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Abstract In this paper a comparative study of five different
stability computational methods based on the Floquet the-
ory is presented. These methods are compared in terms of
accuracy and CPU performance. Test are performed on a set
of nonlinear problems relevant to rotating machinery with
rotor-to-stator contact and a variable number of degrees of
freedom, whose periodic solutions are computed with the
Harmonic Balance Method (HBM).

Keywords Harmonic Balance Method · stability · Floquet
theory · rotor nonlinear dynamics · rotor-stator contact

1 Introduction

One of the main challenges for turbomachinery designers
is to improve the efficiency of machines, whilst ensuring the
safety during operation. The steady state response of the sys-
tem as well as its stability are thus of prime interest.

As turbomachinery often operates at a constant rotational
speed, time-domain methods such as the shooting method
[1] and frequency-domain methods such as the trigonomet-
ric collocation method [2] or the harmonic balance method
(HBM) [3] are commonly used to predict the steady state
response of the system. It is well established that such tech-
niques offer a significantly reduced computational time, when
compared to transient time marching solutions.
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Concerning stability the choice for a method is not so
clear. The computation of rotor stability has yielded a vast
amount of literature in the past, with emphasis on linear sys-
tems with time periodic coefficients such as asymmetric ro-
tors, rotors subjected to aerodynamic effects or on-board ro-
tors with periodic motion of the support [4–8]. In the case of
nonlinear systems (systems with rotor-stator or blade-casing
contact, nonlinear bearings, ...) several stable and unstable
periodic responses can coexist at a given rotational speed
and appropriate numerical methods must be used in order to
obtain all solutions and distinguish between stable and un-
stable ones.

The Floquet theory and the Lyapunov exponents are cer-
tainly the most popular approaches used to assess the local
stability of periodic solutions. Several different implemen-
tations of these theories have been developed and used in
the past, as reviewed by Friedmann [5]. More recently, these
methods have been applied to nonlinear systems. Liaw [9]
studied the stability of a one-degree-of-freedom oscillator
using a piecewise linear nonlinearity and the Lyapunov ex-
ponents. Later, Raghothama and Narayanan [10] and Zhen
and Hasebe [11] applied this technique to rotor systems.
Different variants of the Floquet theory have also been fre-
quently used. Kim and Noah [12] studied the stability of a
nonlinear Jeffcott rotor by constructing and analyzing the
so-called Floquet transition or monodromy matrix, whereas
Shen et al. [13] chose to approximate the monodromy matrix
in their study of a Mathieu-Duffing oscillator. Hill’s method,
which is also a variant of the Floquet theory, was used by
Rook [14] to study the stability of a Duffing oscillator and
by Von Groll and Ewins [3] and Sinha [15] in rotordynamics
applications.

Although the aforementioned techniques are not at all
equivalent in terms of accuracy and CPU performance, such
differences are rarely debated in the literature. In this pa-
per, a comparative study of five different implementations of
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2 Loı̈c Peletan et al.

the Floquet theory for nonlinear problems is presented. The
Harmonic Balance Method is used to compute the nonlin-
ear response curves and the associated CPU time serves as a
reference for further comparisons. Following a brief presen-
tation of the HBM, several stability computational method
are reviewed. Then the accuracy and performance for five
of them are quantitatively evaluated and discussed. For this
purpose, a set of nonlinear problems relevant to rotating ma-
chinery with rotor-to-stator contact and a variable number of
degrees of freedom is considered. Techniques based on the
computation of the Lyapunov exponents are not discussed in
this paper, as their results are not directly comparable with
those given by the techniques based on the Floquet theory.

2 Harmonic Balance Method (HBM)

The Harmonic Balance Method (HBM) is a well known tech-
nique, used to compute periodic solutions for dynamic sys-
tems. This method consists in solving the equations of move-
ment in the frequency domain, rather than in the time do-
main. The general time-domain equation for a dynamic me-
chanical system is given by:

Mq̈(t)+Cq̇(t)+Kq(t)+ f(q(t), q̇(t))−p(t) = 0 (1)

where q represents the displacement vector for all of the n
degrees of freedom (DOFs); K, C and M are the generalized
n×n stiffness, damping and mass matrices; f is the nonlin-
ear force vector and p is the external excitation force vector.
When the external excitations are periodic, it is valid to as-
sume that a steady state solution for Eq. (1) exists, and that
this solution is also periodic. The displacements, the exter-
nal and the nonlinear forces can thus be written as truncated
Fourier series:

q(t) = Q0 +
N∑

j=1

Å
Q2 j−1 cos(

j
ν

ωt)+Q2 j sin(
j
ν

ωt)
ã

(2)

p(t) = P0 +
N∑

j=1

Å
P2 j−1 cos(

j
ν

ωt)+P2 j sin(
j
ν

ωt)
ã

(3)

f(t) = F0 +
N∑

j=1

Å
F2 j−1 cos(

j
ν

ωt)+F2 j sin(
j
ν

ωt)
ã

(4)

