N

N

Discrete infinity harmonic functions: towards a unified
interpolation framework on graphs

Mahmoud Ghoniem, Abderrahim Elmoataz, Olivier Lezoray

» To cite this version:

Mahmoud Ghoniem, Abderrahim Elmoataz, Olivier Lezoray. Discrete infinity harmonic functions:
towards a unified interpolation framework on graphs. International Conference on Image Processing
(IEEE), Sep 2011, Bruxelles, Belgium. pp.1361-1364, 10.1109/ICIP.2011.6115690 . hal-00813251

HAL Id: hal-00813251
https://hal.science/hal-00813251
Submitted on 31 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00813251
https://hal.archives-ouvertes.fr

DISCRETE INFINITY HARMONIC FUNCTIONS: TOWARDS A UNIFIED INTERPOLATION
FRAMEWORK ON GRAPHS

Mahmoud Ghoniem, Abderrahim Elmoataz, Olivier Lezoray

GREYC, université de Caen Basse-Normandie

ABSTRACT

In this paper, we introduce fast and robust digital algorithms
for solving the Dirichlet problem with co-harmonic functions
on graphs. Several PDEs and variational techniques have
been proposed for a number of interpolation problems. Our
motivation for this work is to extend some of these PDEs on
graphs to deal with interpolation problems with a new ap-
proach in a discrete framework using the oo-Laplacian on
weighted graphs arbitrary topology. We show the experimen-
tal results for some applications of image interpolation that
demonstrate the efficiency of our method and point out the
interest of the novel algorithm with p = oo for interpolation
problems.

Index Terms— oo-harmonic functions, interpolation, in-
painting, semi-supervised segmentation, co-Laplacian

1. INTRODUCTION

Many tasks in image processing and computer vision can be
formulated as interpolation problems. Image and video col-
orization, inpainting and semi-supervised segmentation are
examples of these problems. In general, interpolating data
consists in constructing new values for missing data in coher-
ence with a set of known data. In recent years, many methods
have been developed for image interpolation. Among them, a
number of methods are based on Partial Differential Equation
(PDE) or variational. They have shown their efficiency in
giving an approximation of the missing data.

Let us consider a function f defined on a continuous eu-
clidean domain 2 and A C € represents missing data. One
of the simplest way is to approach f|4 by the p-harmonic
function on A, having the Dirichlet boundary data f|q\ 4 on
O\ A. Mathematically, interpolating f over A is formalized
as:

on A

f=gy on 0A = Q\A

Equation (1) can be solved by considering the p-Laplacian
equation:
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For p = 2, we retrieve harmonic function and when p —
00, we obtain the oco-harmonic functions that are widely used
for data interpolation in continuous domains [1, 2].

However, these methods are local, hence, they are not
adapted for interpolating images containing texture. That ex-
plains the interest in the methods that exploit nonlocal infor-
mation based on patch similarity. For instance, some works
utilize the non-parametric sampling of Efros and Leung [3]
and explore the self-similarity in the image or video to regu-
larize the preserved data [4, 5].

Hence, recent works tend to unify the local and nonlo-
cal interpolation approaches [6]. A variational framework for
nonlocal image inpainting has been presented [7]. A discrete
nonlocal regularization framework for image and manifold
processing has been proposed [8]. This framework has been
used to present a unifying approach of local geometric meth-
ods and nonlocal exemplar-based ones for video inpainting
[9, 10].

This paper addresses the problem of data interpolation
on weighted graphs of arbitrary topology and demonstrates
some applications of image interpolation. Our main contribu-
tion lies in providing a new method for solving the Dirichlet
problem with co-harmonic functions on graphs of arbitrary
topology. This method provides simple and fast algorithms
for image interpolation and inpainting. A main advantage
of our approach is the unification of local and nonlocal ap-
proaches for these processing procedures in a mathematically
unified discrete framework which makes it applicable to any
data represented on graphs. Our new algorithm, with p = oo,
provides competing results but is computationally much faster
than other values of p < oo.

In Section 2, we state the interpolation issue in terms of
Dirichlet problem on graphs. In Section 3, we report and
discuss empirical results of our proposed methods for image
and video inpainting. We conclude this paper in Section 4
with a summary of our findings.

