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Abstract

The Lasso has been widely studied and used in many applications over the last decade. It
has also been extended in various directions in particular to ensure asymptotic oracle prop-
erties through adaptive weights (Zou, 2006). Another direction has been to incorporate
additional knowledge within the penalty to account for some structure among features.
Among such strategies the Fused-Lasso (Tibshirani et al., 2005) has recently been ex-
tended to penalize differences of coefficients corresponding to features organized along a
network, through the Generalized Fused-Lasso. In this work we investigate the theoret-
ical and empirical properties of the Adaptive Generalized Fused-Lasso in the context of
Generalized Linear Models, with emphasis on Logistic Regression. More precisely, we
establish its asymptotic oracle properties and propose an extensive simulation study to
explore its empirical properties. We especially show that it compares favorably with other
strategies. We also propose an adaptation of the Relaxed Lasso (Meinshausen, 2007).
Finally we present an original application of the Generalized Fused-Lasso to the Joint
Modeling framework where the design itself suggests the graph to be used in the penalty;
an illustration is provided on road safety data.

⋄ The views and opinions expressed herein are those of the author and do not necessarily reflect

the views of Novartis.
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1. Introduction

This paper deals with the general framework of regression that aims at unraveling rela-
tionships between a response variable Y and a vector of p covariates or features x ∈ R

p.
From a practical standpoint, a good comprehension of this relationship is notably useful
for prediction matters but also to understand the dynamics of variable Y itself that may
be driven by some influential components of x. In Statistics, a natural way to study the
relationship between Y and x is to first assume that this relationship can be correctly ap-
proximated by some simple model like Generalized Linear Models (McCullagh and Nelder,
1989) and then estimate the vector of parameters β of this model. Estimation is generally
performed by maximizing the log-likelihood of the model, yielding Maximum Likelihood
Estimators (MLEs). Under mild conditions, these estimators, and in turn, prediction based
on these estimators, enjoy good statistical properties (see, e.g., Fahrmeir and Kaufmann
(1985)). However, their variance are increasing functions of the number of parameters,
which scales as p for the models mentioned above. In situations where only a fraction of
the components of x are expected to be relevant, model selection then becomes desirable: in
addition to yield more interpretable models, it reduces the effective number of parameters
to be estimated, hence the variance of both estimates and predictions. Another popular
approach is to maximize a penalized version of the log-likelihood. Penalties based on ℓq
norms of parameter β, q ≥ 0, lead to shrunk estimates: absolute values of the estimates
are biased towards zero. By sacrificing some bias, the variance of the predicted values
can be decreased and shrinkage may improve the overall prediction accuracy. Moreover,
penalties based on ℓq norms of the parameters for q ≤ 1 encourage sparsity in the vector
of parameters, hence model selection. They are methods of choice to return interpretable
models that can enjoy good prediction properties.

The most famous example of such a method is the “Least Absolute Shrinkage and
Selection Operator” (Lasso) which was originally based on a penalization of the least-
squares criterion using the ℓ1-norm of the parameters (Tibshirani, 1996). If considering
a vector of parameters β = (β0, . . . , βp), with β0 the intercept term, the original Lasso
penalty is pen (β) = λ

∑p
j=1 |βj |, with λ some tuning parameter. Since then, it has been

extended to Generalized Linear Models (Van de Geer, 2008; Friedman et al., 2010). The
statistical properties of the Lasso have been extensively investigated, both in the low-
dimensional (fixed p) and high-dimensional (diverging p or even p ≥ n) cases (Knight and
Fu, 2000; Fan and Li, 2001; Leng et al., 2006; Wang et al., 2007; Zhao and Yu, 2007; Bunea
et al., 2007; Bickel et al., 2009). For instance, under some conditions, the Lasso enjoys
sparsistency, i.e. model selection consistency: it selects the right components of vector x

with high probability. However, even in the low-dimensional case, Zou (2006) stated that
non trivial conditions on the Gram matrix were necessary to ensure the Lasso sparsistency.
This condition is closely related to the irrepresentable condition introduced in Zhao and
Yu (2007), or the restricted eigenvalue condition of Bickel et al. (2009). We also refer
the reader to Section 6.13 in Bühlmann and Van De Geer (2011) for more details about
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these conditions. This has motivated some (inner) modifications of the Lasso itself. Zou
(2006) proposed the Adaptive Lasso with penalty pen (β,w) = λ

∑p
j=1 |βj |/wj which uses

adaptive weights wj for a differential penalization in the ℓ1 norm. In the fixed p setting,
Zou (2006) further showed that the Adaptive Lasso enjoys an asymptotic oracle property
with no particular assumption on the design matrix: as n grows to infinity, it identifies the
correct subset model with probability tending to one and estimates of non-zero components
perform as well as if the true underlying model were given in advance.

Another way to improve the Lasso is to consider additional terms in the penalty. For
instance the Elastic-Net approach proposed by Zou and Hastie (2005) consists in adding
a quadratic penalty term to the initial ℓ1 penalty such that pen(β) = λ1

∑p
j=1 |βj | +

λ2
∑p

j=1 β
2
j . The Elastic-Net is particularly desirable in the presence of highly correlated

features. Extensions of the Elastic-Net have been introduced to handle structured features.
For instance, the Smooth Lasso (S-Lasso) relies on an ℓ2-fusion penalty such that pen (β) =
λ1

∑
j |βj | + λ2

∑
j>1(βj − βj−1)

2 (Land and Friedman, 1996) (this is an extension of the

Elastic-Net because it can be shown that
∑

j>1(βj − βj−1)
2 = βTJTJβ =: ‖β‖2J , for

some matrix J ; see Hebiri and van De Geer (2011)). It is appealing when features can be
ordered and their coefficients vary smoothly. Adaptive versions of the Elastic-Net (Ghosh,
2007; Zou and Zhang, 2009) and of the S-Lasso have also been proposed (El Anbari and
Mkhadri, 2013). From a theoretical standpoint, these methods return estimates that enjoy
sparsistency under weaker conditions than the ones required by the Lasso; see Yuan and
Lin (2007); Jia and Yu (2010); Hebiri and van De Geer (2011); El Anbari and Mkhadri
(2013).

In fact, the S-Lasso was inspired by the Fused-Lasso of Tibshirani et al. (2005) that
has been proposed to enforce similarity between the effects of successive features by using
penalty pen (β) = λ1

∑
j |βj | + λ2

∑
j |βj − βj−1|. Theoretical properties of Fused-Lasso

estimates were studied in the Gaussian sequence model (which can be reformulated as a
linear regression model with the identity matrix as the design matrix, so that p = n for
this model) by Rinaldo (2009) and Qian and Jia (2012). Rinaldo (2009) worked under the
assumption that the variance of the noise vanishes as n grows to infinity and established
oracle prediction inequalities for a modified version of the Lasso estimate (he called this
version adaptive Fused Lasso but no adaptive weight are invoked). In Qian and Jia (2012),
the authors work under the assumption that the variance of the noise is constant and show
that Fused-Lasso estimates are generally not able to recover the signal pattern. In the
more general linear regression setting, Tibshirani et al. (2005) established some asymptotic
properties for the Fused-Lasso estimates, in the simpler case of fixed p. More recently,
Vaiter et al. (2011) established the sparsistency of the method in the high-dimensional
case under a bounded-noise assumption (and of course some assumption on the Gram
matrix).

The Fused-Lasso has been generalized by Höfling et al. (2010) to handle complex
structure among features effects. The motivation of the Generalized Fused-Lasso is that
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when available, prior information regarding the structure of features effects should be
used to increase the selection and prediction performance. The procedure consists in
using an external graph G defined by a set of p vertices V that stands for the p com-
ponents of vector β∗, and a set of edges E, such that two connected coefficients are sup-
posed to vary smoothly. This leads to the Generalized Fused-Lasso penalty pen(β, G) =
λ1

∑
j |βj |+ λ2

∑
(j,ℓ)∈E |βj − βℓ|. The algorithm proposed by Höfling et al. (2010) enables

to introduce weights in the penalty term following the idea of the Adaptive Lasso proposed
by Zou (2006). They give fast algorithms for solving the Adaptive Generalized Fused Lasso
which are based on coordinate-wise optimization but do not present any theoretical results.
In this work we propose to investigate the theoretical as well as the empirical properties
of the Adaptive Generalized Fused-Lasso. In Section 3 we first prove that the resulting
estimator enjoys asymptotic oracle properties, as n goes to infinity and p is fixed, in the
context of both linear and logistic regression models. Our asymptotic results constitute
a milestone for future extension to the case of diverging p. Using simulation studies we
show the empirical benefits of using a ℓ1-based fusion penalty on support recovery and
prediction, compared with other strategies (Section 4). We also show the benefits of using
adaptive weights and/or relaxation on Generalized Fused-Lasso estimates. Finally we pro-
pose in Section 5 an original application of the Generalized Fused-Lasso to the framework
of Joint Modeling, where the design of the study provides the graph to be used in the
penalty, and we apply this approach on road-safety data.

2. The Adaptive Generalized Fused-Lasso in GLMs

2.1 Model and loss functions

In this paper, we focus on two particular cases of generalized linear models (McCullagh
and Nelder, 1989): the usual linear regression model and the logistic regression model.
We mention that theoretical results for other generalized linear models would follow from
similar arguments. We decided to focus only on linear and logistic regression models
because they are the only ones handled in the algorithms of Höfling et al. (2010), and
also for the sake of clarity, since notations can become cumbersome when dealing with the
whole class of generalized linear models. For i = 1, . . . , n, let Yi and xi = (xi1, . . . , xip)

T

be the response variable and a p-dimensional vector of features (or covariates) respectively.
We consider the case of a fixed design, i.e., Yi is a random variable but vectors of features
xi are assumed to be fixed (non-random). Without loss of generality, we further assume
that

∑n
i=1 xij = 0. Finally define zi = (1,xT

i )
T .

The linear regression model is very standard, notably when the response variable is con-
tinuous. It writes

Yi = zTi β
∗ + σǫi,

where ǫi denotes some random noise, and σ > 0 is fixed and unknown. The vector
of coefficients β∗ ∈ R

p+1 is unknown and has to be estimated. More precisely, β∗ =
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(β∗
0 , β

∗
1 , . . . , β

∗
p)

T where β∗
0 denotes the intercept parameter and β∗

\0 = (β∗
1 , . . . , β

∗
p) cor-

responds to the regression coefficients pertaining to the covariates. Under this model,
estimation is generally performed by ordinary-least squares, which consists in minimizing
the squared error loss Jsq defined by

Jsq(β) =

n∑

i=1

Jsq(Yi, z
T
i β) =

1

2

n∑

i=1

(
Yi − zTi β

)2
, (1)

where function Jsq : (u, v) ∈ R
2 7→ (u− v)2/2 is introduced for future use.

When the response variable is binary (Yi ∈ {0, 1} is often called label or class), the logistic
model is the most standard one. Introducing the logit function, logit(x) = log(x/(1 −
x)), the class probability, or equivalently the expectation of Yi, is πi = P(Yi = 1) =
logit−1(zTi β

∗) = 1/(1+ exp(−zTi β
∗))), where logit−1 is the reciprocal of the logit function.