Q=
[
Q0

T ,Q1
T , . . . ,QT

2N
]T , F=

[
FT

0 ,F
T
1 , . . . ,F

T
2N
]T and P=[

PT
0 ,P

T
1 , . . . ,P

T
2N
]T are the vectors of the Fourier coefficients

for displacements, nonlinear forces and external excitations,
respectively. ω is the fundamental frequency of the external
excitation, and ν is a positive integer used for sub-harmonic
responses calculation.

As described in [16], Eqs. (2) (3) and (4) can be substi-
tuted into Eq. (1), following which a Galerkin procedure is

applied to transform the nonlinear differential Eq. (1), of di-
mension n, into an algebraic nonlinear system of equations,
of dimension nHBM = n(2N +1):

R(Q,ω) = Z(ω)Q+F(Q)−P = 0 (5)

where Z = diag(K,Z1, . . . ,Zk, . . . ,ZN) with:

Zk =

K−
Ä

k
ν

ä2
ω2M

Ä
k
ν

ä
ωC

−
Ä

k
ν

ä
ωC K−

Ä
k
ν

ä2
ω2M


Equation (5) needs to be solved for Q. As this equation is
still nonlinear, an appropriate nonlinear solver must be used
to derive a correct solution. In the present paper, a Newton-
Raphson iterative solver was used. It has been demonstrated
that the combined use of HBM and a Newton-Raphson solver
is equivalent to the Incremental Harmonic Balance Method
(IHBM) [17].

The Alternating Frequency Time (AFT) algorithm [18]
proves to be an efficient way to compute the nonlinear term
F(Q) and its derivative ∂F(Q)/∂Q involved in the Newton-
Raphson iterations . The AFT scheme uses fast direct and
inverse Fourier transforms to quickly compute the nonlin-
ear forces in the time domain and then switch back to the
frequency domain. The nonlinear forces are indeed usually
much easier to evaluate in the time domain than in the fre-
quency domain. The above-mentioned algorithm is gener-
ally combined with a pseudo-arc length continuation method
[1] in order to obtain both stable and unstable solutions of
response curves.

3 Stability determination using the Floquet theory

There are different definitions for the stability of a dynamic
solution. In the present paper we investigate what is referred
to as the local stability of the solution. Assessment of the
local stability consists in applying a small perturbation to
the equilibrium solution, and then checking whether or not
this perturbation subsides with time. The HBM converges to
stable as well as unstable solutions, and there is no way to
make an a priori evaluation of its stability. However, it can
be computed a posteriori using the Floquet theory. There are
currently several different algorithms based on the Floquet
theory. Some of these are based on a description of the prob-
lem in the time domain, and consist in computing the eigen-
values of the so-called monodromy matrix. Others are based
on a description of the problem in the frequency domain.

Some of the most commonly used algorithms are de-
scribed here. It is important to emphasize that these algo-
rithms can also be used with other solving techniques (such
as the shooting method, for instance). However, the pro-
gramming effort required and the CPU performance can dif-
fer widely from one method to another.
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A comparison of stability computational methods for periodic solution of nonlinear problems with application to rotordynamics 3

3.1 Time domain methods

3.1.1 Monodromy matrix computation by 2n-pass
numerical integration (referred to as the ’2n-pass’ method)

In this algorithm, the equation of motion (1) is rewritten in
the following state form:

ẋ(t) = Lx(t)− f̃(x(t))+ p̃(t) (6)

where x(t)= [q(t), q̇(t)]T ; f̃(x(t))=
[
0,M−1f(q, q̇)

]T ; p̃(t)=[
0,M−1p(t)

]T and:

L =

ï
0 Id

−M−1K −M−1C

ò
where Id represents the identity matrix. x0(t) is defined as a
solution for Eq. (6), and y(t) as a small perturbation. x(t) =
x0(t)+y(t) is then introduced into Eq. (6) and using first or-
der approximation the following first order differential equa-
tion is eventually obtained:

ẏ(t) = J(x0, t)y(t) (7)

where:

J(x0, t) = L−
Ç

∂ f̃
∂x

å
x=x0

(t)

J is T -periodic and a 2n×2n matrix H can be defined such
that:

y(T ) = Hy(0)

H is called the monodromy or Floquet transition matrix. It
is a linear operator describing the evolution of the perturba-
tion over one period. Its eigenvalues are called the Floquet
multipliers. If any of the Floquet multipliers has a module
greater than one, then the solution is unstable, otherwise it
is stable.

