. The model m4 (bottom left)
corresponds to the whole Heating System. m3 and m3′

are alternative submodels depending on whether Regula-
tors or Sensors are envisaged first. m4′ is a combination
of m3 and m3′. Some model elements of the overall sys-
tem are not or incompletely taken into account in the
submodels. For example:

– the class Sensor is missing in m3, the class Regulator
is missing in m3′

– some of their features were ignored, for example reg-
ulate of Regulator, notify of Sensor or connect of
Sensor (in m3′) .

– some ingredients were incompletely specified, for ex-
ample connect of Sensor has no parameter in m4′ or
the association sensitives in m3′ and m4′ has only
one end.

Following is the formulation of models m3, m3′ and
m4′ as m = (m̃,vm):

– m3 = (m̃3,vm3)
– m3 ={Boiler, temperature, float, on, off, pipes,

Radiator, position, int, up, down, link, controls,
Regulator, expectedT, setExpectedT}

– vm3:
• temperature vm3 float
• temperature vm3 Boiler
• on vm3 Boiler
• off vm3 Boiler
• pipes vm3 Boiler
• pipes vm3 Radiator
• position vm3 int
• position vm3 Radiator
• up vm3 Radiator

• down vm3 Radiator
• link vm3 Boiler
• link vm3 Radiator
• controls vm3 Radiator
• controls vm3 Regulator
• expectedT vm3 float
• expectedT vm3 Regulator
• setExpectedT vm3 float
• setExpectedT vm3 Regulator

– m3′ = (m̃3′,vm3′)
– m3′ ={Boiler, temperature, float, on, off, pipes,

Radiator, position, int, up, down, link, Sensor,
ambientT, getT, sensitives}

– vm3′ :
• temperature vm3′ float
• temperature vm3′ Boiler
• on vm3′ Boiler
• off vm3′ Boiler
• pipes vm3′ Boiler
• pipes vm3′ Radiator
• position vm3′ int
• position vm3′ Radiator
• up vm3′ Radiator
• down vm3′ Radiator
• link vm3′ Boiler
• link vm3′ Radiator
• ambientT vm3′ float
• ambientT vm3′ Sensor
• getT vm3′ float
• getT vm3′ Sensor
• sensitives vm3′ Sensor

– m4′ = (m̃4′,vm4′)
– m4′ ={Boiler, temperature, float, on, off, pipes,

Radiator, position, int, up, down, link, controls,
Regulator, expectedT, setExpectedT, Sensor, am-
bientT, getT, connect, sensitives}

– vm4′ :
• temperature vm4′ float
• temperature vm4′ Boiler
• on vm4′ Boiler
• off vm4′ Boiler
• pipes vm4′ Boiler
• pipes vm4′ Radiator
• position vm4′ int
• position vm4′ Radiator
• up vm4′ Radiator
• down vm4′ Radiator
• link vm4′ Boiler
• link vm4′ Radiator
• controls vm4′ Radiator
• controls vm4′ Regulator
• expectedT vm4′ float
• expectedT vm4′ Regulator
• setExpectedT vm4′ float
• setExpectedT vm4′ Regulator
• ambientT vm4′ float
• ambientT vm4′ Sensor

14 Bernard Carré et al.

m3

up()
down()
link(Boiler)

position: int
Radiator

on()
off()

temperature : float
Boiler

*pipes

m3'

on()
off()

temperature : float
Boiler

up()
down()
link(Boiler)

position: int
Radiator

*pipes

m4'

on()
off()

temperature : float
Boiler

up()
down()
link(Boiler)

position: int
Radiator

*pipes

m4 = HeatingSystem

on()
off()

temperature : float
Boiler

up()
down()
link(Boiler)

position: int
Radiator

*pipes

setExpectedT(float)
expectedT : float

Regulator

controls
*

getT() : float
ambientT : float

Sensor

setExpectedT(float)
regulate()

expectedT : float
Regulator

controls
*

sensitives *getT() : float
connect(Regulator)
notify()

ambientT : float
Sensor

setExpectedT(t : float)
expectedT : float

Regulator
getT() : float
connect(?)

ambientT : float
Sensor

sensitives *
? controls

*

1 1

1 1

sensitives *
?

invariant invariant
not closed

only covariant

HeatingSubCircuit

up()
down()
link(Boiler)

position: int
Radiator

on()
off()

temperature : float
Boiler

*pipes1

invariant invariant

invariant

1 1

1 11

1

Fig. 14 Invariant Submodels

• getT vm4′ float
• getT vm4′ Sensor
• connect vm4′ Sensor
• sensitives vm4′ Sensor

Then examples of application of invariance transitiv-
ity:

– On the left side of the figure: HeatingSubCircuit is
invariant in m3 which is invariant in HeatingSystem,
and indeed HeatingSubCircuit is invariant in Heat-
ingSystem.

– On the right side: HeatingSubCircuit is invariant in
m3′ which is invariant in m4′, and indeed
HeatingSubCircuit is invariant in m4′.

It is interesting to remark that submodels on the left
side are well-formed ones contrary to those on the right
and that invariance transitivity occurs in both cases.
This example shows that submodel invariance and its
transitivity property apply to any submodels, whether
they are well-formed with regard to their metamodel or
not. Indeed, the notion of invariant submodel is much
more concerned with the conformance of submodels to
surrounding ones, at the modeling level, than their con-
formance to the metamodel under consideration. It is
worth noting that metamodeling constraints are only
relevant as necessary ones in the present formalization

as far as models of the same modeling level are con-
cerned. This allows to consider any parts of a model, be-
ing well-formed or not, and then qualify their inclusion
relationships. Note that this also applies to the previous
notions of closed and covariant submodels notions and
their properties.

Examine now “transverse” relationships in Figure 14:

– m3 is invariant in m4′, which confirms the fact that
HeatingSubCircuit as an invariant submodel of m3
is also invariant in m4′, as seen above.

– m3′ is not invariant, not even covariant, in
HeatingSystem because it is not closed in this model.
Indeed Regulator is missing.

– m4′ is not invariant but only covariant in
HeatingSystem. Indeed, m4′ is closed in
HeatingSystem contrarily to m3′ but it does not
assert the following constraints imposed by
HeatingSystem on its model elements:
– sensitives vHeatingSystem Regulator
– connect vHeatingSystem Regulator

– And finally the fact that m3′ is not invariant in Heat-
ingSystem is consistent with m4′ not being invariant
in this overall model, though m3′ was invariant in
m4′.

From Subsets of Model Elements to Submodels 15

5 Model Extraction

In the preceding sections an algebraic formalization of
the submodel notion and its related inclusion relation-
ship was grounded, aiming to clarify and characterize
the phenomenon. Starting from a primitive interpreta-
tion of submodel inclusion based on their model ele-
ments, deeper submodels inclusion relationships which
take into account their own structuring dimension were
stated. Then it was shown that submodel transitivity
could be guaranteed under some conditions, thanks to
the notion of invariant submodel.

At an operational level, many model handling oper-
ators can profit from this formalization. As an example,
we concentrate here on the operation which consists of
producing a submodel of another one when selecting a
subset of its model elements, that is Model Extraction.

With respect to the present formalization, Model Ex-
traction from a model m due to the selection of a subset
s of its model elements can be defined as the following
modelm(s) operator. It consists in associating to s the
dependency constraints of m that apply to s.