Again, the vector β∗ ∈ R
p+1 is unknown and has to be estimated. Estimation is usually

performed by maximizing the log-likelihood of the model, which is equivalent to minimizing
the logistic loss function Jlo, given by

Jlo(β) =

n∑

i=1

Jlo(Yi, z
T
i β) = −

n∑

i=1

{
Yiz

T
i β − log

(
1 + exp(zTi β)

)}
, (2)

where function Jlo : (u, v) ∈ R
2 7→ −uv + log(1 + exp(v)) is introduced for future use.

2.2 The Adaptive Generalized Fused-Lasso penalty

We focus on ℓ1-based Fused penalties inspired from the Fused-Lasso of Tibshirani et al.
(2005). In this framework features (x1, . . . ,xp) correspond to p successive positions, and to
account for sparsity in terms of successive differences, the original Fused penalty is defined
by:

pen(β) = λ(1)
n

p∑

j=1

|βj |+ λ(2)
n

p∑

j=2

|βj − βj−1|,

and depends on two tuning parameters λ
(1)
n and λ

(2)
n . Then this Fused framework has been

generalized by Höfling et al. (2010) to the case of networks of features. This Generalized
Fused penalty is of great interest when connected features along some network may have
similar effects on the response. Consider a graph G = (V,E), with node set V that
corresponds to the indices of coefficients in β\0 (i.e. V = {1, ...p}), and edge set E that
corresponds to pairs of connected coefficients indices (j, ℓ) with j > ℓ. The graph G that is
used in the penalty corresponds to some prior knowledge given by an expert, and hence is
fixed. The Generalized Fused-Lasso penalty consists in penalizing all coefficient differences
for which an edge exists in G:

pen(β;G) = λ(1)
n

∑

j∈V

|βj |+ λ(2)
n

∑

(j,ℓ)∈E

|βj − βℓ|. (3)
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The Fused-Lasso penalty of Tibshirani et al. (2005) corresponds to a Generalized Fused-
Lasso penality based on a chain graph, where (j, ℓ) ∈ E if and only if ℓ = j− 1 (see Figure
1 for a simple illustration).

Adaptive weights can further be introduced following the idea of the Adaptive Lasso
proposed by Zou (2006). This results in the Adaptive Generalized Fused-Lasso penalty:

penAda(β;G,w) = λ(1)
n

∑

j∈V

w
(1)
j |βj |+ λ(2)

n

∑

(j,ℓ)∈E

w
(2)
jℓ |βj − βℓ|.

where w
(1)
j and w

(2)
jℓ are weights vectors. In this paper (where p is fixed) they are based

on initial Maximum-Likelihood (ML) estimates β̃ of β∗. More precisely, they are set to

w
(1)
j = |β̃j |−γ and w

(2)
jℓ = |β̃j − β̃ℓ|−γ , where γ is some fixed positive constant. The

rationale is to penalize more heavily coefficients (or differences of coefficients) when their
ML estimates are small: the higher γ, the more trust is put into the ML estimates. A
typical value for γ is 1 (value that is used in our simulations and applications). The
Adaptive Generalized Fused criterion Q is then simply defined, for given graph G and
weights w, as

Q(β) = J(β) + penAda(β;G,w), (4)

where the loss function is J = Jlo or J = Jsq depending on the working model (see equations
(1) and (2) above).

2.3 Application of the Generalized Fused penalty to Joint Modeling

Interestingly, another source of knowledge concerning features structure can be provided
by the design of the study itself. In this work, we propose an original application of
the Generalized Fused-Lasso framework to the case of joint estimation of multiple sparse
regression models. The joint modeling framework described here has some connections
with seemingly unrelated regression problems and multi-task learning (see Huang et al.
(2012) and the references therein). More specifically we consider the very common case of
data collected from distinct strata, which often arises in epidemiology where each stratum
can be defined by crossing gender, age and ethnicity for instance. The design is structured
according to a known (and fixed) categorical vector (C1, . . . , Cn) taking values in {1, . . . , C},
with C ≥ 1 the total number of strata. Let nc be the number of observations falling into
stratum c (so that n =

∑
c nc). Without loss of generality, we further assume that the n

observations are ordered so that the first n1 observations correspond to stratum 1 (that is
Ci = 1 for i = 1, . . . , n1), the next n2 observations correspond to stratum 2, and so forth.
In the case of a linear regression model, we would have

Yi = zTi β
∗
Ci + σǫi for i = 1, . . . , n,

where β∗
c , c = 1, . . . , C, denotes the vector of parameter for stratum c. The purpose of

the analysis is to determine whether the distribution of the response varies across strata,
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Chain Graph Clique Graph Star Graph

β1 β2 β3 β4 β5 β6
j = 0 j = 1 j = 2 j = 0 j = 1 j = 2

Figure 1: Typical examples of graphs used in the Generalized Fused-Lasso penalty. (Left)
The chain graph is typically used when covariates are naturally ordered as is the case for
CGH array. This example illustrates the situation where p = 6. (Middle) The clique
graph is typically used in the joint modeling context (p = 2 and C = 4 in this example).
(Right) The star graph is typically used in the joint modeling context, when one stratum
serves as the reference (p = 2 and C = 4 in this example).

i.e. to detect which components of β∗
c do vary with c. Constructing independent (possibly

sparse) models for each stratum would not take advantage of the common structure, while
constructing a single model for the whole data set would mask the differences. Alterna-
tively, the Generalized Fused-Lasso can be used to couple estimations obtained from each
stratum, encouraging them to share a common structure. More precisely, we propose the
following penalty:

C∑

c=1

{
λ(1)
n

p∑

j=1

w
(1)
j |βc,j |

}
+ λ(2)

n

p+1∑

j=0

∑

c1>c2

w
(2)
c1,c2,j

|βc1,j − βc2,j |,

where w
(1)
j and w

(2)
c1,c2,j

are appropriate adaptive weights. Parameter λ
(2)
n governs the

amount of shrinkage for differences between strata: if null, this penalty resumes to C inde-
pendent Lasso penalties. If positive, the Fused part of the penalty encourages coefficients
βc1,j and βc2,j to be at least close to each other (that is, the jth coefficient in strata c1 and
c2 respectively). In Appendix we give more details on particular aspects of Joint modeling:
we show that the general context described here induces a clique graph in the penalty,
while the case of designs with a control stratum induces a star graph instead (see Figure 1
for a simple illustration).

3. Theoretical results

In this section, we study the asymptotic properties of the Adaptive Generalized Fused-
Lasso estimator in both the Gaussian and logistic regression contexts. More precisely, we
assume that p is fixed and let n grow to infinity. The case where the dimension p may
grow as the sample size n increases is much more tricky and is left for future research.

8



As mentioned above, our results readily extend to other generalized linear models, under
the same assumptions as AL1 and AL2 below, and using the same arguments as the ones
used in our proofs (see Sections 7.2 and 7.4 in the Appendix).
Before stating our results some notations and assumptions need to be introduced. Let
A = {1 ≤ j ≤ p, β∗

j 6= 0} be the support of β∗
\0 and p0 = |A| its cardinality (i.e., the

true vector of regression parameters β∗
\0 is assumed to have p0 non-zero elements). Further

consider the set
B = {(j, ℓ) ∈ E, β∗

j 6= 0 and β∗
j = β∗

ℓ }.
For future use, note that B ⊂ A × A. For any integer k, we denote by 0k, 1k and Ik the
vector of 0’s and 1’s in R

k and the identity matrix of size k. For any subset S ⊆ {1, . . . , p},
we denote by S̄ its complement in {1, . . . , p}, and for any vector β ∈ R

p+1 we further
denote by βS the vector given by the coordinates of β the index of which are in {0} ∪ S.
Moreover, we denote by ‖ · ‖ the usual Euclidian norm. For any x ∈ R, we define the
function sign(x) which equals +1 if x > 0, −1 if x < 0 and 0 if x = 0. We also introduce
Z = [z1, . . . , zn]

T , X = [x1, . . . ,xn]
T and Y = [Y1, . . . , Yn]

T . Finally, for any (possibly
random) event Ω, we denote by I(Ω) the indicator function which equals 1 if Ω is true and
0 otherwise.
In the Gaussian context, we work under the following assumptions.

• A1 Variables ǫ1, . . . , ǫn are independent identically distributed random variables with
mean 0 and variance 1;

• A2 Matrix ZTZ/(nσ2) converges to C where C is a positive definite matrix.

In the logistic regression context we denote by I(β) the empirical Fisher’s matrix of size
(p+1)× (p+1). For future use, observe that I(β∗) = ZTDZ, where D denotes the n×n
diagonal matrix with i-th diagonal element given by πi(1− πi). For any δ ≥ 0, we further
denote by Nn(δ) the neighborhood of β∗ defined by

Nn(δ) =

{
β ∈ G/

∥∥∥∥
[
I(β)− 1

2

]T
(β − β∗)

∥∥∥∥ ≤ δ

}
.

We will work under the following conditions:

• AL1 I(β∗)/n converges to C where C is a positive definite (p+1)× (p+1) matrix;

• AL2 As n goes to ∞,

max
β∈Nn(δ)

∥∥∥∥I(β)−
1
2I(β∗)

[
I(β)− 1

2

]T
− Ip+1

∥∥∥∥ → 0.

Assumptions AL1 and AL2 are standard when working under generalized linear models
(McCullagh and Nelder, 1989). Assumption AL1 is similar to A2, which was used by,
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e.g., Tibshirani et al. (2005) in their study of the Fused-Lasso in the Gaussian context.
Let us remark that under AL1 or A2, criterion (4) corresponds, for n large enough, to
a strong convex optimization problem, and thus is not concerned by the issue of multiple
local minima.

We first state an asymptotic result for logistic regression models in the non adaptive
case, which is similar to Theorem 1 of Tibshirani et al. (2005), established in the Gaussian
case for the Generalized Fused-Lasso based on chain-graphs. The proof is given in the
Appendix (Section 7.2).

Theorem 1 Let β̂ be the minimizer of criterion Q defined in (4) with J = Jlo or J = Jsq

in the non adaptive case (that is with w
(1)
j = 1 and w

(2)
jℓ = 1 for all j, ℓ). If λ

(m)
n /

√
n →

λ
(m)
0 ≥ 0 (m = 1, 2), then under assumptions A1-2 for the Gaussian case and AL1-2 for

the logistic case, √
n
(
β̂ − β∗

)
→d argmin(V),

where V is the function defined, for u = (u0, . . . , up) ∈ R
p+1, as

V(u) = uTW +
a

2
uTCu+ λ

(1)
0

p∑

j=1

{ujsign(β∗
j )I(β

∗
j 6= 0) + |uj |I(β∗

j = 0)}

+λ
(2)
0

∑

(j,ℓ)∈E

{(uj − uℓ)sign(β
∗
j − β∗

ℓ )I(β
∗
j 6= β∗

ℓ ) + |uj − uℓ|I(β∗
j = β∗

ℓ )}.

Above, W has an N (0p+1,C) distribution and a = 1 in the logistic case and a = σ2 in the
linear case.

This result establishes the root-n consistency of non-adaptive Generalized Fused-Lasso es-

timates. However, this result also implies that when λ
(m)
n = O(

√
n), for m = 1, 2, the

support of β∗ can not be recovered with high probability by non-adaptive Fused-Lasso
estimates, as stated in the following proposition whose proof is given in the Appendix (see
Section 7.3).