Thus, the first approach to the computation of H is to do
proceed column by column. The linear equation (7) has to
be solved by proceeding to 2n time integrations over one pe-
riod, using 2n linearly independent initial conditions, namely
yi(0) = ei, i∈ [1, . . . ,2n], where ei is a vector of zeros with
a one at the ith position.

H = [y1(T ),y2(T ), . . . ,y2n(T )]

This algorithm requires relatively little programming effort,
since there are numerous existing tools in the scientific li-
braries of most programming languages, which can be used
to integrate first order linear ordinary differential equations.
As long as the numerical integration is performed correctly,
this method produces very accurate results. In the present
study, the results provided by the 2n-pass algorithm are used
as a reference. However, the downside of this approach is

that it can require an enormous computational effort. It should
also be noted that in the case where the problem is solved
using a shooting method, the monodromy matrix is a sub-
product of the solving process, such that no additional oper-
ation is required to obtain this matrix.

A single-pass version of this algorithm exists, in which
Eq. (7) is rewritten such that J is a 4n2 × 4n2 matrix and
the vectors yi(0) = ei, i ∈ [1, . . . ,2n] of size 2n are put to-
gether to form a 4n2 vector. Then the time integration is per-
formed on a larger system but only once instead of 2n times.
This single-pass scheme can save about 50% of CPU time
as reported by Gaonkar et al. [6], but only in the case of sin-
gle precision computation. As shown by Sinha et al. [7], it
does not turn out to be significantly more effective for dou-
ble precision computations which are the rule with modern
computers.

3.1.2 Monodromy matrix computation by matrix
exponentials approximation (referred to as the
’exponentials’ method)

Following the pioneer work of Hsu [19], Friedmann et al. in
[4] and later in [5] developed a method to approximate the
monodromy matrix in order to reduce CPU time, with very
little loss in accuracy. To do so, J(x0, t) is assumed to be
piecewise constant. The time interval [0,T ] is divided into K
subintervals ([0, t1, . . . , tK ]). Within each subinterval, J(x0, t)
is assumed to be constant and H can thus be approximated
by the following formula:

H≈ H̃ =
1∏

k=K

e[Jk](tk−tk−1)

where Jk is the mean value of J(x0, t) over the time inter-
val [tk−1, tk]. In practical applications, as J(x0, t) is evalu-
ated only at tk k ∈ [0..K], we can write Jk = (J(x0, tk)−
J(x0, tk−1))/2. The quality of the approximation depends on
K, since:

lim
K→+∞

H̃ = H

In practical applications however, the matrix exponentials
must be evaluated. Among the many different methods used
to compute a matrix exponential, one can cite the Padé ap-
proximation, the Taylor approximation, or the calculation
based on singular values decomposition. In [20], Cardona et
al. give upper bound formulae for the accuracy of the matrix
exponential when the Taylor approximation is used.

3.1.3 Monodromy matrix computation by Runge-Kutta
single-pass numerical integration (referred to as the ’RK
1-pass’ method)

As already mentioned the 2n-pass integration method can
be modified in order to perform only one numerical time in-
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4 Loı̈c Peletan et al.

tegration instead of 2n. Friedmann et al. [4] suggested an
improved single-pass algorithm based on the fourth order
Runge-Kutta integration scheme. In this algorithm H is com-
puted with the following formula:

H =
K∏

k=1

G(T − kh)

with h = T/K being the time step size and G being a matrix
(dependant on time) calculated from the matrix J and other
parameters (Gill coefficients). From a programming point of
view, this method is very similar to the ’exponentials’ meth-
ods as the monodromy matrix is evaluated from the product
of precomputed matrices. The two methods simply differ by
the way theses matrices are calculated.