Definition 8 (Model Extraction Operator)
Let a model m = (m̃,vm), for any subset s of its model
elements (s ⊆ m̃), the operator modelm(s) allows to ex-
tract the submodel m′ = (s,vm′) of m such as:
∀x, y ∈ s, x vm y ⇒ x vm′ y,
that is Gr(modelm(s)) = Gr(m)/s.

For example, here are two samples of model extrac-
tion from the HeatingSystem class model (see Figure 4)
of the paper:

– Selecting the following subset of model elements s =
{temperature, float, Boiler, on, off, pipes, Radiator,
position, int, up, down, link} allows to extract the
model HeatingSubCircuit of the heating sub-circuit
(already used in many preceding examples), that is:
modelHeatingSystem(s) = HeatingSubCircuit.

– Selecting this other subset of model elements s =
{Regulator, expectedT, setExpectedT, float, regulate,
sensitives , Sensor, ambientT, getT, connect, notify}
extracts the model of the regulation sub-circuit (see
Figure 15), that is:
modelHeatingSystem(s) = RegulationSubCircuit.

RegulationSubCircuit

setExpectedT(float)
regulate()

expectedT : float
Regulator

getT() : float
connect(Regulator)
notify()

ambientT : float
Sensor

*sensitives1

Fig. 15 Regulation Circuit Submodel

This operator has interesting properties that will be
studied in the following. For this purpose, let us insist
on the fact that it involves two parameters :

– s, the selected subset of model elements of the model
m under consideration.

– m, this model itself.

So that it will be convenient to examine what hap-
pens when it is s or m which alternatively varies, in
particular when they respectively “grow”, that is:

– Considering a superset s′ of s, how do the resulting
models modelm(s) and modelm(s′) relate? It will be
shown (Property 7) that when s and s′ are closed sub-
sets of m, the model produced by modelm(s) is guar-
anteed to be an invariant submodel of modelm(s′).

– Considering any super-model m′ of m, how do the
resulting models modelm(s) and modelm′(s) relate?
It will be shown (Property 9) that, when m is an
invariant submodel of m′, s being a closed subset of
m, the model produced by modelm(s) is the same as
the one produced by modelm′(s).

But, first and foremost, primitive properties of the
operator may be set out. Given that s ⊆ m̃ in the defi-
nition of the modelm(s) operator, two cases claim to be
considered:

1. The special case where s = m̃.
2. The general case : s (m̃.

First case (s = m̃) corresponds to the situation where
s covers the whole set of model elements of the model
under consideration. As expected, the resulting model is
this whole model itself.

Property 4 (Model Extraction applied to the whole
set of model elements of a model)
Let some model m,
modelm(m̃) = m.

Proof :
modelm(m̃) = (m̃,Gr(m)/m̃) = (m̃,Gr(m)) = m.

ut

This property is in fact related to the more general
following one which characterizes the idempotence of the
modelm(s) operator with regard to the involved model
m. Indeed, when one tries to extract, multiple times,
the model corresponding to s from the model produced
by the operator itself, the resulting one does remain the
same.

Property 5 (Model Extraction Idempotence)
Let a model m, for any subset s of its model elements
(s ⊆ m̃),
modelmodelm(s)(s) = modelm(s).

Proof :
Let m′ = modelm(s),
modelmodelm(s)(s) = modelm(s)⇔ modelm′(s) = m′.

By definition, m̃′ = ˜modelm(s) = s, so that:

modelm′(s) = m′ ⇔ modelm′(m̃′) = m′,
which is true, thanks to Property 4.

16 Bernard Carré et al.

ut
Second, examine the more general case: s (m̃. The

following property (Property 6) states that, when s is a
closed subset of model elements of m, the corresponding
extracted model is guaranteed to be an invariant sub-
model of m.

Property 6 (Model Extraction applied to a Closed
Subset)
Let a model m, for any subset s of its model elements
(s ⊆ m̃),
s closed in m
⇒
modelm(s) is an invariant submodel of m.

Proof :
modelm(s) is an invariant submodel of m iff:

– ˜modelm(s) is closed in m. By definition ˜modelm(s) =
s which is closed in m, by assumption.

– Gr(m)/ ˜modelm(s) = Gr(modelm(s)). Indeed, by def-
inition of the modelm operator:

– ˜modelm(s) = s
– Gr(modelm(s)) = Gr(m)/s.

ut
For example, consider Figure 12 and s = {Boiler,

temperature, float, on, off, Radiator, up, down} of model
elements of HeatingSubCircuit, it is easy to verify that
the model produced by modelHeatingSubCircuit(s) is m2
which is indeed invariant in HeatingSubCircuit. In ad-
dition, this example is an opportunity to show the se-
lection applied by the operator. Indeed, s is the set of
model elements of m2, but recall that it is also the one of
m2′ (as pointed in Section 4.2) and m1 (see Section 4.3).
Then it is interesting to observe that, among these sub-
models (m1, m2, m2’) which share the same subset s of
model elements of HeatingSubCircuit, the result of the
extraction is m2, which is the only invariant submodel
of this model, so stable, of the three.

It is worth noting that in both cases of this primary
analysis, s appears to be a closed subset of model ele-
ments of m, either because s was the entire m̃ set (Prop-
erty 4), or by assumption (Property 6). The next case
would be to consider any subset s (m̃ not even closed in
m̃. Though it is easy to be convinced that this situation
has no or little relevance. The subset s not being closed
in m, there is no chance for the submodel produced by
modelm(s) to be interestingly qualified as closed nor co-
variant, even less invariant in the model m under con-
sideration. Indeed these attributions necessarily depend,
by definition, on s being at least closed in m. In other
words s being unspecified, so is the model produced by
modelm(s).

For example, consider again the model HeatingSub-
Circuit and now its subset of model elements s = {tempe-
rature, float} then modelHeatingSubCircuit(s) = m0 (Fig-
ure 12), s being not closed in HeatingSubCircuit:

closurevHeatingSubCircuit
({temperature, float})

= {temperature, float,Boiler}
6= {temperature, float}),
so is m0.

After this preliminary on primitive properties of the
modelm(s) operator, let us now examine, as announced,
what happens when the subset s or the model m under
consideration grows.

First, consider a superset s′ of s, both being sub-
sets of model elements of a model m under consideration
(s ⊆ s′ ⊆ m̃). Then it appears that, when s and s′ are
closed subsets of m̃, the extracted model produced by
modelm(s) is an invariant submodel of the one produced
by modelm(s′).

Property 7 (Model Extraction applied to included
subsets)
Let a model m and two subsets s, s′ of its model elements
such as : s ⊆ s′ ⊆ m̃,
s and s′ are closed in m
⇒
modelm(s) is an invariant submodel of modelm(s′).

Proof :
Let us note:

– S = modelm(s) = (s,Gr(m)/s)
– S′ = modelm(s′) = (s′, Gr(m)/s′)

S is an invariant submodel of S′ iff:

1. S is closed in S′.
2. The dependency constraints of S are invariant in S′.

Proof of 2.
That is to show: Gr(S′)/s = Gr(S). Indeed:
Gr(S′)/s = (Gr(m)/s′)/s
s ⊆ s′ ⇒ (Gr(m)/s′)/s = Gr(m)/s
Gr(m)/s = Gr(S), so the result.