Proposition 2 Let β̂ be the minimizer of criterion Q defined in (4) with J = Jlo or

J = Jsq in the non adaptive case (that is with w
(1)
j = 1 and w

(2)
jℓ = 1 for all j, ℓ). Further

set Ãn = {1 ≤ j ≤ p, β̂j 6= 0}. If λ(m)
n /

√
n → λ

(m)
0 ≥ 0 (m = 1, 2), then under assumptions

A1-2 for the Gaussian case and AL1-2 for the logistic case,

lim sup
n

P(Ãn = A) ≤ c < 1,

where c is a constant depending on the true model.
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We now show that for appropriate choices of λ
(m)
n = O(

√
n) for m = 1, 2, the Adaptive

Generalized Fused-Lasso estimator β̂
ad
, defined as the minimizer of criterion Q in (4),

enjoys asymptotic oracle properties in both the Gaussian and logistic regression contexts,
contrasting with its non-adaptive counterpart. We introduce An = {1 ≤ j ≤ p, β̂ad

j 6= 0}
and

Bn = {(j, ℓ) ∈ E, β̂ad
j 6= 0 and β̂ad

j = β̂ad
ℓ }.

Some more notations are needed before stating our result: in particular, the number s0
of distinct non-zero values in β∗

\0 “supported” by G needs to be precisely defined. The
edge set E can be decomposed as E = EA ∪ EĀ where EA = {(j, ℓ) ∈ E : β∗

j β
∗
ℓ 6= 0} and

EĀ = {(j, ℓ) ∈ E : β∗
j β

∗
ℓ = 0} correspond to the set of edges made of vertices in A only

and the set of edges made of at least one vertex in Ā respectively. Subset EA can further
be decomposed as EA = E 6=

A(β
∗) ∪ E=

A(β
∗) with E=

A(β
∗) = {(j, ℓ) ∈ EA : β∗

j = β∗
ℓ } = B

and E 6=
A(β

∗) = {(j, ℓ) ∈ EA : β∗
j 6= β∗

ℓ }. Then consider the graph GB = (A,B) and denote
by s0 the number of its connected components (e.g., in the particular case where G is a
chain graph, s0 is the number of segments consisting of non-zero and equal coefficients).
Observe that d0 ≤ s0 ≤ p0, where p0 = |A| is the number of non-zero components in β∗

\0

and d0 is the number of distinct non-zero values in β∗
\0. We actually have s0 = p0 if and

only if (β∗
j = β∗

ℓ 6= 0 ⇒ (j, ℓ) /∈ E). On the other hand, s0 = d0 if and only if for all (j, ℓ)
such that β∗

j = β∗
ℓ , j and ℓ belong to the same connected component of GB. Now denote

by A1, . . .As0 the sets of vertices of each connected components of GB, with A =
⋃s0

s=1As,
and set js = min{As} for s = 1, . . . , s0. Now we can define β∗

B = (β∗
0 , β

∗
j1
, . . . , β∗

js0
)T , which

is composed by the intercept and the s0 distinct non-zero values of β∗
\0 supported by G; we

further set β̂
ad

B = (β̂ad
0 , β̂ad

j1
, . . . , β̂ad

js0
)T its estimate. Now denote by XB the matrix of size

n × s0, whose s-th column, 1 ≤ s ≤ s0, is XBs =
∑

j∈As
Xj , where Xj is the j-th column

of X. Finally set ZB = (1n,XB) and denote by CB the (s0 +1)× (s0 +1) positive definite
matrix that is defined as the limit, as n → ∞, of (i) (ZB

TZB)/(nσ
2) in the linear case

and (ii) I(β∗
B)/n in the logistic case, where I(β∗

B) denotes the Information matrix of the
model induced by B, that is I(β∗

B) = ZT
BDZB. We have now all the ingredients to state

our main result.

Theorem 3 If λ
(m)
n /

√
n → 0 and λ

(m)
n n(γ−1)/2 → ∞, (m = 1, 2), then, under assumptions

A1-2 for the Gaussian case and AL1-2 for the logistic case, the Adaptive Generalized
Fused-Lasso estimator satisfies the following properties:

1. Consistency in variable selection: P [An = A] → 1 and P [Bn = B] → 1 as n → +∞.

2. Asymptotic normality:
√
n
(
β̂
ad

B − β∗
B

)
−→d N

(
0s0+1,CB

−1
)
.

The proof of Theorem 3 is provided in the Appendix (see Section 7.4).
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4. Simulation study

We perform an extensive simulation study to explore the performance of the Adaptive
Generalized Fused-Lasso penalties in Logistic Regression. Our objectives are:

1. to illustrate our theoretical results using designs inspired from Zou (2006) with p = 4
on Adaptive Fused penalties based on chain graphs,

2. to study the influence of the network provided to the Generalized Fused penalty on
the performance in terms of selection, estimation and prediction,

3. to show the interest of using the Generalized Fused-Lasso in the context of joint
modeling.

We mention that simulations were also performed in the context of linear regression,
which lead to similar conclusions (not shown).

4.1 Simulations Setting

Setting (Y,X). Our theoretical results being stated in the fixed design setting, we first
define N as the maximal sample size considered in a given scenario (for instance if samples
of size n = 24, 120, 240 and 1200 were considered then N = 1200), and we generate N i.i.d.
predictors xi ∈ R

p, i = 1, . . . , N from a N (0p,C\0\0) distribution, where C\0\0 is some

given covariance matrix of size p × p. Then, given X = (x1, . . . ,xn)
T and β∗, the vector

of true coefficients (see the paragraph below for the choice of β∗), the n-vector of labels
is generated according to a Bernoulli distribution such that Yi ∼ B(πi), with πi defined
as in Section 2. Fifty such vectors of labels are generated and results presented below
correspond to averages over these 50 replicates (confidence intervals based on the central
limit theorem also appear on our figures).

Choosing β∗. In all our experiments, the true intercept term β∗
0 is set to 0. Then

the remaining components of vector β∗ are chosen to achieve a given Signal to Noise
Ratio (SNR), which is defined as SNR2(Z,β∗) = ‖Zβ∗‖2/(nσ2) in linear regression. In
Generalized Linear Models the link function should be accounted for in the definition of
the covariates effects, which motivates a likelihood-based generalization of the SNR such
that:

SNR(Z,β∗) =

∑n
i=1 E

(
Jlo(Yi, β̄)− Jlo(Yi, z

T
i β

∗)
)

∑n
i=1 EJlo(Yi, β̄)

,

with Jlo(Yi, β̄) the log-likelihood of the null model. This generalization reduces to a R2 in
linear regression (Heinzl and Mittlböck, 2003).

Choosing G = (V,E). For a given true vector of coefficients β∗ the best graph is the
one whose edges correspond to equal coefficients only ((j, ℓ) ∈ E, with j > ℓ, if and
only if β∗

j = β∗
ℓ ), and the worst graph is the one whose edges correspond to coefficients

12



{β∗
j = β∗

ℓ } {β∗
j 6= β∗

ℓ }
(j, ℓ) ∈ E TN differences FN differences
(j, ℓ) /∈ E FP differences TP differences

Criteria SpeG = TN/(TN+ FP) SensG = TP/(TP+ FN)

Table 1: Measures of the suitability of a particular graph G = (V,E), for a given true
vector of coefficients β∗: sensitivity-like and specificity-like criteria. FP for False Positive,
TP for True Positive, FN for False Negative and TN for True Negative.

of different values only. In the latter case, the graph in the penalty provides a false
information regarding pairs of equal coefficients. Between these two extreme cases, there
exists a continuum of discrepancies between informations supported by E and the true
differences in β∗: when choosing a particular graph, the statistician actually tries to guess
the true structure of β∗ and, of course, the better the guess the better the expected results.
The suitability of graph G = (V,E), i.e., the accuracy of the guess, can be measured by
sensitivity-like and specificity-like criteria. We denote by SensG, the proportion of null
differences that are supported by the graph among true null differences, and SpeG the
proportion of non-null differences that are not supported by the graph among true non-
null differences (see Table 1). The highest these criteria the most accurate the guess, and
the most suitable is the graph for the problem at hand. In some experiments below, we
make this suitability vary to investigate its impact on selection, estimation and prediction
performance of Adaptive Generalized Fused-Lasso estimates.

4.2 Implementation

The Adaptive Generalized Fused Lasso was solved with the algorithms described in Höfling
et al. (2010); the corresponding R package will be made available soon.

The Relaxed Adaptive Generalized Fused-Lasso. The Relaxed Lasso of Mein-
shausen (2007) has been shown to lead to less biased estimates than the crude Lasso:
we therefore implemented Relaxed versions for the Adaptive Generalized Fused-Lasso (as
well as for each of the competing method presented below), setting coefficient φ of Mein-
shausen (2007) to 0. These methods return unshrunk (unbiased) estimates of non-null
coefficients that are obtained by a 2-step approach. The principle of the Relaxed Adaptive
Generalized Fused-Lasso is as follows. For any given pair (λ1, λ2), we first run the Adaptive

Generalized Fused-Lasso method, and obtain a vector β̂
ad

λ1,λ2
. Unshrunk estimates β̂λ1,λ2

are then obtained by standard (i.e., unpenalized) maximum likelihood computed under a

constraint induced by the sparsity and structure of β̂
ad

λ1,λ2
. More precisely, adopting no-

tations similar to those used in Rinaldo (2009), there exists a (possibly trivial) partition

{P1, . . . , PĴ} of {1, . . . , p} such that β̂
ad

λ1,λ2
=

∑Ĵ
j=1 ν̂jIPj

, where IPj
is the p-dimensional

13



vector whose kth coordinate is 1 if k ∈ Pj and 0 otherwise. Further introduce ŝ0 = the

number of distinct non-null coefficients of β̂
ad

λ1,λ2
. Now, denoting by Xk the k-th column

of matrix X, we set Z̃ = (1n, X̃) where X̃ is the [n× ŝ0] matrix with column j defined by
X̃j =

∑
k∈Pj

Xk. A vector of unshrunk estimates for the distinct non-null coefficients of

β̂
ad

λ1,λ2
can then be obtained as

˜̂
βλ1,λ2

= argmax
β

n∑

i=1

{Yiz̃iβ − log (1 + exp(z̃iβ))} ,

where z̃i is the i-th line of matrix Z̃. The vector β̂λ1,λ2
∈ R

p+1 is then easily derived from
˜̂
βλ1,λ2

. This vector is the one returned by our Relaxed Adaptive Generalized Fused-Lasso.

Selection of the tuning parameters. The Fused-Lasso methods (as well as the com-
peting methods presented below) involve some tuning parameters. Given a (possibly 2-d)
grid of potential values for these tuning parameters, two main approaches exist to select the
optimal one(s): cross-validation and Bayesian Information Criterion (BIC). In the context
considered in this paper (large n and small p), both approaches generally lead to compa-
rable results, the one based on the BIC being generally faster. Therefore, we only consider
this latter approach here. For instance, parameters (λ1, λ2) of the Relaxed Adaptive Gen-
eralized Fused-Lasso method are selected as the minimizers, on a predefined 2-d grid, of
the following criterion

BIC(λ1, λ2) = 2Jlo(β̂λ1,λ2
) + log(n)dfλ1,λ2 ,

where dfλ1,λ2 is set to the number of distinct non-null coefficients of β̂λ1,λ2
.