3.1.4 Monodromy matrix computation by Newmark
single-pass numerical integration (referred to as the ’Nm
1-pass’ method)

Many time integration schemes can be used to perform the
calculation of the monodromy matrix. For instance Gaonkar
et al. [6] compare different algorithms (including Runge-
Kutta, Hamming and Gear schemes) both in single-pass and
multi-pass. In the field of rotordynamics and linear struc-
tural dynamics, the implicit Newmark algorithm with con-
stant average acceleration is commonly used due to inter-
esting properties such as unconditional stability. The com-
bination of the nonlinear version of the Newmark algorithm
with a shooting method to compute the periodic solution of
nonlinear systems can be found in [21,22]. It is shown that
the calculation of the monodromy matrix can be advanta-
geously performed as a step of the Jacobian involved in the
Newton-Raphson solver. It results in solving a linear sys-
tem of differential equations in a similar way as described in
Sect. 3.1.1 but with a system of size n instead of 2n since it
is not necessary to put the equation of motion in state form.

3.1.5 Implicit monodromy matrix calculation by k-pass
numerical integration

In [23] Bauchau and Nikishkov developed a method that
does not require the explicit calculation of the monodromy
matrix. Only its k (k ≤ 2n) largest eigenvalues are approx-
imated thanks to the Arnoldi algorithm. Starting with nor-
malised random intial conditions, k numerical integrations
over one period are performed. At the end of each one of
the k integrations, a column of H̃ is determined. H̃ is a Hes-
senberg matrix of size k that represents the real monodromy
matrix H. The eigenvalues of H̃ are approximations of the
largest eigenvalues of H. If 2n integrations over one period
are performed then the eigenvalues of H̃ are exactly the same
as the ones of H. In this case this method is equivalent to the
2n-pass method.

This method is faster that the 2n-pass method because
only k integrations are performed instead of 2n. However,
this method is still slower than a single-pass scheme while
introducing an additional level of approximation. Thus, this
method shows little interest and for this reason, the results
provided by this method will not be given in this paper.

3.1.6 Monodromy matrix calculation with the use of
Chebyshev polynomials

Sinha and Wu in [7] introduced an efficient technique based
on the idea that the state system can be expanded in terms
of Chebyshev polynomials over one period. Thus, instead
of performing a numerical integration over one period of a
set of linear differential equations, one has to solve a system
of linear algebraic equations. This method has been tested
on systems with relatively small number of DOFs (up to 10
DOFs in [8]). Even though this method seems promising in
terms of CPU performance, it introduces an additional level
of approximation as the accury of the result depends on the
number of terms retained in the Chebyshev expansion. This
method has not been tested in the scope of this paper.

3.1.7 Monodromy matrix calculation by wavelet-Galerkin
procedure

In [24] and later in [25], Pernot and Lamarque introduced
a wavelet-Galerkin procedure in order to obtain transient
and periodic solutions of linear and nonlinear multi-DOFs
dynamical systems with time-periodic coefficients. Due to
good time-frequency localization properties, the wavelet-based
procedure was found to be reliable even in the case of prob-
lems involving both smooth or non-smooth parametric exci-
tations and a relatively large number of DOFs. As reported
by the authors, benefit is made of the wavelet-Galerkin pro-
cedure to compute efficiently the monodromy matrix in one
pass and consequently construct stability diagrams charac-
terizing stable/unstable parameters areas and estimators for
stability/instability levels. This method however requires an
important programming effort. For this reason it has not been
applied in this paper.

3.2 Frequency domain methods

3.2.1 Hill’s method (referred to as the ’Hill1’ method)

The methods described above are based on a time-domain
description of the problem. However, as Eq. (5) is solved in
the frequency domain, it would seem more natural to com-
pute the stability of the solution in the frequency domain
too. In Hill’s method, the perturbation is written as the com-
bination of a periodic term and a exponentially decreasing
term [3]. This perturbation is introduced into the equation of
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A comparison of stability computational methods for periodic solution of nonlinear problems with application to rotordynamics 5

motion and a procedure similar to that used by the HBM is
applied, leading to a quadratic eigenvalues problem which
can be transformed into a linear eigenvalues problem of size
2n(2N +1)×2n(2N +1).

However, as the perturbation is written as a truncated
Fourier series, the accuracy of this method depends on the
number of harmonics retained. Although using an infinite
number of harmonics would lead to the exact result, it would
also lead to a matrix Ĥ of infinite dimension. For obvious
numerical reasons, only a limited number of harmonics are
retained in the Fourier series. This method is known to pro-
vide inaccurate results most of the time, especially for larger
systems [5,7]. This method is also known to be CPU inten-
sive for large systems. For these reasons, the results provided
by this method will not be shown in this paper.