Proof of 1.
That is to show: closurevS′ (S̃) = closurevS′ (s) = s.
Indeed, following the preceding proof:
Gr(S′)/s = Gr(m)/s
so that: closurevS′ (s) = closurevm

(s).
Since s is closed in m, we have: closurevm(s) = s,
so the result
closurevS′ (S̃) = closurevS′ (s) = closurem(s) = s.

ut

For example, consider Figure 163 and s = {Boiler,

Radiator, pipes, Sensor} (that is m̃2), s′ = {Boiler, Ra-

diator, pipes, Sensor, sensitives} (= m̃3′), m4′ being the
source model under consideration, we have :

3 An updated version of Figure 14 with same m3′, m4′

and m4 submodels but new m1, m2 and m3 submodels. At-
tributes were omitted to simplify the figure.

From Subsets of Model Elements to Submodels 17

m3

Radiator

Boiler

*pipes

m3'

Boiler

Radiator

*pipes

m4'

Boiler

Radiator

*pipes

m4 = HeatingSystem

Boiler

Radiator

*pipes

Sensor

Regulator

controls

*

sensitives

*

Sensor

Regulator

Sensor

sensitives *
?

controls

*

1 1

1 1

sensitives *
?

only closed invariantnot closed

only covariant

invariantnot closed

Sensor

Regulator

sensitives

* only
covariant

only closed

m2

Radiator

Boiler
*pipes1

Sensor

m1

Radiator

Boiler
*pipes1

sensitives

invariantnot closed

invariant

1 1

1

1

1 1

Fig. 16 Samples for Property 7 and following.

– s ⊆ s′ ⊆ m̃4′

– s and s′ closed in m4′

– modelm4′(s) = m2,modelm4′(s
′) = m3′

– and indeed m2 is invariant in m3′.

As a counter-example, in the same figure, consider
now s = m̃3′, s′ = {Boiler, Radiator, pipes, Sensor,

Regulator, sensitives, controls} (that is m̃4′), and the
model m4 under consideration, we have :

– s ⊆ s′ ⊆ m̃4
– s′ closed in m4
– but s, being not closed in m4, modelm4(s) = m3′, is

not invariant (not closed) in modelm4(s′) = m4.

Second, what happens when it is the model m un-
der consideration itself which is growing? This will be
established in the final Property 9.

Before that, let us state an intermediate property
which is a particular case of Property 6 when the closed
subset under consideration issues from an invariant sub-
model of the involved model. It is an expected prop-
erty of the modelm(s) operator that well characterizes

its consistency with the notion of invariant submodel.
This property relies on the preceding ones, that is why
it is positioned at this stage of the study.

Property 8 (Model Extraction Applied to a Closed
Subset Issued from an Invariant Submodel)
Let two models m,m′

m is invariant in m′

⇒
modelm′(m̃) = m

Proof : modelm′(m̃) = m iff:

1. ˜modelm′(m̃) = m̃
2. Gr(modelm′(m̃)) = Gr(m)

Proof of 1.

By construction: ˜modelm′(m̃) = m̃

Proof of 2.
m being invariant in m′ (by assumption), we have m̃ ⊆
m̃′ so that Property 7 applies:

18 Bernard Carré et al.

– m̃ ⊆ m̃′

– m̃ closed in m′ (m being invariant in m′)
– m̃′ closed in m′

– ⇒ modelm′(m̃) is invariant in modelm′(m̃′)

That is (thanks to Property 4, modelm′(m̃′) = m′)
modelm′(m̃) is invariant in m′ and then:
Gr(modelm′(m̃)) = Gr(m′)/modelm′(m̃) = Gr(m′)/m̃.
But, m being invariant in m′, Gr(m′)/m̃ = Gr(m) so
the result: Gr(modelm′(m̃)) = Gr(m).

ut

Finally, the following property states that, for any
subset s of model elements of m, the model produced by
modelm(s) will not vary when one considers any super-
model m′ whose m is an invariant submodel, that is
modelm′(s) = modelm(s). More formally:

Property 9 (Model Extraction from Included In-
variant Submodels)
Let two models m, m′, for any subset s of model ele-
ments of m:
m is invariant in m′ ⇒ modelm′(s) = modelm(s).

Proof :
By definition:

– modelm(s) = (s,Gr(m)/s)
– modelm′(s) = (s,Gr(m′)/s)

The two models have the same set of model elements
(s). Let us show, now, that they have also the same
dependency constraints, that is: Gr(m)/s = Gr(m′)/s.
m being invariant in m′, Gr(m′)/m̃ = Gr(m), so that
Gr(m)/s = Gr(m′)/m̃/s. Since s ⊆ m̃, we have
Gr(m′)/m̃/s = Gr(m′)/s, then the result.

ut

For example, consider again Figure 16 with s = {Boiler,

Radiator, pipes, Sensor} (that is m̃2), m = m3′ and
m′ = m4′, we have:

– s ⊆ m̃3′

– m3′ invariant in m4′

– modelm3′(s) = m2
– modelm4′(s) = m2

So the equality of extracted models from invariant sub-
models.

When the submodels under consideration are only
closed or covariant (not invariant), the property is not
ensured. Here are counter-examples in each case.

Consider m = m3, m′ = m4, m3 being only a closed
submodel of m4, and s = {Boiler, Radiator, pipes, Sen-

sor, sensitives} (= m̃3′). Here we have :

– s ⊆ m̃3
– m3 only closed in m4
– modelm3(s) = (s,Gr(m3)/s))
– modelm4(s) = (s,Gr(m4)/s))

– Gr(m3)/s={(pipes,Radiator), (pipes,Boiler), (sensi-
tives,Sensor), (sensitives,Radiator)}

– Gr(m4)/s={(pipes,Radiator), (pipes,Boiler), (sensi-
tives,Sensor)}

Therefore, due to distinct sets of dependency constraints,
extracted submodels are not equal.

A covariant counter-example is s = {Boiler, Radia-

tor, pipes, sensitives} (that is m̃1), m = m3′ and m′ =
m3. Then:

– s ⊆ m̃3′

– m3′ only covariant in m3
– modelm3′(s) = (s,Gr(m3′)/s) = m1
– modelm3(s) = (s,Gr(m3)/s)
– Gr(m3’)/s={(pipes,Radiator), (pipes,Boiler)}
– Gr(m3)/s={(pipes,Radiator), (pipes,Boiler), (sensi-

tives,Radiator)}
The extracted submodels get different structuring con-
straints and so are not equal.

6 Application: a Submodel Engine for EMF
Models

This section presents an application of the previous re-
sults to build an extensible submodel engine integrated
with Eclipse and its modeling framework (EMF). It also
discusses the customization of this engine for specific
kinds of model and illustrates its use through the pre-
sentation of a tool designed for visualizing the relation
graph of a set of models.

The engine provides a set of core functionalities to
determine how models relate according to the submodel
relationships, ranging from simple inclusion of elements
sets to invariant submodels. More precisely, the provided
functionalities enable:

– to determine if an input model includes all the ele-
ments of a second input model;

– to determine if an input model is a closed submodel
of a second input model;

– to determine if an input model is a covariant sub-
model of a second input model;

– to determine if an input model is an invariant sub-
model of a second input model;

– to get the strongest relationship between two models
if it exists;

– to compute the closure of a model with respect to a
second one.

All these functionalities are available as a service offered
by the engine to other modeling tools included in the
Eclipse environment. Tools can exploit the results re-
turned by the service for many modeling tasks like com-
paring a selected set of models, retrieving relevant mod-
els from libraries using the various submodel notions or
organizing several models in a network of relationships.

From Subsets of Model Elements to Submodels 19

One key feature of the engine is that the previous
functionalities are offered for any kind of EMF models.
Indeed, our engine is extensible and can be easily cus-
tomized to work with multiple metamodels given that
models conforming to a metamodel can be transformed
in the formulation retained in this paper, that is as a set
of model elements and a partial order derived from their
dependency constraints.