2. c0c-HARMONIC INTERPOLATION ON GRAPHS

We consider that data are defined on a general domain rep-
resented on a graph G = (V,E,w). Let f : V — Rin



H(V') be a function. Let A C V be the subset of vertices
to interpolate and JA its external boundary with known data.
Consequently, V'\ A corresponds to the known vertices.

Mathematically, interpolation problems using p-harmonic
functions consist in finding a function f that minimizes the
p-energy with given boundary conditions (specific values on
0A).

For 1 < p < o0, the p-energy formula is:

Ru(H) = IVuf @I},
where V,, f (u) is the gradient as defined below.
Interpolating an image using co-harmonic functions consists
in finding a function f that is the limit of p-harmonic func-
tions: f, —— f as described below.
p—00

2.1. Difference operators on graphs

Firstly, let us give the required definitions. We refer the reader
to [8] for detailed definitions of derivatives on graphs.

The gradient operator of a function f : V' — R, at a vertex
u € V, is the vector operator defined by:

Vuf(u) = (0uf(u) :v~u)' = (9o, f(1), ..., 00 f(u)",
)

where v, . .., vy are the neighbors of the vertex w.

The anisotropic p-Laplace operator A, , : H(V) — H(V),
of a function f : V — R, ata vertex u € V is:

Apowf(u) = wlu,v)|f(u) = f@)P7 (f(u) = F(v)) G)

v~U

The upwind gradients are defined by:

IVat @l = max (Volu,v) max (f(u) - £(0),0))@)
IVEF@llee = max (Veolu,v) max (£(v) = f(u),0))

The definition of the co-Laplacian, A ,,, is written:

(Ao, f) (W) = [V f)lloe = IV f (W)l (5)
Using the gradients definitions, the oo-Laplacian becomes:
(B f) () — 2F ) = (a0 (F(0) o i ((0)))

2
)
Thus, we obtain the expression of the morphological Lapla-

cian which is an approximation of the continuous co-Laplacian.

2.2. oo-harmonic functions
Definition 1. A function f is co-harmonic ift:
fluw) = lim fp(u), Yue A\OA ™
p—0o0

where f), is a p-harmonic function, i.e. that satisfies:

Ay fp(u) =0.

Proposition 1. A function f is oo-harmonic iff

_ 2/ + (Vi HWloo = (Vi /) ()]s

fw) .

Or equivalently, A, o, f = 0.

®)

To get its solution, several methods can be used. By solv-
ing the fixed point iteration we obtain the following algo-
rithm.

V(u, v) with v and v in A:

fOw = ). YueA )
£ (w) FO®u), Yue dA
FEFD () ) vwea

+ (max (V/w(u,v) max (f(u) - £(2),0)) ) \ 2
+ (max (V/w(u, v) max (£(v) = f(u),0)) ) \ 2,

More inquisitive readers are referred to [11] for more details
on oco-harmonic functions on graphs and for the existence and
uniqueness of a solution of Equation (8) and the convergence
of Equation (9) to Equation (8).

3. EXPERIMENTAL RESULTS

3.1. Graph construction

First of all, the graph is constructed. The weight function w
associated to GG provides a measure of the distance between
its vertices that can simply incorporate local, semi-local or
nonlocal features according to the topology of the graph and
the image. Hence, our oo-Laplacian can be either local or
nonlocal depending on the use of wy, or wyp.

We consider the following nonlocal weight function:

_If(w) = f(v)lz)

wi (4, ) = emp( -
d

h2
where 02 depends on the variations of | f(u) — f(v)| over the
graph.

In addition to the difference between values, wyy, (u,v)
includes a similarity estimation of the compared features by
measuring a £2 distance between the patches around u and v.
Once the graph is constructed, the minimization problem is
considered.

The iterative algorithm (9) is iterated till convergence is
reached. We consider that convergence is reached when the
Mean Squared Error between f*+1 and f* is lower than a
user-defined threshold.

_IEGO ) = FO, )12 )

wnr(u,v) = wL(va)fIP(

3.2. Graph processing
3.2.1. Inpainting

It consists in filling in the missing parts of an image or a video
with the most appropriate data in order to obtain harmonious
and hardly detectable reconstructed zones.



(a) Corrupted image b)yp=2 ) p=o©
Fig. 1. Comparison between the inpainting results using p = 2 and

p = 00.