4.3 Competing methods

We compete the Adaptive Generalized Fused-Lasso with the Lasso and two other meth-
ods: a version of the Group Lasso with an extra ℓ1-norm penalty (see Section 7.5 in the
Appendix for more details) and a recent method proposed by Sun and Wang (2012) called
the Generalized Elastic Net. Given a graph G = (V,E), this method relies on the following
penalty

pen(β, G) = λ


α‖β‖1 + (1− α)

∑

(j,ℓ)∈E

(βj − βℓ)
2


 ,

and is implemented in the pclogit R-package. The authors interpret this penalty as a
graph-based Elastic Net penalty. This penalty has not been extended to handle adaptive
weights yet and does not propose two independent tuning parameters.

14



An important result of our numerous experiments is that the performance of non-fused
based penalties (i.e. the Lasso, the Generalized Elastic-Net, the Group Lasso and their
variants) are all comparable to the performance of the Relaxed Adaptive Lasso (in most
cases they are actually indistinguishable). Concerning the Generalized Elastic-Net this
illustrates the poor influence of the (graph-based) ℓ2 norm part of the penalty. This could
be explained by i) the lack of selection property of the ℓ2 norm that does not encourage
differences to be zero, ii) the current implementation of the method: the pclogit package
uses dependent tuning parameters which may lack of flexibility. It is worth mentioning
that the GE-Net is closely related to the Smooth Lasso of Hebiri and van De Geer (2011),
whose implentation is available in the linear case only (hence not used in the following
simulations that focus on the Logistic case). However we report that when compared to
the Fused Lasso in the linear case (not shown), the Smooth Lasso shows better perfor-
mance than the Lasso in ultra-correlated cases only. As for the Group Lasso, its penalty is
composed by the Lasso penalty plus the Group Lasso penalty: our results suggest that this
latter penalty may not be appropriate when considering networks of features since it does
not improve upon the “pure” Lasso. Consequently results pertaining to the Generalized
Elastic-Net and to the Group Lasso are in general not displayed in the sequel for a bet-
ter legibility of our results (they are displayed in our first experiments for illustration only).

Thus the simulation study focuses on ℓ1-based Fused penalties only, and we explore the
properties of “raw” Generalized Fused-Lasso (referred to as Fused on our figures), Adaptive
Generalized Fused-Lasso (Ada-Fused), Relaxed Generalized Fused-Lasso (Relaxed-Fused),
and Relaxed Adaptive Generalized Fused-Lasso (Relaxed-Ada-Fused). The comparisons
are made using the Relaxed Adaptive Lasso (Relaxed-Ada-Lasso) as a reference that does
not account for any network structure among features.

4.4 Evaluation criteria

Accuracy on support recovery. When comparing model selection algorithms, it is
common to use criteria originally devoted to the evaluation of binary classification algo-
rithms. For the evaluation of support recovery for instance, each component β∗

j is either
zero or non-zero, as is its estimate. Set as before A = {1 ≤ j ≤ p, β∗

j 6= 0} and, for any

estimate β̂ of β∗, An = {1 ≤ j ≤ p, β̂j 6= 0}. A true positive is then defined as a node that

belongs to A∩An, (i.e. the set of true positives is {1 ≤ j ≤ p, β∗
j 6= 0, β̂j 6= 0}). Similarly,

a true negative is defined as a node that belongs to Ā ∩ Ān, (i.e. the set of true negatives
is {1 ≤ j ≤ p, β∗

j = 0, β̂j = 0}). The accuracy on support recovery, denoted by Acc.A, is
then obtained by adding these two terms and dividing the result by p.

Accuracy on pairs of coefficients. In the Fused framework, we also need to evaluate
the performance regarding the classification of pairs of coefficients. As an illustration, in
the particular case of the chain-graph penalty (corresponding to consecutive coefficients),
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Indicator support recovery equality among connected coefficients

TPR |A ∩ An|/|A| |E 6=(β∗) ∩ E 6=(β̂)|/|E 6=(β∗)|
FPR |Ā ∩ An|/|Ā| |E=(β∗) ∩ E 6=(β̂)|/|E=(β∗)|
Acc (|Ā ∩ Ān|+ |A ∩ An|)/p (|E=(β∗) ∩ E=(β̂)|+ |E 6=(β∗) ∩ E 6=(β̂)|)/|E|

Table 2: Evaluation criteria for model selection.

this classification of pairs reduces to the classification of zero and non-zero elements of
the vectors of successive differences. Its evaluation enables to assess the capacity of the
method to detect equal consecutive coefficients. In the context of Joint Modeling this
evaluation enables to assess the method capacity to detect heterogeneity and homogeneity
across strata.

Introduce for any vector β ∈ R
p+1 and any subset of edges E ⊆ E, the subsets E=(β) :=

{(j, ℓ) ∈ E , βj = βℓ} and E 6=(β) := {(j, ℓ) ∈ E , βj 6= βℓ} of edges in E corresponding to
pairs of equal and non-equal components in vector β respectively. Considering pairs, a
true positive is an edge that belongs to E 6=(β∗) ∩ E 6=(β̂); definitions of true negatives and
accuracy for pairs of components follows similarly (see Table 2). Regarding the choice of E ,
we consider the particular choices E = E (no restriction), E = EA = {(j, ℓ) ∈ E : β∗

j β
∗
ℓ 6= 0}

(restriction to edges in the graph corresponding to pairs of non-zero true coefficients) and
E = EĀ := {(j, ℓ) ∈ E : β∗

j β
∗
ℓ = 0} (restriction to edges in the graph corresponding to pairs

consisting of at least one zero coefficient). In the sequel, we denote by Acc.E, Acc.E.A and
Acc.E.Abar the accuracy associated with E = E, E = EA and E = EĀ respectively.

Estimation and Prediction Performance. We also evaluate estimation consistency
by computing the mean squared error (MSE) of the various estimators β̂ based on empirical
versions of E(‖β∗ − β̂‖2). We finally evaluate Prediction accuracy on an external (test)
sample. More precisely, after estimating β∗ by β̂ on a dataset of size n, we generate

an independent test sample of N observations (z
(0)
i , Y

(0)
i ) (keep in mind that N is the

largest sample size considered in a given scenario). Then, for every observation i of the

test sample, we compute the predicted label Ŷ
(0)
i = I(logit−1(z

(0)T
i β̂) > 0.5), and the

prediction accuracy is given by Acc.Pred= (1/n)
∑n

i=1 I(Y
(0)
i = Ŷ

(0)
i ).

4.5 Illustration of our asymptotic results based on Zou’s example

Sampling Covariates. Our first example is adapted from Zou (2006) with p = 4 and
p0 = 3. Introduce ρ1 = −0.39 and ρ2 = 0.23, C11 = 1− ρ1I3 + ρ1J3 where J3 is the 3× 3
matrix of 1’s, and C12 = ρ213. The covariance matrix C of the covariates is then defined
as

C =

[
C11 C12

CT
12 1

]
.
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Zou (2006) used this example to illustrate situations where the Adaptive Lasso dramatically
outperforms the crude Lasso (especially in terms of support recovery).

Setting β∗. We set β∗ ∈ {log(2.5), log(2.5), log(2.5), 0}.
Network generation. We consider a Generalized Fused-Lasso penalty that is based on
a chain graph so that we have SpeG = SensG = 2/3.

Setting p/n. To illustrate our asymptotic results we evaluate the methods for increasing
sample sizes, namely n = 30, 60, 120, 300, 600, 1200 and 2000.

Results. Results are presented in Figure 2. First these results illustrate that Adaptive
Generalized Fused-Lasso estimates are consistent (their MSE converge to 0 as n grows), and
this consistency is slightly faster for Relaxed Adaptive Generalized Fused-Lasso estimates.
They also tend to share the same support as β∗ (Acc.A), and their successive differences also
tend to share the same support as successive differences of β∗ (Acc.E.A and Acc.E.Abar),
when n grows. On the contrary non-Adaptive Generalized Fused-Lasso estimates do not
enjoy these asymptotic oracle properties: they do not share the same support as β∗ and
are much slower to reach consistency (especially for the non-relaxed versions). Note that
as expected the Relaxed Adaptive Lasso never shrinks successive differences of non-zero
estimates to 0 so that this method is not efficient for the support recovery of successive
differences (Acc.E.A is “artificially” high for low SNR values because estimates are all null,
and so is their difference). More importantly, both consistency and sparsistency are slower
for the Relaxed Adaptive Lasso, compared to (Relaxed) Adaptive Generalized Fused-Lasso.
As for prediction accuracy, all the methods perform similarly for n ≥ 300. For n < 300
however, Relaxed Adaptive Lasso is outperformed by all the versions of the Fused-Lasso,
especially the ones using adaptive weights. As mentioned in Section 4, results obtained
with the Adaptive Group Lasso are almost the same as those obtained with the Adaptive
Lasso. As for GE-Net, results are a little worse because of the absence of adaptive weights.
This simple example confirms that Fused-like estimates outperform Lasso estimates in some
situations, in terms of both support recovery and prediction accuracy.

4.6 Assessing the performance of Adaptive Generalized Fused-Lasso estimates

Setting β∗. in order to explore difficult/easy configurations in terms of SNR, we make
non-null elements of β∗ take values in {log(1.1), log(2), log(4), log(8), log(12)}.

Sampling covariates. We sample xi such that xi ∼ Np(0,C),CAR(1) = 1/16
(
ρ|i−j|

)j=1,p

i=1,p
,

with ρ = −0.39 as proposed in Zou (2006).

Setting p/n and p0/p. We fix p = 24. As our theoretical results are asymptotic in n,
we consider cases where n/p ∈ {1, 5, 10, 50} to explore the performance of the methods
in asymptotic and non-asymptotic settings. Moreover, we explore different values of ratio
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Figure 2: Comparison of the methods according to various criteria evaluated on Zou’s
example, for increasing sample sizes.

p0/p ∈ {1/8, 1/4, 1/2} as the number of edges connecting null and non-null coefficients
depends on this ratio. Our results are summarized on Figures 4, 5, and 6.

Networks Generation for graph-based penalties. To study the influence of the
graph in the Fused penalty, we generate networks of features with different topologies. To
do so, we use a simplified version of the Stochastic Block Model (Airoldi et al., 2008), often
called the affiliation graph model. In its simplest form this model considers two categories
of nodes (null and non-null coefficients) whose connectivity is governed by parameter θ such
that P{j ∼ k|j ∈ A, k ∈ Ā} = 1 − θ, P{j ∼ k|j ∈ A, k ∈ A} = θ, and P{j ∼ k|j ∈ Ā, k ∈
Ā} = θ, where j ∼ k for j > k stands for (j, k) ∈ E. When θ increases there are fewer
edges between null and non-null coefficients, the easiest configuration being when θ = 1,
the most difficult when θ = 0. Parameter θ can also be interpreted in terms of Specificity
and Sensitivity of the graph provided to the penalty since E(SpeG(θ)) = E(SensG(θ)) = θ.
Examples of configurations considered here are given in Figure 3. Lastly, we mention that
edges of the graph are fixed across replicates.