Figure 17 shows the architecture of the extensible
engine which follows the plugin-based style promoted
by the Eclipse environment. This architecture is com-
posed of two component types: the core component and
one or several EMF model adapters. The core compo-
nent provides the functionalities mentioned above and
made them available as a service to the rest of the plat-
form. This service is automatically recorded in the reg-
istry of all services available in the platform. EMF Model
adapters are components that extend the engine for spe-
cific metamodels. They are recorded in the plugin reg-
istry and are discovered automatically by the core com-
ponent.

The core expects that EMF model adapters conform
to an interface to execute their functionalities. Through
this interface, the core component queries a model adapter
to decide whether it is suitable for an input EMF model
and, if so, asks this model adapter to convert the in-
put EMF model into the representation handled by the
core. Optionally, an EMF model adapter can also cus-
tomize how elements of two input EMF models must be
matched during operations performed by the core4. At
the implementation level, the core and model adapters
component are designed as Eclipse plugins which are au-
tomatically connected thanks to the mechanisms of plu-
gin extension point and plugin contribution offered by
the platform.

Currently, we have developed and experimented three
EMF model adapters for the engine. One of them ex-
tends the engine for Ecore models (Eclipse implemen-
tation of the EMOF specification). This model adapter
enables the exploration of submodels within the space
of metamodels. The two other adapters target UML2
models. A first one is dedicated to UML class mod-
els. By example, all the samples given in the paper in-
cluding those which refer to ill-formed models like m3′

and m4′ of Figure 14 have been verified thanks to this
adaptation. The second one is related to UML2 collab-
oration models and gives the capacity to compare such
models. Elements of collaboration models that are taken
into account for submodel notions are roles, role types,
connectors between roles and collaboration uses. Fig-
ure 185 gives an example illustrating the application of
our engine to four collaboration models in the area of

4 Name matching of elements is an example used in the
present application.

5 For reasons of space, only the formulation of the UserCall
Collaboration is detailed.

telephony services. These collaborations represent par-
tial or complete specification of ingredients involved in
such services. RegisterUse collaboration captures the use
of an existing collaboration dedicated to registration of
user adresses. ServerBasedRegistration refines the pre-
vious collaboration to express registration of user ad-
dresses with a server. Note that these two examples are
not well-formed, as they contains a CollaborationUse el-
ement without its complete set of role bindings. User-
Call and RedirectedUserCall are well-formed collabora-
tion models expressing two variants of user calls, respec-
tively direct ones and indirect ones relying on an inter-
mediate server for callee registration and localization. By
using our engine, we can compare such models and get
the relationships shown in Figure 18, resulting in a bet-
ter comprehension of how these models relate regarding
their respective parts.

As indicated previously, the functionalities offered by
the engine and its extensions can be exploited to con-
struct powerful modeling tools that require submodel
notions similar to the ones presented in this paper. Kinds
of tool that can profit from such functionalities are for in-
stance content-based querying, submodel browser, sub-
model validator, transformation engine and model editor
with automatic submodel completion. Hereafter, we give
an example of a visualization tool that was developed
on top of our engine to get a graphical view of submodel
relationships existing within a base of models or model
fragments. Figure 19 presents a snapshot of this tool
for a subset of the class models used in this paper. The
content of the presented view is obtained by using the
engine functionality for computing the strongest rela-
tionship between selected models, each kind of resulting
relationship being represented by a distinct color. Such
a view can be obtained for other kinds of EMF model
(like collaboration models) if a model adapter exists.

As shown in the figure, the tool organizes all the se-
lected models in a network of relationships that are com-
puted thanks to the engine and displays this network
graphically. Among other features, the tool allows to fil-
ter the network on a specific relationship and allows to
reduce the focus on a particular model while navigating
from one model to another inside the network. In addi-
tion, the tool gives the capacity to increase or reduce the
set of selected models so that they can be compared dy-
namically. Such a visualization tool can aid exploration,
discovery and retrieval of submodels. It can also sup-
port questions about submodel compatibility and help
to detect potential common parts and find derivation
link between existing models.

More generally, we believe that these tools can be
useful to organize (or megamodel) big repositories of
models. Currently, we are working on a version of this
tool that can connect to remote model repositories like
EMF Store and Eclipse CDO Model Repository.

20 Bernard Carré et al.

Eclipse Platform

Submodel Engine

EMF Model Adapters
(contributor plugin)

(M,⊆) Service

included(m1,m2)
closed(m1,m2)

covariant(m1,m2)
invariant(m1,m2)
closure(m1,m2)

Plugins
Repository

Core
(extensible plugin)

Submodel engine
client plugin

Submodel engine
client plugin

Submodel engine
client plugin

Services
Repository

registerlookup registerlookup

Fig. 17 Engine Architecture

UserCall

Caller Callee

invite:Inviteinviter invitee

talk:Talktalker1 talker2

RedirectedUserCall

Caller Callee

invite:Inviteinviter invitee

talk:Talktalker1 talker2

Server

invite:Invite register:Register

inviter

invitee
registrar

registree

RegisterUse

register:Register
ServerBased
Registration

register:Register registrar

Server

covariant

invariant

invariant

invariant

UserCall

Caller Callee

invite:Inviteinviter invitee

talk:Talktalker1 talker2

RedirectedUserCall

Caller Callee

invite:Inviteinviter invitee

talk:Talktalker1 talker2

Server

invite:Invite register:Register

inviter

invitee
registrar

registree

RegisterUse

register:Register
ServerBased
Registration

register:Register registrar

Server

covariant

invariant

invariant

invariant

caller_callee

UserCall formulation

From Subsets of Model Elements to Submodels 19

Eclipse Platform

Submodel Engine

EMF Model Adapters
(contributor plugin)

(M,⊆) Service

included(m1, m2)

closed(m1, m2)

covariant(m1, m2)

invariant(m1, m2)

closure(m1, m2)

Plugins
Repository

Core
(extensible plugin)

Submodel engine
client plugin

Submodel engine
client plugin

Submodel engine
client plugin

Services
Repository

registerlookup registerlookup

Fig. 17 Engine Architecture

cluding ill-formed models like m30 and m40 of Figure 14.
The second one is related to UML2 collaboration models
and gives the capacity to compare such models using the
set of submodel notions. Elements of collaboration mod-
els that are taking into account for submodel notions are
roles, role types, connectors between roles and collabo-
ration uses. Figure 18 gives an example illustrating the
application of our engine to four collaborations models
in the area of telephony services. These collaborations
represent partial or complete specification of ingredients
involved in such services. RegisterUse collaboration is a
model that captures the use of an existing collaboration
dedicated to registration of user adresses. ServerBase-
dRegistration refines the previous collaboration to ex-
press registration of user addresses with a server. Note
that these two examples are not well-formed collabora-
tion models as they contains a CollaborationUse element
without its complete set of role bindings. UserCall and
RedirectedUserCall are well-formed collaboration mod-
els expressing two variants of user calls, respectively di-
rect ones and indirect ones relying on an intermediate
server for callee registration and localization. By using
our engine, we can compare such models and get the
relationships as shown in Figure 18, resulting in a bet-
ter comprehension of how these models relate regarding
their respective parts.