(b) Masked image

(a) Initial image (c) Restored image
Fig. 2. Inpainting of a real-life color image with p = oo, a
search window of size 21 x 21 and a patch of size 11 x 11.

In Figure 1, we can observe that the result with p = oo
is similar to the inpainting with p = 2. We can remark that
the case p = 2 can be interpreted as an iterative inpainting
method based on the well-known nonlocal-means filter. In
Figure 2, the security fencing has been removed to enjoy the
zoo picture. The result on a texture image is reported in Fig-
ure 3. We can observe that the reconstructed zones are not
detectable and merge harmoniously with the preserved data
in both results with p = 2 and p = oo.

We would like to stress that this equally good result is
obtained at a much lower computational cost with p = oo.
In fact, by definition, the algorithm with p = oo is based
on max() functions while with p in [1, 00[, it is based on
weighted mean. Therefore, for the same number of iterations,
the processing time is shorter for p = oo than p = 2 while
giving equally competitive results. We notice that the algo-
rithm with p = 1 is even slower than p = 2.

(d) Corrupted image

(e) Nonlocal, p = 2 (f) Nonlocal, p = co

Fig. 3. Inpainting of a texture image using a search window of size
31 x 31 and a patch of size 15 x 15.

(a) Original size sample (b) Scattered to target (c) bicubic upscaling
sample

(d) Nonlocal, p=2

(e) Nonlocal, p=co

Fig. 4. Upscaling an image of Barbara. On the first line, from left
to right, the region to enlarge, the same image scattered over the
upscaled size and the bicubic upscaling. On the second line, from
left to right, our nonlocal result for p = 2 and p = oc.

Moreover, our experiments reveal that under the same
convergence conditions, p = oo needs less iterations than
p = 2 and much less than p = 1 to reach convergence. To
sum up, p = oo has higher computation and convergence
speeds than any other value of p for little or no visual dif-
ference. Hence, the real progress using p = oo resides in
computational savings.

3.2.2. Upscaling

It consists in enlarging an initial image by constructing a big
image from a low resolution content by adding new pixels
with judicious values between the copied few original ones.
This method has obvious direct application to image com-
pression. Figure 4 shows the image of Barbara enlarged eight
times while preserving texture and clear-cut edges. In com-
parison with bicubic upscaling, we can observe that our result
is very similar but is less smoothed.

3.2.3. Semi-supervised segmentation

In this subsection we present the application of our method to
semi-supervised segmentation. The semi-supervised segmen-
tation provides a segmentation of data in two clusters given
initial seeds. A user sets initial labels as shown in Figures 5
and 6 in order to obtain a segmentation of a target zone of his
choice. Then, these initial labels are interpolated to similar
regions all over the image using weights computed from the
image to segment. At convergence of this process, the image
is partitioned into two labels. In Figure 5 and 6 the boundary
between the segmented regions is marked in red. This appli-
cation can be used in an image and video matting algorithms.



4. CONCLUSION

In this paper, fast and robust digital algorithms for solving
the Dirichlet problem with oo-harmonic functions on graphs
of arbitrary topology and some applications on image have
been introduced. Besides the unification of state-of-the-art
methods, the formulation with p = oo on graphs is novel
and leads to a faster algorithm than classical approaches as
aforementioned.

Experimental results on several interpolation applications
demonstrate the efficiency of our algorithm for dealing with
both image geometry and texture. Image inpainting and up-
scaling tests provide hardly detectable reconstructed data and
semi-supervised segmentation tests were successful in seg-
menting different labeled textures.

b)) p=2

(a) Initial labels

() p=o0

Fig. 5. From left to right: An image of leather and marble tex-
ture with initial user-defined labels marking the target region and the
background, the segmentation results for p = 2 and for p = co.

(a) Initial labels b)yp=2 (c) p=o0
Fig. 6. From left to right: An image of two different textures with
initial user-defined labels, the segmentation results for p = 2 and for

p = 00.

(a) Initial labels

(b) p = 2, 1004 itera- (c) p = oo, 391 itera-
tions tions

Fig. 7. Matting example on algae image. With p = oo, the
algorithm is much faster (see number of iterations at conver-
gence) than with p = 2 and provides a better result.
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