3.2.2 Improvement of Hill’s method (referred to as the
’Hill2’ method)

When using the Hill1 method, one obtains 2n(2N +1) Flo-
quet multipliers, of which only 2n have a physical mean-
ing. The existence of the remaining non-physical Floquet
multipliers can lead to an inappropriate stability evaluation.
To address this issue, Lazarus and Thomas [26] proposed a
technique to discriminate, and then eliminate the non physi-
cal multipliers. Their approach is slightly different from that
used in the Hill1 method.

The eigenvalues of the monodromy matrix are filtered
on the basis of a criterion related to the associated eigenvec-
tors. The reader may refer to [26] for further details. This
approach suffers from the same shortcomings as the Hill1
method (i.e. the choice of harmonics), but is supposed to
yield more accurate results as a consequence of the filtering.

4 Test cases

All aforementioned algorithms were developed in the Code Aster
[27] environment, with extensive use of python and the Scipy
library [28]. Two different test cases were considered for
the analysis of accuracy and performance. It is important
to note that these techniques rely on several control parame-
ters, which can have a considerable influence on both accu-
racy and CPU time.

Contrary to the other techniques, the evaluation of the
solution’s stability using the 2n-pass technique has no rel-
evant control parameter, since the built-in time integration
scheme has several automatic routines to determine well suited
parameter values. Indeed, the classical time integration schemes
provided with Scipy have a set of default parameters which
generally allow accurate integration. In particular, the num-
ber of time steps is handled automatically.

Fig. 1 Jeffcott rotor

The exponentials technique has two main parameters.
The most important of these is the chosen number of in-
tervals. Since from numerical experiments a total of 256 in-
tervals was found to produce sufficiently accurate results in
every situation, this number was used in all of our tests. The
second parameter is the accuracy with which the matrix ex-
ponentials are computed. When computing these exponen-
tials using the Padé or Taylor approximation, the built-in
Scipy functions use default parameters which are found to
provide sufficiently accurate results in every situation.

The Nm 1-pass technique also used a total of 256 time
intervals and used the average acceleration scheme with the
Newmark parameters β = 0.25 and γ = 0.5 (see [33]). For
convergence reasons, the RK 1-pass technique used 256 time
intervals for the first test case and 1024 intervals for the sec-
ond test case (except the last variant of the second test case
where 2048 intervals were used).

The Hill2 technique used every harmonic between 0 and
the highest harmonic present in the HBM response compu-
tation.

4.1 Nonlinear Jeffcott rotor

The first test case is inspired by Von Groll and Ewins [3].
It is a modified Jeffcott rotor which can come into contact
with the stator (see Fig. 1). Two variants of this model were
tested. The first variant features a fixed stator, and has only
two DOFs. In the second variant, the stator is suspended and
acts like an oscillator interacting with the rotor. This variant
has four DOFs. The mountings of the rotor are orthotropic.
When the mountings are isotropic, the rotor’s orbit remains
circular at all times. Thus, only one harmonic is necessary
for the HBM calculation and stability analysis. Conversely,
when the mountings are orthotropic, the orbits are not circu-
lar and contact (when it occurs) is a priori non-permanent.
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6 Loı̈c Peletan et al.

Fig. 2 Jeffcott rotor. Response curve. Stability calculated with the 2n-
pass method. (N) stable, (�) unstable

A greater number of harmonics is thus needed, to compute
the HBM solution with good accuracy. In the present exem-
ple, 24 harmonics were used for the HBM calculation in the
first variant and 32 harmonics were used in the second vari-
ant. These two variants are summarized in Table 1.
The equations of motion are shown below (for variant 2):

mrq̈r(t)+ crq̇r(t)+krqr(t)+ fc(t) = p(t) (8)

msq̈s(t)+ csq̇s(t)+ksqs(t)− fc(t) = 0 (9)

where mr and ms represent the mass matrix of the rotor and
the stator, respectively. Similarly, cr and cs are the damping
matrices and kr and ks are the stiffness matrices. qr(t) =
[qry(t),qrz(t)]

T is the displacement of the rotor and qs(t) =
[qsy(t),qsz(t)]

T is the displacement of the stator. fc(t) rep-
resents the contact force and p(t) is the external excitation
force. In the present example, a penalty contact law coupled
with Coulomb friction is used:

fc(t) = fn(t)+ ft(t) =−kδ (t)−µ||kδ (t)|| vrel(t)
||vrel(t)||

(10)

where fn and ft are respectively the normal and tangential
contact forces.