– UserCall = (fuc,vuc)
– uc ={Caller, Callee, callee caller, invite, Invite,

inviter, invitee, talk, Talk, talker1, talker2}
– vuc:

• invite vuc Invite
• inviter vuc invite
• inviter vuc Caller
• invitee vuc invite
• invitee vuc Callee
• caller callee vuc Caller
• caller callee vuc Callee
• talk vuc Talk
• talker1 vuc talk
• talker1 vuc Caller
• talker2 vuc talk
• talker2 vuc Callee

As indicated previously, the functionalities o↵ered by
the engine and its extensions can be exploited to con-
struct powerful modeling tools that require submodel
notions similar to the ones presented in this paper. Kind
of tools that can profit from such functionalities are for
instance submodel query engine, submodel browser, sub-
model validator, transformation engine and model editor
with automatic submodel completion. Hereafter, we give
an example of a visualization tool that we developed on
top of our engine to get a graphical view of submodel
relationships existing within a base of models or model
fragments. Figure 19 presents a snapshot of this tool
for a subset of the class models used in this paper. The
content of the presented view is obtained by using the
engine functionality for computing the strongest rela-
tionship between selected models, each kind of resulting
relationship being represented by a distinct color. Such
view can be obtained for other kinds of EMF models
(like collaboration models) if a model adapter exists.

As shown by the figure, the tool organizes all the
selected models in a network of relationships that are
computed thanks to the engine and displays this net-

Fig. 18 Collaboration submodels

7 Related Works

In this work, we set a formalized notion of submodel
and its corresponding relationship which completes the
set of relationships, such as conformance and represen-
tation ones. This contributes to the structuring of the
model space [27,8], and allows better understanding and
comparison of involved artifacts. In addition, model ex-
traction was analyzed on the basis of this formalization.
This constitutes a step to improve modeling process and

modeling tools. Although submodels are very useful in
MDE practices and underly many modeling tasks, this
notion has not been widely studied, leading to loose
definitions and implicit meaning. As indicated in [42],
the lack of clear definition is prone to misunderstanding
and prevents for developing systematic submodel-based
methods and tools.

In [26], the authors also propose a formalized notion
of submodel that is general like our proposal. The main

From Subsets of Model Elements to Submodels 21

Fig. 19 Tool for visualizing submodel relationships

concern for the submodel notion proposed in this work is
better model comprehension through decomposition of a
model into submodels that conform to the same meta-
model. Here, the conformance of submodels is ensured
by the inclusion of elements between a model and its sub-
models and several conditions related to the metamodel
such as type compatibility and multiplicity conditions.
The motivation for this kind of submodel notion is the
ability to view and manipulate the submodels using the
same tools as the original model. From this submodel no-
tion, the authors propose an algorithm to decompose a
model into a submodel lattice. This lattice is constructed
in a straightforward manner by relying on the identifica-
tion of fragmentable links in the metamodel. This work
and ours are complementary but differ in two main re-
spects. First, they focus on the conformance of submod-
els with respect to the metamodel while we focus on the
structural constraints between models at the same level.
Second, their goal is mainly to automatically build a lat-
tice of relevant submodels from a source model. The aim
of our work is more general for the provision of a char-

acterization of the submodel notion and related model
operators, such as model extraction.

In the following, we present a synthesis on areas which
make directly use or resort to submodels.

Submodels for Model Operation Efficiency

In [42], the authors propose to use model fragments for
the purpose of efficiency in performing model operations.
In this context, a model fragment is an independently
mutable and distinct entity which is a copy of a piece
of a model. Such an entity consists of instances of meta-
classes, meta-associations, and meta-attributes that are
(possibly incomplete) copies of instances in the source
model. According to their definition, a model fragment
can be modified, and there is no requirement to propa-
gate the changes to the source model or vice versa. The
authors also present a model fragment selection mecha-
nism that aims to determine parts of models containing
relevant information from the viewpoint of an operation.
This mechanism consists of two consecutive steps called

22 Bernard Carré et al.

implication and projection. In the implication step, a
set of model elements is selected from an input model,
thanks to rules expressed in OCL. In the projection step,
the set of preceding elements is projected onto a pruned
version of the input metamodel to constitute the final
model fragment6. A comparison between this work and
ours shows some main differences. Due to a different fo-
cus, the notion of model fragment given in this work is
distinct from ours and is not defined in algebraic way
but as the result of a specific extraction process. Con-
trarily to our work, the authors do not formalize their
notion of model fragment and their extraction mecha-
nism. This work is also less general than ours in the
sense that it restricts its attention to the UML language
and the context of model operation. Another difference is
the explicit projection of the resulting model fragment
to a pruned metamodel which is not a concern in our
work. Finally, both approaches also differ in the way
they address consistency of model fragments: in their
approach, this consistency is ensured manually by the
designer through OCL-based rules and a given pruned
metamodel while our approach for consistency is system-
atic and relies on algebraic rules which apply to sets of
model elements and their structural constraints.

Submodels and Model Compatibility

Model Compatibility is concerned with model substi-
tutability in operation and tools. This currently calls
for metamodel inclusion. While we focus here only on
model, our submodel notion can also be applied at the
metamodeling level to characterize model substitutabil-
ity.

Model Typing and Subtyping presented in [47,22] state
strategies for model substitutability through metamodel
inclusion. A metamodel is considered as a collection of
interconnected objects. Substitutability is defined by a
matching relationship between two metamodels which is
based on the preservation of classes and the related de-
pendent classes contained in the first metamodel into the
second one. According to this matching relationship, a
metamodel that has fewer corresponding classes, prop-
erties or relationships than another metamodel can be
stated as a supertype of the latter [41]. We also see a
proximity between our work and Model Inheritance, a
concept that has currently received little attention in
existing works except in [30]. In this work, the author ex-
plores inheritance between model types with an empha-
sis on compatibility considerations, i.e backward and for-
ward compatibility for tools. He presents several forms of
inheritance according to the inclusion of model type in-
tension (metamodel and its constraints) and model type
extension (its model instances). Some similitaries exist

6 In other words, all instances of unneeded meta-classes,
meta-attributes or meta-associations are removed from the
model fragment.

between our variants of submodel notion and forms of
model inheritance relying only on model intension like
compatible pruning and conceptual containment.

More generally, as mentioned in [22], Model Typing is
a major issue in the MDE which has not been sufficiently
studied. All these works, including ours, contribute to
this challenge and lay basis for further investigation and
comparison.

Submodel Extraction

We found works that have proposed operators for ex-
tracting a part of a model. Most of these works take place
in the field of model management and are motivated by
the providing of a rich set of operators for manipulating
and integrating models and metamodels. The work pre-
sented in [35] offers a set of high-level algebraic operators
that apply to any type of models or model management
applications. One of the generic operator named Extract
is dedicated to the extraction of a model fragment. This
operator requires an input model and a set of selected el-
ements. It returns a well-formed part of the input model
satisfying some properties plus a mapping that relates
them. A Delete operator, defined as extraction of an
unselected portion of a model, is also proposed. Paper
[39] is in the same vein and proposes mega operations to
specify integration of models covering distinct concerns
or domains at the meta-level and derive the actual inte-
gration at the model level. Weaving and sewing mega-
operations are defined using a set of primitive operators
where one is dedicated to the pruning of a metamodel, a
kind of extraction based on the riding of all unnecessary
meta-model elements in a meta-model. In this study, we
only focused on model extraction but deeply analyze its
properties thanks to our submodel groundings. The same
could be applied to operators presented in these works,
notably to study how outputs vary depending the vari-
ation of input sets and models.