Result 1: ℓ1-based Fused penalties show a cooperative effect on support recov-

ery. When graph G is highly specific (θ = 1; 0.8), ℓ1-based fused penalties show better
performance on support recovery compared with the Relaxed Adaptive Lasso (Figure 4).
When applied to the difference of coefficients, the ℓ1-norm helps in the identification of
true zeros and true non-zeros based on informative edges. Of course, when the graph pro-
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θ = 1 θ = 0.8 θ = 0.4 θ = 0

Figure 3: Networks generation for graph-based penalties with p = 24 and p0 = 6. Two
classes of nodes are present: rectangle white nodes correspond to null coefficients in β∗

while colored circle nodes correspond to non-null coefficients. Parameter θ governs the
intra/inter-group connectivity.

vides an erroneous information (edges between null and non-null coefficients only - θ = 0),
the Relaxed Adaptive Lasso should be preferred. Note that the “cooperative effect” of the
ℓ1-based fused penalty is higher when the proportion of non-null coefficients (p0/p) is high,
maybe because the proportion of informative edges increases with p0/p.

Result 2: The “raw” Fused-Lasso is not robust to mis-specification of the

graph in the penalty. The “raw” Fused-Lasso penalty (i.e. non-adaptive and without
relaxation) shows poor performance when the graph is mis-specified. The Accuracy on
support recovery is worst than the Relaxed Adaptive Lasso as soon as θ < 1 (Fig. 4), and
estimated parameters show an important bias even when n/p = 50 with a high SNR (Figure
6). Moreover, accuracies on pairs of coefficients (Figure 4) reflect the absence of selection,
as the majority of coefficients are not shrunk to zero when using the Fused penalty only
(Figure 6).

Result 3: Adaptive weights ? relaxation ? or both ? A general result is that
using adaptive weights and/or relaxation is always preferable than the “raw” Fused-Lasso:
i) Accuracies are higher (Acc.A, Acc.E.A, Acc.E.Abar), and ii) the modified versions of
the Fused-Lasso are more robust to mis-specification of the graph. Conclusions are similar
concerning the comparison with the Relaxed Adaptive Lasso that should be preferred when
the specificity of the penalty is low. Then considering the Adaptive version of the Fused-
Lasso (without relaxation), increases the accuracy support recovery that is higher than
the Fused-Lasso, and increases also the accuracy on differences involving null coefficients
(Acc.E.Abar). However, when focusing on non-null coefficients, some bias remains (even
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Acc.A Acc.Pred

non-relaxed relaxed non-relaxed relaxed
n/p = 1

non-adaptive 0.62 0.57 0.58 0.58
adaptive 0.54 0.55 0.58 0.58

n/p = 5

non-adaptive 0.67 0.73 0.61 0.62
adaptive 0.71 0.69 0.61 0.61

n/p = 10

non-adaptive 0.71 0.78 0.62 0.63
adaptive 0.78 0.76 0.63 0.63

n/p = 50

non-adaptive 0.79 0.88 0.65 0.65
adaptive 0.89 0.88 0.65 0.65

Table 3: Average Accuracies on support recovery (Acc.A) and on Prediction (Acc.Pred) ac-
cording to the use of adaptive and/or relaxed Generalized Fused-Lasso estimates. Averages
are computed across different configurations and SNRs.

if reduced, Fig. 6), and the relaxation strategy appears to be the most effective regarding
bias reduction.

Lastly, we determine if considering both relaxation and adaptive weights can improve
the performance of the Generalized Fused-Lasso. Table 3 provides a global view of varia-
tions of the Accuracies for support recovery according to n/p which allows us to draw a
global conclusion (across specificities and SNRs):

i) when n/p is low (∼ 1), neither the adaptive nor the relaxed Fused-Lasso outperform
the “raw” Fused-Lasso, which suffices maybe because there is not enough available
information to improve the selection procedure.

ii) when n/p is moderate (∼ 5, 10),using separate strategies is equivalent (relaxation
without weights or weights without relaxation)

iii) when n/p is high (∼ 50), the adaptive version is marginally more performant as more
information is available for an accurate estimation of weights, and using relaxation
does not change the performance.

iv) whatever n/p, all ℓ1-based Fused penalties are more accurate than the Lasso for
prediction (even when the graph provided is not specific, Fig. 5b), and there is no
difference among them.
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(b) Accuracies (support recovery and prediction) for ℓ1-based Fused penalties (n/p = 10, p0 = p/4).

Figure 4: Average accuracies for the detection of non-null coefficients (support recovery,
Acc.A), and for the detection of null differences of coefficients without null coefficients
(Acc.E.A) and with null-coefficients (Acc.E.Abar). The last row corresponds to the pre-
diction accuracy (Acc.pred). Columns correspond to configurations (θ = 1, 0.8, 0.4, 0).
Results correspond to p0 = p/2 (4a) and p0 = p/4 (4b).
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(b) Prediction accuracies for Fused penalties with p = 24, and n/p ∈ {1, 5, 10, 50}, p0 = p/2.

Figure 5: Influence of the n/p ratio on average accuracies for the detection of non-null coef-
ficients (support recovery, Acc.A, 5a), and on prediction accuracies, 5b). Rows correspond
to configurations (θ = 1, 0.8, 0.4, 0). Results correspond to p0 = p/2.

22



β
*
= log(2)

Relaxed−Ada−Lasso
Fused
Ada−Fused
Relaxed−Fused
Relaxed−Ada−Fused

0
3

β
*
= log(4) β

*
= log(8) β

*
= log(12)

θ
=

1

0
3

θ
=

0
.8

0
3

θ
=

0
.4

0
3

θ
=

0

(a) Estimated coefficients β̂j with n/p = 10.

β
*
= log(2)

Relaxed−Ada−Lasso
Fused
Ada−Fused
Relaxed−Fused
Relaxed−Ada−Fused

0
3

β
*
= log(4) β

*
= log(8) β

*
= log(12)

θ
=

1

0
3

θ
=

0
.8

0
3

θ
=

0
.4

0
3

θ
=

0

(b) Estimated coefficients β̂j with n/p = 50.

Figure 6: Estimated coefficients with respect to different configurations. The x-axis
corresponds to p = 24 positions of coefficients β̂. Rows correspond to configurations
(θ = 1, 0.8, 0.4, 0). Results correspond to p0 = p/2.
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4.7 Simulation Study in the context of Joint Modeling.

In this last simulation study we illustrate the interest of using Generalized Fused-Lasso
estimates in the context of joint modeling, as described in Section 2.3. We start by setting
the number of strata to C = 4 and we set nc = 200 so that n =

∑
c nc = 800. Those

parameters remain fixed in the study.

Setting β∗. Then we choose p = 20 and p0 = 6 for each stratum, and non-null values of
β∗
c take values in {log(1.1), log(1.5), log(2), log(2.5), log(3), log(5), log(7), log(9)}.

Sampling covariates. Covariates are generated for each stratum using a centered Gaus-
sian distribution with covariance matrix C supposed to be the same for each stratum.
Covariance matrix C is set to CAR(1) (as in the previous Section) with ρ = 0.5.

Varying Homogeneity between strata. The graph provided in the penalty is made
of p+ 1 cliques of size C, each clique being used to connect coefficients {β∗

j1, . . . , β
∗
jC}, for

j = 0, . . . , p. Then we consider 3 different configurations that differ in the repartition of null
and non-null coefficients within cliques, as illustrated in Figure 7. The first configuration
corresponds to the case where nodes in the graph either correspond to 4 null or non-null
theoretical coefficients (as in Fig. 7a). It is the most favorable configuration for Fused-like
estimates (SpeG = 0.07, SensG = 1.00). In the two other configurations true vectors β∗

c do
vary across strata. The second design considers three types of cliques (Fig. 7b, SpeG = 0.05
and SensG = 0.97), one being made of null coefficients only, and the other two mixing null
and non-null in the same proportion (3/4). The third configuration is the most difficult
one with cliques connecting half null and non-null coefficients (Fig. 7c, SpeG = 0.04 and
SensG = 0.96).

Competing methods. For the joint modeling problem, the Relaxed Adaptive Lasso

(which corresponds to criterion (4) with λ
(2)
n = 0) is very similar to computing Independent

Relaxed Adaptive Lasso estimates on each stratum. This latter option is more flexible
because the sparsity parameter has not to be equal for each stratum. We therefore include
it in our analysis instead of the Relaxed Adaptive Lasso: it is referred to as Independent
Relaxed Adaptive Lassos (and denoted by Relaxed-Ada-Lasso-Indep on our figures). We
also consider another version of the Lasso which consists in solving one Relaxed Adaptive
Lasso on the whole data set (obtained by putting all the strata together), after selecting
a reference stratum, and adding interaction terms between the remaining strata and the
covariates. This method is described in more details in Section 7.5 of the Appendix. It
is referred to as Interaction Relaxed Adaptive Lasso hereafter (and denoted by Relaxed-
Ada-Lasso-Inter on our figures).

Results. Figures 8 presents the results. To make this figure more legible, only Adap-
tive versions of the Fused-Lasso estimates are presented: non-Adaptive versions achieved
slightly worse performances in this simulation study. Our empirical findings confirm that
configuration 1 is easier than configuration 2 which is itself easier than configuration 3, for
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15× 6×

(a) Configuration 1: SpeG =
0.07 and SensG = 1.00

9× 6× 6×

(b) Configuration 2: SpeG =
0.05 and SensG = 0.97

9× 12×

(c) Configuration 3: SpeG =
0.04 and SensG = 0.96

Figure 7: Graphical representation of the three configurations considered in the simulation
study for the joint modeling problem. Keep in mind that the graph on which the Fused
penalty is based for this particular problem is composed by p+1 = 21 cliques of size C = 4.
The figure presents every possible type of cliques for each configuration. Nodes correspond
to coefficients, the theoretical value of which being either zero (white rectangles) or β∗ > 0
(blue circles).

Fused-type estimates. For instance, regarding Fused-type estimates only, best [resp. worst]
support recovery (Acc.A) and prediction (Acc.pred) accuracies are obtained for configu-
ration 1 [resp. configuration 3]. As expected, Independent Relaxed Adaptive Lassos are
are not sensitive to the level of heterogeneity across strata. But, for easy to moderately
difficult configurations (configurations 1 and 2 here), Fused-type estimates (especially the
Relaxed Adaptive Generalized Fused-Lasso ones) clearly outperform Independent Relaxed
Adaptive Lasso estimates, in terms of overall support recovery, prediction accuracy and,
of course, detection of heterogeneity across the strata (Acc.E.A and Acc.E.Abar). Under
the most difficult configuration, there is no gain in using Fused-type estimates in terms
of overall support recovery (for high SNR values, we even observe that Independent Re-
laxed Adaptive Lassos could achieve slightly better results). However, Relaxed Adaptive
Generalized Fused-Lassos are at least comparable to Independent Relaxed Adaptive Lassos
in terms of overall support recovery and still clearly better in terms of detection of het-
erogeneity across strata. Interestingly, they are also slightly better in terms of prediction
accuracy (this result is consistent with what was also observed in Section 4.6 even in situ-
ations where the graph was poorly suited). Another interesting result is that the method
relying on interaction terms is always outperformed by Fused-type estimates. Lastly, and
overall, Relaxed Adaptive Generalized Fused-Lasso is slightly better [resp. worse] than
its non-relaxed counterpart for support recovery, measured by Acc.A [resp. detection of
heterogeneity across strata, measured by Acc.E.A].