δ (t) =

{
(r(t)−δ0)nnorm(t) if r > δ0,

[0,0]T otherwise.
(11)

where

r(t) =
»
(qry(t)−qsy(t))2 +(qrz(t)−qsz(t))2

and

nnorm(t) =
ï
(qry(t)−qsy(t))

r(t)
,
(qrz(t)−qsz(t))

r(t)

òT

k is the contact stiffness and δ0 is the initial gap between
rotor and stator. µ is the Coulomb friction coefficient and

Fig. 3 Jeffcott rotor. Response curve (close up). (a) Stability calculated
with the Hill2 method ; (b) Stability calculated with the other methods
(2n-pass, exponentials, RK 1-pass, Nm 1-pass). (N) stable, (�) unstable

vrel is the relative velocity between the rotor and the stator
at the contact point. In this case, the external excitation is
generated by an imbalance:

p(t) = p0ω
2 [cos(ωt) ,sin(ωt)]T (12)

When the first variant is treated, Eq. (9) is ignored and qs is
assumed to be zero in the other equations.

The solutions were calculated for varying values of ω .
Figs. 2 and 3 show the results of the simulation for the five
different techniques (2n-pass, exponentials, RK 1-pass, Nm
1-pass, Hill2). All the results are summarized in Table 2.
The CPU performance is given for the five algorithms, with
respect to the time spent without making a stability compu-
tation.

The 2n-pass method is very slow, since the computa-
tion times is multiplied by 23 compared to the same sim-
ulation without stability assessment. The exponentials, RK
1-pass and Nm 1-pass methods remain comparatively fast
(between 1.3 and 1.7 times the time needed without stability
calculation), while giving accurate results. The Hill2 tech-
nique proved to be quite slow compared to the three pre-
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A comparison of stability computational methods for periodic solution of nonlinear problems with application to rotordynamics 7

rotor model nele n N nHBM
Jeffcott v.1 N/A 2 24 98
Jeffcott v.2 N/A 4 32 260
FE rotor v.1 4 24 12 600
FE rotor v.2 6 34 12 850
FE rotor v.3 9 49 12 1225
FE rotor v.4 13 69 12 1725
FE rotor v.5 17 89 12 2225

Table 1 The variants of the rotor models. nele = number of elements.
n = number of DOFs. N = number of harmonics for the HBM calcu-
lation. nHBM = n(2N +1) = dimension of the HBM algebraic system.

Fig. 4 Multi-DOFs finite element rotor

viously mentioned techniques while yielding inaccurate re-
sults. Contrary to a duffing oscillator test case proposed by
Lazarus and Thomas (see [26]) the filtering technique is not
effective in the present test case.

4.2 Multi-DOF nonlinear rotor

A finite element nonlinear rotor model [29] was also tested
(see Fig. 4). This rotor is originaly composed of thirteen
Timoshenko beam elements. Two linear orthotropic mount-
ings are located at both ends of the rotor, and three disks
(modeled by additional mass and inertia) are added to nodes
3, 6 and 11. The rotor is excited by an imbalance force lo-
cated on disk 2. The rotor makes contact with a circular,
static, and rigid stator located in the vicinity of disk 2. The
contact model is identical to that described in section 4.1.
The equation of motion (13) is written in a finite element
form.

Mq̈(t)+C(ω)q̇(t)+Kq(t)+ fc(q) = p(ω, t) (13)

where M, C(ω) and K represent the mass, damping and
stiffness matrices respectively. C(ω) includes the gyroscopic
matrix, which varies with ω . In its original form, this model
has 69 DOFs. For the purposes of the present study five vari-
ants of this model were tested, in four of which the num-
ber of elements has been modified (see Table 1) to illustrate
the influence of the number of DOFs on the relative perfor-
mance of the stability computation techniques.

In the first and second variants, the system was reduced
to 24 and 34 DOFs respectively. In the third and last variants,

the system was modified to 49 DOFs and 89 DOFs, respec-
tively. The number of DOFs was always sufficient to avoid
any significant change in the system response over the range
of tested rotational speeds. Twelve harmonics were retained
for the HBM calculation.

The response curve of the system can be seen in Fig. 5,
and the results are summarized in Table 2. The Nm 1-pass
method gives accurate results, and is by far the fastest of the
five methods. However, it can be noted that the overhead of
this method increases with n. The computation time is mul-
tiplied by 1.4 in the case of the Jeffcott rotor with n = 2 but
it is multiplied by 10 in the case of the finite element rotor
with n = 89. The exponentials method and the RK 1-pass
method also become slower when n increases but at a much
faster rate than the Nm 1-pass method. The Hill2 method is
as slow as the 2n-pass method and yields inaccurate results.