Template-Based Modeling

The current submodel notion originates from our works
on views and their reuse through templates [10,12,11,
36]. Templates are models that expose some of their ele-
ments as parameters and allow to produce other models
through parameter substitutions. Through parameter-
ization, templates provide a form of generic modeling
that allows to capture model of recurrent structures so
that they can be reused in multiple modeling contexts.
This concept is used in many areas aiming to improve
model reuse and appears as a cornerstone of model cap-
italization pushed by the MDE. Applications of model
templates are modeling of generic classes (such as C++
templates or generics in Java), pattern formulation [49,
4], modeling of reusable subjects [14], Catalysis frame-
works [16] or AOM (Aspect Oriented Modeling) [36,20].

From Subsets of Model Elements to Submodels 23

In UML2, model template exists as a standard construct
associated to a binding mechanism and is general enough
to render most of the applications cited previously, de-
pending on the status of the parameter set. In particular,
when this parameter set forms a submodel, we obtain
model templates which add ingredients to the submodel
formed by the parameters. In our previous work [36],
we deeply studied the composition of such templates,
the correctness of composition chains and their alterna-
tive ordering capacities. All these features rely heavily
on fully structured and consistent submodels. Thanks
to the present work, formalization grounded on the sub-
model notion is achievable. Such formalization will help
to better characterize the properties and usages of these
templates. It will also enable to investigate formally de-
grees of type-safety for parameters and their subtyping,
potential issues with binding and the conditions under
which template instantiation yields conformance. We are
currently working on this topic.

Aspect-Oriented Modeling

In line with the preceding works, Aspect-Oriented Mod-
eling raises the idea of separation of concerns, so sub-
models, in the design of software models. Over the last
years, many AOM techniques have been proposed [17,
38,50,37,28]. All these techniques provide a notion of
model-based aspect and a model weaving process that
produces new models by injecting ingredients from such
aspect into relevant elements of input base models. Model-
Based Aspects are typically made of pointcuts and ad-
vices. Pointcuts are abstract model elements defining
where to affect the base model and the advices are cor-
responding elements defining how to extend those iden-
tified by the pointcuts. In most of the AOM approaches,
pointcuts and advices are expressed by two related mod-
els with corresponding elements and the model of point-
cuts is a submodel of the model of advices [50,28,31].
However, this relationship between these two models is
most of the time either assumed implicitly or loosely
defined. This has the consequence that the consistency
between the two models is not handled or is only ensured
partially. There are several ways to alleviate this prob-
lem but the notion of submodel presented in this paper
can be a convenient approach in order to get a rigorous
definition of the relationship between the models form-
ing an aspect and a way to elaborate their consistency.

Model Slicing

The idea behind model slicing comes from the appli-
cation of program slicing to the domain of models. It
is a technique that consists in extracting a part of a
model called a slice for a specific purpose. Model slicing

is mainly exploited to assist and ease model comprehen-
sion when building huge models. Works have been inves-
tigated in the context of UML models [29,25,32], feature
models [2] and also for any metamodel [9]. Mechanisms
for selecting elements in order to form a slice are more
or less sophisticated. In the simplest form, selected ele-
ments are given by designating and enumerating them
in a set. Others complex forms such as ones based on
a dedicated model [9] or predicates over models [25] ex-
ist. Among these approaches, there are some variations
about the nature of produced slices and it is not al-
ways mandatory that the set of elements constituting
the slice forms a model [23]. Generally, approaches that
aim to construct submodels for slices only consider their
conformance with respect to the metamodel and ignore
structural constraints between elements themselves. As
presented in this paper, such constraints are also impor-
tant for obtaining consistent submodels and we think
that the present work could be useful to improve the
consistency of submodels extracted by such approaches.
Furthermore, another interest of our work lies in our for-
malized notion of submodel that can help to characterize
the kind of model fragment produced by different model
slicing approaches.

Metamodel Pruning

In the same vein, some works have investigated the pos-
sibility of extracting some parts of metamodels to make
them more understandable and more manageable dur-
ing transformation and evolution. Paper [5] addresses
the problem of decomposing the UML metamodel into
smaller metamodels corresponding to the diagram types
of UML. Metamodel pruning [40] is a generic approach
that outputs an effective subset metamodel of a possible
large input metamodel, such as whole UML one. In that
work, the output metamodel is produced by removing
elements from the input metamodel while preserving a
set of selected types and properties as well as all their de-
pendencies. The resulting metamodel is intended to be a
supertype of the original metamodel in the sense of [47].
The work described in [43] addresses the complexity of
the current UML 2.0 metamodel and proposes the gen-
eral idea of views for metamodels in order to solve the
problem. A view consists of a subset of all classes and
relationships directly or indirectly related to one or sev-
eral concepts in the metamodel. The authors propose to
develop tools capable of querying a metamodel and auto-
matically derive specified views from the queries. Query
and extraction capabilities of such tools are illustrated
for the UML metamodel through views corresponding to
the different diagram types. In all these works, we can
observe that there is a need to extract a part of a meta-
model. Given that a metamodel is a model, it is possible
to envision the application of submodels presented here
for this area. Although we only presented illustrations

24 Bernard Carré et al.

of our proposal applied to models, the resulting notions
and properties are not restricted to this modeling level
and are sufficiently general to be applied for extracting
a consistent “sub-metamodel”. However, while our work
can serve as an interesting basis for extracting valid sub-
metamodels, we consider that further work is necessary
before fully exploiting the results at the metamodeling
level. In particular, the relationship between our sub-
model notion applied to the instance model level and
the same applied to the metamodel one is an interesting
issue that we let for future works.

Submodels and Model Transformation

We also foresee applications of our work in the area of
model transformation. Most often, a model transforma-
tion needs to manipulate some specific parts of a model
instead of the whole model. For instance, the designers
may want to transform only the behavioral parts of a de-
sign. Generally, the use of model parts is not assumed in
main existing works and engines like QVT [21] or ATL
[24] and a transformation only operates on the whole
model. Few works such as [41,18] explicitly use model
parts in model transformation but they generally rely on
ad-hoc definitions. Though, by enabling partial models,
transformations could benefit of qualities like locality,
for example to reduce the impact of model evolution on
transformation maintenance or limit the responsibilities
of specific transformation in case of erroneous results.
Other benefits of transformation restricted to a portion
of a model are performance and composability. The re-
sults presented in this paper offer facilities, particularly
locality and transitivity properties, to treat submodel
issues in model transformation.

Submodels and Model Exchange

Collaborative modelling [45] is also an area where sub-
models appear to be useful. In collaborative modeling,
the work is typically carried out by several actors, e.g.
designers, automatic model processing applications, dur-
ing the process and it is often the case that actors need
to manipulate only some specific parts of a whole model
simultaneously, possibly in remote locations. Communi-
cating whole models and letting users and their tools op-
erate on unrestricted areas of shared models is not desir-
able for performance and security reasons. Indeed, using
model fragments to support such collaborative modeling
activities appears more appropriate as a unit of distri-
bution since it gives the ability to reduce the amount of
communicated data and enables a way to control manip-
ulation of models concurrently. The use of model frag-
ment in this area has been investigated in [44]. In this
work, the authors discuss a model bus that supports
the interoperability between modeling tools and enables
them to share their services and models using remote call

mechanisms where transmitted parameters are model
fragment instead of complete models. To define a model
fragment in this approach, a user selects model elements
or uses a helper operation that recursively computes a
group of hierarchical elements with respect to the ag-
gregation relationships of the related metamodel. Com-
pared to our work, the notion of model fragment pro-
posed in this approach is not formalized and is more
restrictive than our notion of submodel since it only
considers structural constraints based on the aggrega-
tion relationships. Our work could contribute advanta-
geously to this area on two main points. First, the notion
of model fragment could be substituted with our notion
of submodel to improve the consistency of model frag-
ments transmitted as parameter. Second, the operation
of transmitting a consistent model fragment could be
enhanced with the definition of our extraction operator.