5. Joint modeling to analyze road-safety data

Road safety is a major (political) concern in the West. Driving under the influence of al-
cohol (DUI) is an established risk factor of car accidents. Interestingly, several studies also
suggest that DUI increases the risk of dying in an accident. But this result remains con-
troversial: biological evidence supporting this assumption is still lacking and the observed
effect of DUI on the risk of dying in an accident could be due to confounding variables
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Figure 8: Comparisons of the methods in the joint modeling problem with dependent fea-
tures (ρ = 0.5), according to various criteria. Each column corresponds to a given configu-
ration, which is itself related to homogeneity between strata: from the most homogeneous
(Configuration 1) to the most heterogeneous (Configuration 3).
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only. In the following we propose a joint modeling approach to handle the effects of both
DUI and confounding variables on the risk of dying in an accident.

Our dataset consists of n = 21, 064 drivers involved in single-car personal injury crashes.
The data were obtained from the systematic reports on road traffic injury crashes made
by the police between 2006 and 2009 in France (metropolitan). Current data show 33
covariates including the characteristics of the crash: type of road, urban/rural location,
lighting conditions (night with or without street lighting, dawn, daylight), and meteoro-
logical conditions (rain, wind, fog, fine weather) as well as the year of the crash. Data
also include characteristics of the drivers such as gender, age, seat belt use and vital status
(killed, injured or uninjured). Data on the crash-involved vehicles were also available, with
the location of the main impact and the vehicle first registration year for instance. In the
following we focus on the vital status of the driver only since every vehicle has one driver
but a variable number of passengers. Lastly, we mention that crashes in which no driver
was injured nor killed were excluded from the study, as well as crashes in which the only
individuals to be injured or killed were passengers.

We define 4 strata based on gender and DUI: strata 1-2 for Males and Females not
driving under the influence when the accident occured (10, 031 and 6, 385 individuals re-
spectively), and 3-4 for Males and Females driving under the influence when the accident
occurred (4, 093 and 555 individuals respectively). We use joint modeling to couple the
estimation of the four logistic models relating the probability of dying in a car accident
to various risk factors (one for each stratum). Most risk factors are indeed expected to
share the same effect on the probability of dying across the four strata. In particular, we
pay a particular attention to intercept parameters: they should be homogeneous across
strata if neither gender nor alcohol directly modified the risk of dying in a car accident
(gender and/or alcohol could have an indirect effect if other coefficients were observed to
vary across strata). We compare different penalization strategies (Relaxed Adaptive Fused-
Lasso, Independent Relaxed Adaptive Lassos, and Interactions Relaxed Adaptive Lasso)
and we also present unpenalized estimates derived from standard logistic regression models
independently built on each stratum. Each method returns a R

34×4 matrix, where the four
columns correspond to the four vectors of parameters β̂c ∈ R

34, including the intercept
term, for strata c = 1, . . . , 4 (Fig. 9).

Overall, there is a high concordance between supports of vectors β̂c, c = 1, . . . , 4, re-
turned by penalized methods, especially Relaxed Adaptive Generalized Fused-Lasso and
Independent Relaxed Adaptive Lassos. For instance, penalized methods all agree on the
absence of significant influence of most recorded variables on the risk of dying in an acci-
dent, given an accident occurred (the driver’s professional activity, the reason the journey
-professional or not- the period of the year -Q1, Q2 and Q3- i.e. the first, second and third
thirds of the year, the period of the day, the vehicle age, the year of crash, atmospheric
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conditions, the adherence condition, the flatness or the curvature of the road). On the
other hand, the risk appears to be higher for older drivers and for drivers under drugs, as
well as if the accident occurred on a shoulder, if the car hit a wall or a tree and if the main
impact was on the left side of the car. Factors that reduce the risk of dying are the use of
a seat-belt, non-bidirectional roads (i.e., roads with a median strip) and city roads (where
speed is generally lower). Interestingly the Relaxed Adaptive Fused-Lasso and Independent
Relaxed Adaptive Lassos return slightly different estimates for the influence of city roads.
This can be explained by aliasing between covariate “City Roads” (that equals 1 if the road
section is managed by a city, and not by a county, a region nor the country), and covariate
“City” that equals one if the crash occurred in a city (but not necessarily on a road section
managed by a city). These two covariates are correlated since covariate “City’” is most
often 1 when “City Roads” is 1. It would make sense to exclude one of them but we keep
both for illustration purposes. According to the Relaxed Adaptive Fused, both covariates
have homogeneous effects across strata, which suggests no interaction between these co-
variates and gender and DUI. This is also suggested by the Interactions Relaxed Adaptive
Lasso. As for independent Lasso estimates, they suggest differences across strata, which
are hard to interpret in this case. There are a few other differences between the three
penalized methods, but when Relaxed Adaptive Fused-Lasso and Interactions Relaxed
Adaptive Lasso estimates disagree, the Relaxed Adaptive Fused-Lasso most often agrees
with Independent Relaxed Adaptive Lassos. This is consistent with our observations from
the simulation study where these latter two methods performed the best. Let us finally
mention that the structure of the matrix obtained with the Adaptive Fused Lasso which
was the best for the detection of heterogeneity across strata on our simulation study, was
100% consistent with the one obtained with the Relaxed Adaptive Fused-Lasso.

Finally, the most important result is that Relaxed Adaptive Fused-Lasso indicates that
intercepts do vary across strata, suggesting an effect of both gender and DUI on the risk
of dying in a single-crash accident. More precisely, sober females are at a higher risk than
sober males, and, to a lesser extent, females under the influence are at a higher risk than
males under the influence. Moreover, irrespective on gender, drivers under the influence
are at a higher risk than sober drivers. However this result should be tempered by potential
confounding due to speed, which was not available here. For instance, drivers under the
influence are likely to drive faster than sober drivers. The effects of speed may be partly
captured by other covariates, but not entirely. Consequently residual “speed effects” could
be responsible for detected heterogeneities between intercepts.
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Figure 9: Estimates of the logistic regression models for studying the risk a dying in a car
accident with strata defined by combining gender and alcohol consumption.
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6. Discussion

In this work we established the asymptotic oracle properties of the Adaptive Generalized
Fused-Lasso estimates in the case of linear and logistic regression models, for fixed p. To
our knowledge these results are the first established for Fused-Lasso estimates in the setting
of GLMs, and are also the first established for the Generalized Fused penalty based on a
graph. Of course these results should be extended especially to the the high-dimensional
case where p may grow with n (or even p ≥ n). As mentioned in the Introduction, most
published papers dealing with Fused-Lasso estimates in high-dimension focused on the
chain-based Fused penalty in the Gaussian sequence model (i.e. the original Fused Lasso
of Tibshirani (1996) that supposes an identity design matrix X). Vaiter et al. (2011)
recently established some results for a class of penalized least-squares based on a class of
ℓ1 penalties that encompasses Generalized Fused Lassos. However the extension of such
results to GLMs with Adaptive weights would not be straightforward and thus would be
an interesting lead. Above all, non-asymptotic oracle prediction inequalities still need to
be established for Fused-like estimates: under the Linear Model for instance, and setting β̂

the Fused-Lasso estimate for some appropriate values of the tuning parameters, it is easy
to obtain inequalities of the form

‖X(β̂ − β∗)‖2 ≤ κ
p0 log(p)

n
with high probability,

for some positive constant κ, but the main question is about getting a similar inequality
with p0 replaced by the quantity s0 introduced in Section 3. Rinaldo (2009) established such
an inequality in the Gaussian sequence model, and only for a modification of the Fused-
Lasso (that was called Adaptive Fused-Lasso even though it does not rely on adaptive
weights). We believe that our simulation study suggests that such an inequality should
hold for Adaptive Generalized Fused-Lasso estimates, even if it was conducted in the
low-dimensional case. Indeed, we observed very good prediction performance for these
estimates under the Logistic Model. In particular, when the graph is appropriately chosen,
predictive performance of Fused-like estimates are much higher than those of the Lasso for
moderate sample sizes.

From the modeling point of view, using a graph that provides a correct information in
the penalty is of course crucial, and we demonstrated that the performance of Adaptive
Generalized Fused-Lasso estimates is deeply related to the suitability of the chosen graph,
especially for support recovery. This graph constitutes a formal description of some prior
knowledge on the problem that is investigated. We may stress that this graph does not
describe correlations among features but similarity between the effects of these features
under some model. Correlated features may share similar coefficients but this is not always
the case. For instance in epidemiology, smoking and alcohol consumption are generally
highly correlated. They further may share similar effects under a logistic model when
studying cardiovascular diseases so that it might make sense to draw an edge between the
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corresponding components in a graph. However, if studying lung cancer, they would not
share similar coefficients at all, and such an edge should not be drawn.

A particular situation where the graph is suggested by the design of the study itself is
what was called Joint Modeling here, where data come from various strata. In the most
general case, the graph consists of p+1 cliques, whose common size is the number of strata.
When the main question of interest is the detection of heterogeneity across the strata, we
believe that this type of graph is very natural. Indeed, it encourages coefficients to be
homogeneous across the strata, so that detected heterogeneities come from the data. It
has some connections with the statistical tests theory where tests are generally performed
under the null hypothesis (absence of heterogeneity in this case), and data need to be
far from this assumption in order to reject the null hypothesis. But even in the Joint
Modeling context, other graphs may be considered, under some particular circumstances:
for instance, stars may replace cliques if one stratum can serve as a reference.

7. Appendix

7.1 Application to the joint modeling of sparse regression models

Our objective here is to show how to rewrite the joint modeling problem as a particular
case of the Generalized Fused-Lasso problem introduced in (4). With the same notations
as in Section 2.3, the criterion considered in the joint modeling context can be written,

C∑

c=1

{ ∑

i:Ci=c

J (Yi, z
T
i βc) + λ(1)

n

p∑

j=1

w
(1)
j |βc,j |

}
+ λ(2)

n

p+1∑

j=0

∑

c1>c2

w
(2)
c1,c2,j

|βc1,j − βc2,j |, (5)

where J can typically be set to either Jsq or Jlo depending on whether linear or logistic

models are considered (see (1) and (2) above). In the absence of the λ
(2)
n -penalty term,

optimizing this criterion reduces to independently solve C Lasso problems, one for each

stratum. The λ
(2)
n -penalty term encourages coefficients βc1,j and βc2,j (that is, the coef-

ficient of the j-th covariate in the c1-th and c2-th stratum respectively) to be equal or
at least close to each other: in this sense, it couples the Lasso estimates that would be

obtained without this λ
(2)
n -penalty. In (5) above, intercept terms are not directly penalized

(the sum involved in the λ
(1)
n -penalty starts at j = 1) but are encouraged to be equal (the

sum involved in the λ
(1)
n -penalty starts at j = 0). Of course, other options for the intercept

terms can be considered.
We now show how to rewrite criterion (5) as a version of (4). Towards this aim, set

β = (βT
1 , . . . , β

T
C)

T ∈ R
C(p+1) and denote by Z = diag(Z1, . . . ,ZC), the [n×C(p+1)] block-

diagonal matrix, whose blocks are of size [nc×(p+1)] and defined as Zc = [1 Xc]. Here Xc

stands for the [nc × p] sub-matrix of X with rows corresponding to observations falling in
stratum c (by assumption, the vector of response variables is given by Y = (YT

1 , . . . ,Y
T
C)

T

with Yc := {Yi, Ci = c} denoting the vector of length nc containing the response variables
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corresponding to observations of the c-th stratum). Letting, for any two integers n1, n2,
n1%n2 be the rest of the division of n1 by n2, criterion (5) then writes

n∑

i=1

J (Yi,ZT
i β) + λ(1)

n

C(p+1)∑

j=0
j%(p+1) 6=0

w
(1)
j |βj |+ λ(2)

n

∑

(j,ℓ)∈E

w
(2)
jℓ |βj − βℓ|, (6)

where the edge set E along with the node set V = {1, . . . , C(p + 1)} define a graph
G = (V,E) which consists of p + 1 cliques of size C (see Figure 1). Edges (j, ℓ) present
in graph G are those for which j > ℓ and ℓ%(p+ 1) = j%(p+ 1). Criterion (6) is exactly
criterion (4) with Z instead of Z, and some terms, corresponding to intercept parameters,

that are not penalized in the λ
(1)
n -penalty.