Additional information, together with a discussion of these
performance issues, is provided in the following section.

5 Discussion

The results from the two test cases are summarized in Table
2. Although the accuracy of the Hill2 method is unsatisfac-
tory, close analysis of the CPU performance achieved with
the five techniques provides considerable insight into these
processes. Independently from the accuracy of the results, it
can be seen that there are vast differences in terms of CPU
requirements, depending on the test case and the algorithm
used. The additional cost of the stability computation can be
less than 30% of the basic computational time requirement
(without the stability calculation) in the case of the RK 1-
pass method for the Jeffcott rotor. Conversely, in the case of
variant 4 of the FE rotor test case with the Hill2 method, the
stability computation multiplies the CPU time requirement
by almost sixty thousand. The general trend for the compu-
tation times is to increase when n increases (and also when
N increases for the Hill’s method). In order to analyze this
trend, it should be noted that for each of the five methods
studied here, the stability analysis can be separated into two
main steps:

– constructing a matrix H,
– computing its eigenvalues.

However, the nature of H and/or the way in which it is con-
structed is different for each method. When using the Hill’s
methods, the dimension of H is d = 2n(2NH +1), whereas it
is d = 2n when using a time domain method (where NH rep-
resents the number of harmonics used in the Hill’s method).
In the test cases presented here, NH = 2N− 1 for the Hill2
method. Depending on the situation, most of the CPU time
is spent on either one or the other of these two steps. Tables
3 and 4 indicate the proportion of time spent computing each
of the two steps for the Hill2 method and the exponentials
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8 Loı̈c Peletan et al.

Fig. 5 Multi-DOFs finite element rotor (variant 1). Response curve and stability calculated using the 2n-pass method. (N) stable, (�) unstable

Frequency domain Time domain
rotor model No stab. Hill2 2n-pass exponentials RK 1-pass Nm 1-pass
Jeffcott v.1 1 9.5* 23 1.7 1.3 1.4
Jeffcott v.2 1 151* 45 2.0 1.6 1.5
FE rotor v.1 1 2.4×103* 1.4×103 10 7.9 1.8
FE rotor v.2 1 4.6×103* 5.3×103 22 16 2.3
FE rotor v.3 1 1.1×104* 1.3×104 51 34 3.5
FE rotor v.4 1 5.9×104* 3.7×104 170 81 5.7
FE rotor v.5 1 N/A 9.9×104 260 300 10

Table 2 Relative CPU time. The time spent to compute the response curve without stability determination is normalized to 1 as indicated in the
’No stab.’ column. Numbers with an asterisk (*) indicate unsatisfactory accuracy.

method respectively. The data relative to the other time do-
main methods (2n-pass method, RK 1-pass method and Nm
1-pass method) are not shown here as they are very similar
to the exponentials method data.

In the case of the Hill2 method, it should be noted that,
except for the Jeffcott test case, most of the CPU time (>99.9%)
is spent computing the eigenvalues of H. In the first variant
of the Jeffcott test case, constructing the matrix H repre-
sents 17% of the time spent assessing the stability. Classical
algorithms for the computation of matrix eigenvalues have
an O(d3) algorithmic complexity, and constructing H has
an O(d2) algorithmic complexity. Thus, the portion of time
computing the eigenvalues of H is is expected to increase
as the size of the system increases. The bad overall perfor-
mance of the Hill2 method can be explained by the fact that
the size of the matrix H is large (d = 2n(2NH + 1)) thus
leading to large eigenvalues computation times.

Contrary to the case of the Hill’s methods, most of the
time required by the time domain methods is spent comput-
ing H. This is due to the fact that the dimension of H in these

Hill2
rotor dimension construction compute

model of H of H eigenvalues
Jeffcott v.1 380 17% 83%
Jeffcott v.2 1016 2% 98%
FE rotor v.1 2256 0.1% 99.9%
FE rotor v.2 3196 <0.1% >99.9%
FE rotor v.3 4606 <0.1% >99.9%
FE rotor v.4 6486 <0.1% >99.9%
FE rotor v.5 8366 <0.1% >99.9%

Table 3 Proportion of time spent during stability computations with
the Hill2 method.