8 Conclusion

In Model-Driven Engineering, the capacities of handling,
comparing, extracting or delimiting proper submodels
or parts (also called fragments or slices in other works)
of a model are at the core of many activities, for ex-
ample, model management through model repositories
which was presented as a typical situation and applica-
tion. Despite the obvious importance of the submodel
notion and its corresponding relationship in MDE prac-
tices, few works were dedicated to their characterization
and systematic investigation of their properties. It is the
intent of this paper to contribute to this need.

For this, we started from a formal definition of a
model as a set of model elements plus a set of depen-
dency constraints that it asserts over these elements.
This original formulation is simple and powerful enough
to define models, submodels or any fragment of a model
in order to precisely characterize their inclusion rela-
tionships. From this setting, we isolated the concepts
of closed, covariant and invariant submodels which lead
to interesting properties that we stated. In particular
we showed that submodel transitivity can be guaran-
teed thanks to the notion of submodel invariance. This
work is the core of the paper and lays algebraic basis for
deeper understanding of the submodel notion.

This formalism offers keys to analyze and character-
ize operations which manipulate submodels. For exam-
ple, we analyzed the operator which consists in extract-
ing a model from another one when selecting some subset
of its elements. Thanks to the preceding formalization,
its properties were systematically examined. This allows
to precisely position the produced models as qualified
submodels compared to overall models under considera-
tion.

The same can be applied to many other model oper-
ations. The last part of the paper is dedicated to a syn-
thesis on related works and MDE practices which make

From Subsets of Model Elements to Submodels 25

directly use or resort to the submodel notion. As far as
engineering is concerned, stated properties are related to
many expected qualities, such as locality, modularity and
transitivity of model processing operation. As mentioned
in this section, we ourselves do use the submodel notion
in our works on view-oriented and template-based mod-
eling where expected final models appear to be assem-
blies of submodels. Let us recall that the present stating
comes from a generalization of these experiences. Back-
wardly, thanks to this groundings, we are systematically
formalizing these practices and qualifying engaged sub-
models.

More generally, presented results can be seen as a
foundation for further investigation on submodel opera-
tion studied elsewhere. In the same last section, we ex-
amined related works, compared to our contribution. It
appears that many acceptances of the submodel notion
(due, for example, to Model Composition or conversely
Model Extraction, Model Compatibility) could advan-
tageously profit of the results presented in this paper
in order to better characterize practices and produced
submodels. As a conclusion, we hope that this work will
help in the quest for a better structuring of the MDE
“model space” [27].

References

1. MDA. Home Page. http://www.omg.org/mda, 1997.

2. M. Acher, P. Collet, P. Lahire, and R.B. France. Slic-
ing feature models. In Proceedings of 26th Interna-
tional Conference on Automated Software Engineering
(ASE’11), pages 424–427. IEEE/ACM, 2011.

3. M. Alanen and I. Porres. Difference and Union of Mod-
els. In Proceedings of 6th International Conference on
the Unified Modeling Language, Modeling Languages and
Applications (UML’03), volume 2863 of LNCS, pages 2–
17. Springer, 2003.

4. B. K. Appukuttan, T. Clark, A. Evans, G. Maskeri,
P. Sammut, L. Tratt, and J. S. Willans. A pattern based
approach to defining the dynamic infrastructure of UML
2.0. Technical report, March 2002.

5. J. H. Bae, K. Lee, and H. Seok Chae. Modularization
of the UML Metamodel Using Model Slicing. In Pro-
ceedings of 5th International Conference on Information
Technology: New Generations (ITNG’08), pages 1253–
1254. IEEE Computer Society, 2008.

6. E. Baniassad and S. Clarke. Theme: An Approach for
Aspect-Oriented Analysis and Design. In Proceedings
of 26th International Conference on Software Engineer-
ing (ICSE ’04), pages 158–167. IEEE Computer Society,
2004.

7. M. Barbero and J. Bézivin. Structured Libraries of Mod-
els. In Proceedings of 1st International Workshop on
Towers of Models (TOWERS’07), 2007.

8. J. Bézivin, F. Jouault, P. Rosenthal, and P. Valduriez.
Modeling in the Large and Modeling in the Small.
In Model Driven Architecture, volume 3599 of LNCS.
Springer, 2005.

9. A. Blouin, B. Combemale, B. Baudry, and O. Beau-
doux. Modeling Model Slicers. In Proceedings of 14th
International Conference on Model Driven Engineering
Languages and Systems (MoDELS’11), volume 6981 of
LNCS, pages 62–76. Springer, 2011.

10. O. Caron, B. Carré, A. Muller, and G. Vanwormhoudt.
A Framework for Supporting Views in Component Ori-
ented Information Systems. In Proceedings of 9th In-
ternational Conference on Object-Oriented Information
Systems (OOIS’03), volume 2817 of LNCS, pages 164–
178. Springer, 2003.

11. O. Caron, B. Carré, A. Muller, and G. Vanwormhoudt.
An OCL Formulation of UML 2 Template Binding. In
Proceedings of 7th International Conference on The Uni-
fied Modeling Language, Model Languages and Applica-
tions (UML’04), volume 3273 of LNCS, pages 27–40.
Springer, 2004.

12. O. Caron, B. Carré, A. Muller, and G. Vanwormhoudt. A
Coding Framework for Functional Adaptation of Coarse-
Grained Components in Extensible EJB Servers. In Pro-
ceedings of Objects, Components, Models and Patterns,
47th International Conference (TOOLS EUROPE’09),
volume 33 of LNBIP, pages 215–230. Springer, 2009.

13. T. Clark, A. Evans, and S. Kent. Aspect-oriented meta-
modelling. Computer Journal, 46(5):566–577, 2003.

14. S. Clarke. Extending standard UML with Model Compo-
sition Semantics. In Science of Computer Programming,
volume 44, pages 71–100. Elsevier Science, 2002.

15. J. Dingel, Z. Diskin, and A. Zito. Understanding and
improving UML package merge. Software and System
Modeling, 7(4):443–467, 2008.

16. D. D’Souza and A. Wills. Objects, Components
and Frameworks With UML: The Catalysis Approach.
Addison-Wesley, 1999.

17. T. Elrad, O. Aldawud, and A. Bader. Aspect-Oriented
Modeling: Bridging the Gap between Implementation
and Design. In Proceedings of 1st conference on Gener-
ative Programming and Component Engineering (GPCE
’02), volume 2487, pages 189–201. Springer, 2002.

18. A. Etien, A. Muller, T. Legrand, and X. Blanc. Com-
bining independent model transformations. In Proceed-
ings of 2010 ACM Symposium on Applied Computing
(SAC’10), pages 2237–2243. ACM, 2010.

19. R. B. France, J. M. Bieman, and B. H. C. Cheng. Repos-
itory for Model Driven Development (ReMoDD). In
Proceeding of MoDELS’06 Workshops, volume 4364 of
LNCS, pages 311–317. Springer, 2006.

20. R. B. France, G. Georg, and I. Ray. Supporting Multi-
Dimensional Separation of Design Concerns. In Proceed-
ings of AOSD Workshop on AOM: Aspect-Oriented Mod-
eling with UML, march 2003.