In some situations, one stratum can be regarded as the reference: for instance, when
strata correspond to various treatments, the control treatment can serve as the reference.
Without loss of generality, we can assume that the reference stratum is the first one, in
which case an adapted version of penalty (5) is

C∑

c=1

{
λ(1)
n

p+1∑

j=2

|βc,j |
}
+ λ(2)

n

p+1∑

j=1

C∑

c=2

|βc,j − β1,j |.

The graph induced by this penalty consist of p + 1 star graphs (one for each covariate
plus one for the intercept) with the reference at its center: more precisely, in the j-th star
graph, the only present connections are between coefficient β1,j and the C − 1 remaining
coefficients βc,j , for c 6= 1. An illustration is presented in the right panel of Figure 1, in
the case p = 2 and C = 4.

7.2 Proof of Theorem 1

This proof is an adaptation to the logistic case of the proof given by Tibshirani et al.
(2005). The major difference concerns the treatment of the loss function. Let us define
Vn(u) = Q(β∗ + u/

√
n)−Q(β∗) with u = (u0, . . . , up)

T , and Q defined as in criterion (4)

with J = Jlo. Obviously Vn(u) is minimized at
√
n(β̂ − β∗). Similarly to Tibshirani et al.

(2005), we obtain:

Vn(u) = Jlo

(
β∗ +

u√
n

)
− Jlo(β

∗) + λ(1)
n

p∑

j=1

{∣∣∣∣β
∗
j +

uj√
n

∣∣∣∣− |β∗
j |
}

+ λ(2)
n

∑

(j,ℓ)∈E

{∣∣∣∣β
∗
j − β∗

ℓ +
(uj − uℓ)√

n

∣∣∣∣− |β∗
j − β∗

ℓ |
}
.

For any fixed u, the last two terms of the right-hand side converge to the last two terms
in expression (5) of V(u) as n goes to ∞. As for the first two terms, a Taylor expansion
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yields

Jlo

(
β∗ +

u√
n

)
− Jlo(β

∗) = ∇Jlo(β
∗)T

u√
n
+

1

2
uT I(β∗)

n
u+ oP(1/n).

But, under AL1, we have
1

2
uT I(β∗)

n
u →d

1

2
uTCu.

Moreover, AL1 implies that the minimum eigenvalue of I(β∗) goes to ∞ and, under AL2,
it is well known (Gourieroux and Monfort (1981)) that

∇Jlo(β
∗)√

n
→d W, (7)

whereW has anN (0p+1,C) distribution. By Slutsky’s theorem, we therefore have Vn(u) →d

V(u). Since Vn is convex, the epi-convergence results of Geyer (1994) can finally be used
to complete the proof of Theorem 1.

7.3 Proof of Proposition 2

For the sake of brevity, the proof is only given in the logistic case; the Gaussian case follows

from the exact same lines. If λ
(2)
0 = 0, the proof is the same as in the “pure” Lasso case

(see Zou (2006)). If λ
(2)
0 6= 0, the result follows from an adaptation of Zou’s proof. Below,

we assume that λ
(1)
0 6= 0; the case where λ

(1)
0 = 0 is slightly easier and omitted. First

observe that P(Ãn = A) ≤ P(
√
nβ̂j = 0 ∀j /∈ A). Moreover, in virtue of Theorem 1, we

have lim supn P(
√
nβ̂j = 0 ∀j /∈ A) ≤ P(u∗j = 0 ∀j /∈ A). Therefore, we only need to show

that c = P(u∗j = 0 ∀j /∈ A) < 1.
For any j ∈ {1, . . . , p}, introduce E=

j (β
∗) = {ℓ : (ℓ, j) ∈ E=(β∗) or (j, ℓ) ∈ E=(β∗)} and

E 6=
j (β

∗) = {ℓ : (ℓ, j) ∈ E 6=(β∗) or (j, ℓ) ∈ E 6=(β∗)}, where the sets of pairs of vertices

E=(β∗) and E 6=(β∗) were introduced in Section 4.4. Let u∗ = argmin(V). Setting W =
(W0, . . . ,Wp)

T and Cu∗ = ((Cu∗)0, . . . , (Cu∗)p)
T , we have, by the Karush-Kuhn-Tucker

(KKT) optimality condition,
W0 + (Cu∗)0 = 0, (8)

and for all j ∈ A,

Wj + (Cu∗)j + λ
(1)
0 sign(β∗

j ) + λ
(2)
0

{ ∑

ℓ∈E 6=
j (β∗)

sign(β∗
j − β∗

k) +
∑

ℓ∈E=
j (β∗)

(−1)I(j<ℓ)tjℓ

}
= 0,

and for all j /∈ A,

Wj + (Cu∗)j + λ
(1)
0 rj + λ

(2)
0

{ ∑

ℓ∈E 6=
j (β∗)

sign(β∗
j − β∗

k) +
∑

ℓ∈E=
j (β∗)

(−1)I(j<ℓ)tjℓ

}
= 0.
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Above, rj = sign(u∗j ) if u
∗
j 6= 0 and rj is some real number in [−1, 1] otherwise. Similarly,

tjℓ = sign(u∗j − u∗ℓ ) if u∗j 6= u∗ℓ and tjℓ is some real number in [−1, 1] otherwise. For any
index j ∈ A there is some s = s(j) such that j ∈ As(j), where As still denotes the set of
vertices of the s-th connected component of GB (see the paragraph before the statement
of Theorem 3 for the definitions of these objects). Then summing up the KKT optimality
conditions over the set As(j), we have

∑

k∈As(j)

{
Wk + (Cu∗)k + λ

(1)
0 sign(β∗

k) + λ
(2)
0

∑

ℓ∈E 6=
k
(β∗)

sign(β∗
k − β∗

ℓ )
}
= 0. (9)

Similarly, setting B̃ = {(j, ℓ) ∈ E ∩ Ā × Ā} and denoting by G0 = (Ā, B̃), the set Ā can
be decomposed as Ā = ∪s1

s=1Ās, where 1 ≤ s1 ≤ p − p0 and Ās is the subset of vertices
constituting the s-th connected component of G0. Then, for any j /∈ A, there exists some
s = s(j) such that j ∈ Ās(j) and summing up the KKT optimality conditions over Ās(j),
we have

∑

k∈Ās(j)

{
Wk + (Cu∗)k + λ

(1)
0 rk + λ

(2)
0

∑

ℓ∈E 6=
k
(β∗)

sign(β∗
k − β∗

ℓ )
}
= 0, (10)

with |sk| ≤ 1. If u∗j = 0 for all j /∈ A, equations (9) along with equation (8) form a system
of s0 + 1 equations with p0 + 1 ≥ s0 + 1 variables, that can be written as

WB +M1u
∗
{0}∪A + λ

(1)
0 rB + λ

(2)
0 tB = 0,

where M1 is the (s0+1)×(p0+1) matrix whose (s, j) element is ms,j =
∑

k∈As−1
Ck,j (with

Ck,j the (k, j) element of C and A0 = {0}), and WB, rB and tB are vectors in R
s0+1 whose

s-th elements are
∑

k∈As−1
Wk,

∑
k∈As−1

sign(β∗
k) and

∑
k∈As−1

∑
ℓ∈E 6=

k
(β∗)

sign(β∗
k − β∗

ℓ )

respectively. Now, denoting by M
†
1 the pseudo-inverse of M1, there exists some vector

ω ∈ R
p0+1 such that

u∗
{0}∪A = (Ip0+1 −M

†
1M1)ω −M

†
1(WB + λ

(1)
0 rB + λ

(2)
0 tB). (11)

On the other hand, if u∗j = 0 for all j /∈ A, equations (10) form a system of s1 equations
that can be written, in view of (11),

∣∣∣WB̃
+ λ

(2)
0 t

B̃
+M2

{
(Ip0 −M

†
1M1)ω −M

†
1(WB + λ

(1)
0 rB + λ

(2)
0 tB)

}∣∣∣ ≤ λ
(1)
0 r

B̃
,

where W
B̃
, r

B̃
and t

B̃
are the vectors in R

s1 whose s-th elements are given by
∑

k∈Ās
Wk,

|Ās| and
∑

k∈Ās

∑
ℓ∈E 6=

k
(β∗)

sign(β∗
k − β∗

ℓ ) respectively. We can now conclude by observing

that

c ≤ P

(∣∣∣WB̃
+λ

(2)
0 t

B̃
+M2

{
(Ip0 −M

†
1M1)ω−M

†
1(WB +λ

(1)
0 rB +λ

(2)
0 tB)

}∣∣∣ ≤ λ
(1)
0 r

B̃

)
< 1.
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7.4 Proof of Theorem 3

For the sake of brevity, the proof is solely detailed in the Gaussian case. The proof in
the logistic case mostly follows from similar arguments along with others used to derive
Theorem 1. We will briefly describe how to proceed when the Gaussian case differs from
the logistic one.

The following proof is an adaptation of the proof given by Zou (2006). The main
difference concerns the treatment of the penalty term. Let us define Vn(u) = Q(β∗ +
u/

√
n) − Q(β∗) with u = (u0, . . . , up)

T and Q defined as in (4) with J = Jsq. Note that

Vn(u) is minimized at
√
n(β̂

ad − β∗). We have

Vn(u) = uT

(
1

2n
ZTZ

)
u− ǫTZ√

n
u+

λ
(1)
n√
n

p∑

j=1

w
(1)
j

√
n

{∣∣∣∣β
∗
j +

uj√
n

∣∣∣∣− |β∗
j |
}
+

λ
(2)
n√
n

∑

(j,ℓ)∈E

w
(2)
jℓ

√
n

{∣∣∣∣β
∗
j − β∗

ℓ +
(uj − uℓ)√

n

∣∣∣∣− |β∗
j − β∗

ℓ |
}

=: uT

(
1

n
ZTZ

)
u− 2

ǫTZ√
n
u+

p∑

j=1

T
(1)
j +

∑

(j,ℓ)∈E

T
(2)
jℓ

We have the two following behaviors :

T
(1)
j →p

{
0 if β∗

j 6= 0 or (β∗
j = 0 and uj = 0)

∞ otherwise

and

T
(2)
jℓ →p

{
0 if β∗

j 6= β∗
ℓ or (β∗

j = β∗
ℓ and uj = uℓ)

∞ otherwise
.