methods depends only on n (not N), and is therefore consid-
erably smaller than for the case of the Hill’s methods. The
eigenvalue computation thus remains relatively fast. More-
over, with these methods the construction of H is, by nature,
considerably more demanding in terms of CPU than with
Hill’s methods. However, in absolute terms, it can be noticed
that these methods becomes relatively CPU inefficient when
n grows. Among the time domain methods, large disparities
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A comparison of stability computational methods for periodic solution of nonlinear problems with application to rotordynamics 9

exponentials
rotor dimension construction compute

model of H of H eigenvalues
Jeffcott v.1 4 99.8% 0.2%
Jeffcott v.2 8 99.8% 0.2%
FE rotor v.1 48 99.9% 0.1%
FE rotor v.2 68 99.9% 0.1%
FE rotor v.3 98 >99.9% <0.1%
FE rotor v.4 138 >99.9% <0.1%
FE rotor v.5 178 >99.9% <0.1%

Table 4 Proportion of time spent during stability computations with
the exponentials method. The 2n-pass, RK 1-pass and Nm 1-pass re-
sults are very similar.

in terms of CPU efficiency can be observed. The 2n-pass
method is by far the most inefficient technique as 2n numer-
ical integrations over one period have to be performed to
compute H. This property obviously becomes problematic
as n increases. Single-pass methods (exponentials method,
RK 1-pass method, Nm 1-pass method) are indeed much
faster. However, it can be noted that the Nm 1-pass technique
outperforms the exponentials and RK 1-pass techniques. The
exponentials and RK 1-pass techniques are similar in their
implementation since the matrix H is computed as the prod-
uct of precalculated matrices in both techniques. In the ex-
ponentials method, the precalculated matrices are evaluated
by a massive use of a matrix exponential calculation func-
tion. Matrix exponential computation has an O(d3) algorith-
mic complexity, and this operation becomes predominant as
n increases. It can thus be concluded that the CPU efficiency
of this method can only be expected to decrease, when more
complex problems are dealt with.

On one hand, the RK 1-pass technique does not require
matrix exponentials calculations but on the other hand, an
increasing number of time steps is necessary to obtain con-
vergence. The period T was divided in 256 intervals in the
Jeffcott test case. As the Runge-Kutta-Gill method is not in-
conditionnaly stable, 256 time steps are not enough for the
finite element rotor model. 1024 time steps were necessary
for the first four variants and 2048 time steps were used for
the last variant. The exponentials method required only 256
time steps for all test cases. For the above-mentioned rea-
sons, both the exponentials and the RK 1-pass techniques
become very slow when n increases.

Fig. 6 shows the relative CPU time as a function of the
total size of the HBM system for the five techniques pre-
sented in this paper. The Nm 1-pass technique has proven to
be the most efficient one. As there is no need to transform the
equation of motion into the state form, the size of the system
remains equal to n instead of 2n. Moreover, only 256 time
steps per period were sufficient to obtain good accuracy in
all cases, due to the good stability of the implicit Newmark
average acceleration scheme for the considered nonlinear
problems. However, in absolute numbers, this technique still

Fig. 6 Relative CPU time as a function of nHBM. Time spent to com-
pute the response curve with stability with respect to the time spent to
compute it without stability assessment.NHill2,H 2n-pass, � exponen-
tials , • RK 1-pass,F Nm 1-pass.

multiplies the computational time by 10 in the last test case.
The algorithmic complexity of this method is still greater
than the algorithmic complexity of the HBM method. Thus,
this technique is also expected to become increasingly inef-
ficient as the size of the system increases.

6 Conclusion

Five techniques based on the Floquet theory, which are com-
monly used to compute the stability of periodic solutions,
have been compared in terms of accuracy and CPU perfor-
mance on different test cases. One technique is based on a
modified version of the Hill’s method in the frequency do-
main and the four others are based on the computation of the
monodromy matrix in the time domain. The five techniques
require the computation of a specific matrix H, followed by
the calculation of its eigenvalues, and differ mainly in the
nature of H and/or the way in which it is constructed.

It has been shown that the four techniques based on the
monodromy matrix calculation yield substantially more ac-
curate results, and contrary to the Hill’s methods, most of
the CPU time is spent constructing H. All factors being con-
sidered, for the present nonlinear test cases the monodromy
matrix calculation using the single-pass Newmark algorithm
appears to provide the best compromise between accuracy
and CPU performance. Its accuracy is satisfactory in all of
the situations tested in this paper while being by far the
fastest of the tested methods.

However, this technique is also expected to become in-
creasingly less efficient as the number of degrees of freedom
increases. This inefficiency can nevertheless be avoided with
the use of a model reduction technique. For systems with lo-
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10 Loı̈c Peletan et al.

calized nonlinearities a condensation procedure [30,31] is
a good candidate among many others such as component
mode synthesis procedure [1] or invariant manifolds con-
struction [32].
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