21. Object Management Group. Meta Object Facil-
ity (MOF) 2.0 Query/View/Transformation (QVT).
http://www.omg.org/spec/QVT/.

22. C. Guy, B. Combemale, S. Derrien, J. Steel, and J.M.
Jézéquel. On Model Subtyping. In Proccedings of 8th
European Conference on Modelling Foundations and Ap-
plications (ECMFA 2012), volume 7349 of LNCS, pages
400–415. Springer, 2012.

23. C. Jeanneret, M. Glinz, and B. Baudry. Estimating foot-
prints of model operations. In Proceedings of 33rd Inter-
national Conference on Software Engineering (ICSE’11),
pages 601–610. ACM, 2011.

26 Bernard Carré et al.

24. F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev. ATL:
A model transformation tool. In Science of Computer
Programming, volume 72, pages 31–39. Elsevier Science,
2008.

25. H. H. Kagdi, J. I. Maletic, and A. Sutton. Context-
Free Slicing of UML Class Models. In Proceedings of
21st IEEE International Conference on Software Main-
tenance (ICSM’05), pages 635–638. IEEE Computer So-
ciety, 2005.

26. P. Kelsen, Q. Ma, and C. Glodt. Models within Models:
Taming Model Complexity Using the Sub-model Lattice.
In Proceedings of 14th International Conference on Fun-
damental Approaches to Software Engineering, FASE’11,
volume 6603 of LNCS, pages 171–185. Springer, 2011.

27. S. Kent. Model Driven Engineering. In Proceedings of
the 3rd International Conference on Integrated Formal
Methods (IFM’02), volume 2335 of LNCS, pages 286–
298. Springer-Verlag, May 2002.

28. J. Klein, L. Hélouët, and J. M. Jézéquel. Semantic-based
Weaving of Scenarios. In Proceedings of 5th Interna-
tional Conference on Aspect-Oriented Software Develop-
ment (AOSD’06), pages 27–38. ACM, 2006.

29. B. Korel, I. Singh, L. H. Tahat, and B. Vaysburg. Slicing
of State-Based Models. In Proceedings of 19th Interna-
tional Conference on Software Maintenance (ICSM’03),
pages 34–43. IEEE Computer Society, 2003.

30. T. Kuhne. An Observer-Based Notion of Model In-
heritance. In Proceedings of 13th International Confer-
ence on Model Driven Engineering Languages and Sys-
tems (MoDELS’10), volume 6394 of LNCS, pages 31–45.
Springer, 2010.

31. Ph. Lahire, B. Morin, G. Vanwormhoudt, A. Gaignard,
O. Barais, and J-M Jézéquel. Introducing Variability
into Aspect-Oriented Modeling Approaches. In Proceed-
ings of 10th International Conference on Model Driven
Engineering Languages and Systems (MoDELS’07), vol-
ume 4735 of LNCS, pages 498–513. Springer, 2007.

32. K. Lano and S. Kolahdouz-Rahimi. Slicing Techniques
for UML Models. Journal of Object Technology, 10:11:1–
49, 2011.

33. T. Levendovszky, L. Lengyel, and T. Mészáros. Support-
ing domain-specific model patterns with metamodeling.
Software and Systems Modeling, 8:501–520, 2009.

34. D. Lucrédio, R. Pontin de Mattos Fortes, and J. Whit-
tle. Moogle: a metamodel-based model search engine.
Software and System Modeling, 11(2):183–208, 2012.

35. S. Melnik, E. Rahm, and Ph. A. Bernstein. Rondo: a
programming platform for generic model management.
In Proceedings of the 2003 ACM SIGMOD international
conference on Management of data, SIGMOD ’03, pages
193–204. ACM, 2003.

36. A. Muller, O. Caron, B. Carré, and G. Vanwormhoudt.
On Some Properties of Parameterized Model Applica-
tion. In Proceedings of 1st European Conference on
Model Driven Architecture - Foundations and Applica-
tions (ECMDA-FA’05), volume 3748 of LNCS, pages
130–144. Springer, November 2005.

37. S. Nejati, M. Sabetzadeh, M. Chechik, S. Easterbrook,
and P. Zave. Matching and Merging of Statecharts Speci-
fications. In Proceedings of 29th international conference
on Software Engineering (ICSE’07), pages 54–64. IEEE
Computer Society, 2007.

38. Y. R. Reddy, S. Ghosh, R. B. France, G. Straw, J. M.
Bieman, N. McEachen, E. Song, and G. Georg. Direc-
tives for Composing Aspect-Oriented Design Class Mod-
els. Transactions on Aspect-Oriented Software Develop-
ment I, 3380:75–105, 2006.

39. T. Reiter, E. Kapsammer, W. Retschitzegger, and
W. Schwinger. Model Integration Through Mega Op-
erations. In Proceedings of the International Workshop
on Model-driven Web Engineering (MDWE’05), 2005.

40. S. Sen, N. Moha, B. Baudry, and J-M. Jézéquel. Meta-
model Pruning. In Proceedings of 12th International
Conference on Model Driven Engineering Languages and
Systems (MoDELS’09), volume 5795 of LNCS, pages 32–
46. Springer, 2009.

41. S. Sen, N. Moha, V. Mahé, O. Barais, B. Baudry, and J-
M. Jézéquel. Reusable model transformations. Software
and Systems Modeling, 2010.

42. M. Siikarla, J. Peltonen, and J. Koskinen. Towards un-
ambiguous model fragments. Nordic Journal of Comput-
ing, 13:180–195, 2006.

43. A. Solberg, R. France, and R. Reddy. Navigating the
MetaMuddle. In Proceedings of 4th Workshop in Soft-
ware Model Engineering, 2005.

44. P. Sriplakich, X. Blanc, and M-P. Gervais. Applying
Model Fragment Copy-Restore to Build an Open and
Distributed MDA Environment. In Proceedings of 9th
International Conference on Model Driven Engineering
Languages and Systems (MoDELS’06), volume 4199 of
LNCS, pages 631–645. Springer, 2006.

45. P. Sriplakich, X. Blanc, and M-P. Gervais. Supporting
Collaborative Development in an Open MDA Environ-
ment. In Proceedings of 22nd IEEE International Con-
ference on Software Maintenance (ICSM’06), pages 244–
253. IEEE Computer Society, 2006.

46. P. Sriplakich, X. Blanc, and M.P. Gervais. Collaborative
software engineering on large-scale models: requirements
and experience in modelbus. In Proceedings of the 2008
ACM symposium on Applied computing, pages 674–681.
ACM, 2008.

47. J. Steel and J-M. Jézéquel. On model typing. Software
and System Modeling, 6(4):401–413, 2007.

48. G. Taentzer, C. Ermel, P. Langer, and M. Wimmer.
A fundamental approach to model versioning based on
graph modifications: from theory to implementation.
Software and Systems Modeling, pages 1–34, 2012.

49. Auxiliary Constructs Templates, UML 2.0 Superstruc-
ture Specification. http://www.omg.org/spec/UML,
2003.

50. J. Whittle, P. K. Jayaraman, A. M. Elkhodary, A. Mor-
eira, and J. Araújo. MATA: A Unified Approach for
Composing UML Aspect Models Based on Graph Trans-
formation. Transactions on Aspect-Oriented Software
Development VI, 6:191–237, 2009.

	Introduction
	Motivation
	Models
	Submodels and their properties
	Model Extraction
	Application: a Submodel Engine for EMF Models
	Related Works
	Conclusion