Denote by CA the (p0 + 1) × (p0 + 1) sub-matrix of C constituted of rows and columns
associated with indexes in {0}∪A and by WA a random Gaussian vector N

(
0p0+1, σ

4CA

)
.

Then Vn(u) →d V(u) for every u, with V defined for u = (u0, . . . , up) ∈ R
p+1, by

V(u) =





σ2

2 uT
ACAuA + uT

AWA if uj = 0 for j /∈ A and
uj = uℓ for (j, ℓ) ∈ B,

∞ otherwise.

Recall the notations introduced just before stating Theorem 3. Any vector u ∈ R
p+1 such

that uj = 0 for all j /∈ A and uj = uℓ for all (j, ℓ) ∈ B has s0 + 1 distinct non-zero values.
Denoting by u0, uj1 , . . . , ujs0 these values, and setting uB = (u0, uj1 , . . . , ujs0 )

T , we have

V(u) =





σ2

2 uT
BCBuB + uT

BWB if uj = 0 for j /∈ A and
uj = uℓ for (j, ℓ) ∈ B,

∞ otherwise,
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where WB is a random Gaussian vector N
(
0s0+1, σ

4CB

)
. Clearly, V has a unique min-

imum for u ∈ R
p+1 such that uj = 0 for all j /∈ A and uj = uℓ for all (j, ℓ) ∈ B and

uB = −C−1
B WB/σ

2. Since Vn is convex we can proceed as in Zou (2006) by using the
epi-convergence results of Geyer (1994) to prove the asymptotic normality part.

Similar arguments can be used to get the asymptotic normality part for the logistic
case since, as we have shown in the proof of Lemma 1, the limit distribution of Jlo(β

∗ +
u/

√
n)− Jlo(β

∗) is that of (uTCu)/2 + uTW, with W ∼ N (0p+1,C).
Let us now turn our attention to the variable selection consistency. Namely, we have

to show that ∀j ∈ A, P(j ∈ An) → 1 and that ∀j /∈ A, P(j ∈ An) → 0. The first claim
is an easy consequence of the previous asymptotic result (see Zou (2006)). To prove the
second claim, consider an index j /∈ A and denote by Cj the subset of vertices constituting
the connected component of G to which j belongs. Let C0

j = {ℓ ∈ Cj , β∗
ℓ = 0}; clearly,

j ∈ C0
j . Our aim is to prove that P(ℓ ∈ An) → 0, for all ℓ ∈ C0

j . Towards this aim, observe
that the subgradient equations enable to write, for k = 1, . . . , p:

xT
k (y − Zβ̂

ad
) = λ(1)

n w
(1)
k rk + λ(2)

n

( ∑

(k,ℓ)∈E

w
(2)
kℓ tkℓ −

∑

(ℓ,k)∈E

w
(2)
kℓ tℓk

)

where rk = sign(β̂ad
k ) for β̂ad

k 6= 0 and sk is some real number in [−1, 1] if β̂ad
k = 0; likewise,

for any (k, ℓ) ∈ E, tkℓ = sign(β̂ad
k − β̂ad

ℓ ) for β̂ad
k 6= β̂ad

ℓ and tkℓ is some real number in

[−1, 1] if β̂ad
k = β̂ad

ℓ . Introducing the set Ẽ = {(k, ℓ) : (k, ℓ) ∈ E or (ℓ, k) ∈ E}, and setting
tkℓ = −tℓk for (ℓ, k) ∈ E, we have the following more compact form for the subgradient
equations:

xT
k (y − Zβ̂

ad
) = λ(1)

n w
(1)
k rk + λ(2)

n

∑

(k,ℓ)∈Ẽ

w
(2)
kℓ tkℓ,

where, in particular, tkℓ = sign(β̂ad
k − β̂ad

ℓ ) for any (k, ℓ) ∈ Ẽ such that β̂ad
k 6= β̂ad

ℓ . Next,

the quantity Mn(k) := xTk (y − Zβ̂ad)/
√
n can be decomposed (see the proof of Theorem 2

given by Zou (2006)) as the sum of two variables which both converge in distribution to
some normal distribution, so that Mn(k) = OP(1) as n → ∞, for ℓ = 1, . . . , p. Let us note
that in the logistic case, property (7) along with assumption AL1 enables to show that

each component of the gradient ∇J(β̂
ad
) is a OP(1) as well.

Let us now suppose that there exist some ℓ ∈ C0
j such that β̂ad

ℓ 6= 0. In this case, either

the set Sneg = {ℓ ∈ C0
j : β̂ad

ℓ < 0} or the set Spos = {ℓ ∈ C0
j : β̂ad

ℓ > 0} is not empty (or

both sets are not empty). If Sneg 6= ∅, let bmin = mink∈Sneg
β̂ad
k . Further denote by L the

subset of Sneg of connnected indices ℓ such that β̂ad
ℓ = bmin. Since Sneg 6= ∅, L has at least
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one element. Then, summing up the optimality conditions over the indices in L, we obtain

∑

k∈L

Mn(k) =
λ
(1)
n√
n
nγ/2

∑

k∈L

rk

|√nβ̃k|γ
+

λ
(2)
n√
n

∑

k∈L

∑

(k,ℓ)∈Ẽ, β∗
ℓ
6=0

tkℓ

|β̃k − β̃ℓ|γ

+
λ
(2)
n√
n
nγ/2

∑

k∈L

∑

(k,ℓ)∈Ẽ

β∗
ℓ
=0 & β̂ad

ℓ
>bmin

tkℓ

|√n(β̃k − β̃ℓ)|γ
.

Since L ⊂ Sneg, rk = −1, for all k ∈ L, and by definition of L, tkℓ = −1 for all ℓ such that

β̂ad
ℓ 6= bmin. Moreover when β∗

ℓ 6= 0 then β∗
ℓ 6= β∗

k, and

λ
(2)
n√
n

tkℓ

|β̃k − β̃ℓ|γ
→P 0,

as n goes to ∞. Since λ
(m)
n nγ/2/

√
n (m = 1, 2) tends to ∞, the

∑
k∈LMn(k) tends to −∞,

which contradicts Mn(ℓ) = OP(1) for all ℓ = 1, . . . , p. That leads to P(Sneg = ∅) → 1.
If Sneg = ∅, then Spos 6= ∅, and similar arguments can be used (with maxima instead of
minima) to get a contradiction. Putting all this together, we conclude that for all ℓ ∈ C0

j ,
P(ℓ ∈ An) → 0.

It remains to show the consistency for the set Bn. As for An, we need to prove that
∀(j, ℓ) /∈ B, P((j, ℓ) ∈ Bc

n) → 1 and that ∀(j, ℓ) ∈ B, P((j, ℓ) ∈ Bc
n) → 0. Let us prove

the first claim. If (j, ℓ) /∈ B either (β∗
j = 0 and/or β∗

ℓ = 0), or (β∗
j 6= 0, β∗

ℓ 6= 0 and
β∗
j 6= β∗

ℓ ). In the first case, when j ∈ Ac, we have proved previously that P(j ∈ Ac
n) → 1,

so P((j, ℓ) ∈ Bc
n) → 1. In the second case, if j, ℓ ∈ A, and (j, ℓ) /∈ B, the asymptotic

normality result indicates that β̂ad
j − β̂ad

ℓ →P β∗
j − β∗

ℓ 6= 0; thus P((j, ℓ) ∈ Bc
n) → 1. Now

let us prove the second claim, using as previously the subgradient equations. Let j be an
index of A such that for some ℓ ∈ A we have (j, ℓ) ∈ B. Then, for some 1 ≤ s(j) ≤ s0,
j ∈ As(j), where As still denotes the set of vertices of the s-th connected component of GB.

Suppose that there exists some ℓ ∈ As(j) such that β̂ad
ℓ 6= β̂ad

j . As previously we define

bmin = mink∈As(j)
β̂ad
k and L the subset of As(j) of connected indices ℓ such that β̂ad

ℓ = bmin.
Then, summing up the optimality conditions over the indices in L, we obtain

∑

k∈L

Mn(k) =
λ
(1)
n√
n

∑

k∈L

rk

|β̃k|γ
+

λ
(2)
n√
n

∑

k∈L

∑

(k,ℓ)∈Ẽ, β∗
ℓ
6=β∗

k

tkℓ

|β̃k − β̃ℓ|γ

+
λ
(2)
n√
n
nγ/2

∑

k∈L

∑

(k,ℓ)∈Ẽ

β∗
ℓ
=β∗

k
& β̂ad

ℓ
>bmin

tkℓ

|√n(β̃k − β̃ℓ)|γ
.

37



Since L ⊂ A, the first sum converges to 0 in probability. Moreover, the second sum
also converges to 0 in probability, while the third sum tends to −∞, which contradicts
Mn(ℓ) = OP(1) for all ℓ = 1, . . . , p. We therefore conclude that P((j, ℓ) ∈ Bc

n) → 0, for all
(j, ℓ) ∈ B, which completes the proof of Theorem 3.

7.5 Competing methods

The (Adaptive) Group Lasso (see Huang et al. (2012) for a recent review) is particularly ap-
pealing when features can be naturally divided into K nonoverlapping groups Gk of dimen-
sion dk, such that

∑
k dk = p. Any vector β ∈ R

p can then be written β = (βG1
, . . . ,βGK

)T ,
with βGk

= (βGk1, . . . , βGkdk)
T ∈ R

dk , and the Group Lasso penalty writes

pen(β,G) = λ1‖β‖1 + λ2

J∑

j=1

‖βGj
‖,

The “vanilla” version of the Group Lasso uses only the λ2-penalty term above: selection
is then performed at the group level which means that if a group is selected, all the vari-
ables it is made of are selected. The added ℓ1-norm penalty allows the Group Lasso to
exclude some variables within a group, which is willing in the situations considered in our
experiments. We use the spams package (originally accompanying Mairal et al. (2010))
to compute this method, with adaptive weights derived from initial ML estimates of the

parameters (same weights as the w
(1)
j used for Adaptive Generalized Fused estimates).

In the joint modeling context, we also consider the Lasso with interaction. More precisely,
and with the notations of Sections 2.3, we first select the first stratum as the reference
stratum. Then, for every c > 1, we can write

β∗
c = β∗

1 + δ∗c ,

where δ∗c ∈ R
p+1 measures the heterogeneity between β∗

c and β∗
1. This is equivalent to

working under the overall model (ruling every observation 1 ≤ i ≤ n, with n =
∑

c nc):

Yi = β∗T
1 Zi +

∑

c>1

δ∗Tc ZiI(Ci = c) + ǫi.

The Adaptive Lasso can then be used to select non-zero elements in estimates of both β∗
1

and δ∗c , c > 1, by minimizing, for an appropriate λ > 0,

Φ(λ) =
n∑

i=1

(
Yi − βT

1 Zi +
∑

c>1

δTc ZiI(Ci = c)
)2

+ λ
( p∑

j=1

|β1j |
wj

+
C∑

c=2

p∑

j=1

|δcj |
wcj

)
.

We used the relaxed version of this method.
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