
HAL Id: hal-00813232
https://hal.science/hal-00813232v1

Submitted on 9 Sep 2013 (v1), last revised 28 Mar 2017 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Designing Intuitive Multi-touch 3D Navigation
Techniques

Damien C. P. M. Marchal, Clément Moerman, Géry Casiez, Nicolas Roussel

To cite this version:
Damien C. P. M. Marchal, Clément Moerman, Géry Casiez, Nicolas Roussel. Designing Intuitive
Multi-touch 3D Navigation Techniques. IFIP Interact 2013, Sep 2013, Cap Town, South Africa.
pp.xx-xx. �hal-00813232v1�

https://hal.science/hal-00813232v1
https://hal.archives-ouvertes.fr

adfa, p. 1, 2011.

© Springer-Verlag Berlin Heidelberg 2011

Designing Intuitive Multi-touch

3D Navigation Techniques

Damien Marchal
1
, Clément Moerman

2,3
, Géry Casiez

3
 and Nicolas Roussel

4

1CNRS, 2Idées-3Com, 3University of Lille & 4Inria Lille

Villeneuve d'Ascq, France

{damien.marchal, clement.moerman, gery.casiez}@lifl.fr,

nicolas.roussel@inria.fr

http://ns.inria.fr/mint/MoveAndLook

Abstract.

Multi-touch displays have become commonplace over recent years. Numerous

applications take advantage of this to support interactions that build on users'

knowledge and correspond to daily practices within the real world. 3D applica-

tions are also becoming more common on these platforms, but the multi-touch

techniques for 3D operations often lag behind 2D ones in terms of intuitiveness

and ease of use. Intuitive navigation techniques are particularly needed to make

multi-touch 3D applications more useful, and systematic approaches are direly

needed to inform their design: existing techniques are still too often designed in

ad-hoc ways. In this paper, we propose a methodology based on cognitive prin-

ciples to address this problem. The methodology combines standard user-

centered design practices with optical flow analysis to determine the mappings

between navigation controls and multi-touch input. It was used to design the

navigation technique of a specific application. This technique proved to be

more efficient and preferred by users when compared to existing ones, which

provides a first validation of the approach.

Keywords: 3D navigation, multi-touch, interaction technique, design rationale

1 INTRODUCTION

Multi-touch displays have become commonplace over the recent years. Smartphones,

tablets, interactive kiosks and systems of other sorts can now detect and react to the

presence of two or more contact points on the screen surface. Numerous applications

take advantage of this to support reality-based interactions [13] that build on users'

knowledge and correspond to daily practices within the real world. 3D applications

are also becoming more common on these platforms, including games, virtual tours,

and CAD applications for both specific, e.g. interior design, and general purposes. But

the multi-touch techniques for 3D operations often lag behind the 2D ones in terms of

intuitiveness and ease of use. Navigation particularly seems to be the Achilles heel of

multi-touch 3D applications. Existing techniques are still too often designed in ad-hoc

mailto:gery.casiez%7d@lifl.fr
mailto:nicolas.roussel@inria.fr
http://ns.inria.fr/mint/MoveAndLook

ways. Intuitive techniques are direly needed to make the applications more useful, and

systematic approaches direly needed to inform their design.

The Merriam-Webster Dictionary defines intuitive as “attaining to direct

knowledge or cognition without evident rational thought and inference”. Based on an

extensive review of the relevant literature, Ingram et al. also identify direct manipula-

tion as the most influential factor determining the intuitiveness of multi-touch sys-

tems [10]. Direct manipulation is commonly supported by 2D multi-touch applica-

tions, due to the trivial mapping between 2D tasks and the multi-touch input space.

However, finding a direct mapping between 3D tasks and this 2D input space is much

more difficult. To clarify the requirements for intuitive 3D navigation techniques, we

propose to turn first to cognitive accounts of the feeling of directness.

Hutchins et al. identify two underlying phenomena that give rise to this feeling: a

small cognitive distance, and direct engagement [9]. The cognitive distance is the one

“between the user’s intentions and the facilities provided by the machine”. It encom-

passes the semantic distance, concerned with the meaning of available interactions,

and the articulatory one, concerned about their form. For the semantic distance to be

small, the system should provide users with adequate commands to concisely express

what they want to do. For the articulatory distance to be small, the system should

provide an adequate mapping between user actions and the commands. This mapping

should not be arbitrary, but should rather favor similarities between user action and

command meaning. Lastly, for direct engagement, the system should provide contin-

uous representations of the objects of interest and promptly react to user actions on

them. Ultimately, the degree of directness relates to the one to which the system sup-

ports skill-based rather than rule-or knowledge-based behaviors [22].

Navigation concerns viewpoint control and is the aggregate of wayfinding (cogni-

tive planning of one's route), travel (the motor aspects) and inspection (for particular

proximal views of objects). The importance of each sub-task depends on the consid-

ered application. We did not consider wayfinding sub-tasks in this work. We rather

focused on multi-touch support for traveling and, to a lesser extent, inspection. Travel

techniques support the motor aspects of 3D navigation, allowing users to control the

position and orientation of their viewpoint [2]. Viewpoints are typically modeled

using seven parameters: the camera's field of view, three Cartesian coordinates (its

position) and three Euler angles (its orientation). Controlling these parameters re-

quires a rich command vocabulary because of their number and the different ways to

use them. Turning around is pretty straightforward, for example, as it requires the

control of a single viewpoint parameter (Figure 1,). Wandering around a horizontal

space requires the control of three parameters at the same time (). But

some navigation tasks require quite a complex coordination of controls, especially

when the desired motion is conceptually tied to other reference points. Orbiting

around an object, for example, couples planar circular motions with a rotation around

an orthogonal axis, both centered on the object (for ; for

). Temporary transformations can also be useful, such as adjusting the field of view

() of the camera to remotely inspect a distant place or have a closer look at a

nearby detail.

http://www.merriam-webster.com/dictionary/intuition

Figure 1. Typical viewpoint controls: dolly, sidestep and fly (and), tilt, pan and roll

(and), zoom () and orbit (and).

To reduce semantic distance, multi-touch navigation techniques should support not

only elementary viewpoint controls, but also coordinated ones, including the complex

coordination required by externally referenced tasks and temporary ones. To reduce

articulatory distance, they should be based on a mapping favoring similarities be-

tween user gestures and commands meaning. To support direct engagement, they

should provide a close and continuous visual-motor loop. In this paper, we present a

methodology for designing multi-touch 3D navigation techniques that meet all these

requirements. After discussing related work, we describe our methodology and ex-

plain how it was used to design the navigation technique of a particular application.

We then provide some implementation details for that application. We finally report

on a study that compared this technique with existing ones and provides a first valida-

tion of the approach.

2 RELATED WORK

Navigation in virtual 3D worlds has been extensively studied in immersive and desk-

top environments. Bowman et al. [2] and Christie et al. [4] provide detailed reviews of

the relevant concepts and techniques in these contexts, many of which are also rele-

vant to multi-touch environments. Navigation techniques map user actions on one or

more input devices to viewpoint controls such as those of Figure 1. Theoretically, a

technique could allow users to operate all controls at once. However, it is rarely the

case since few input devices (or device combinations) have enough degrees of free-

dom, and their control properties seldom match the perceptual structure of the naviga-

tion tasks [12]. Viewpoint controls thus tend to be organized in groups, which can

raise issues about consistency and mode switching. The following review focuses on

input-to-control mappings for multi-touch systems, but also discusses pen or mouse-

based navigation techniques that could easily be adapted to these systems.

2.1 Basic viewpoint control

Different techniques have been proposed to freely and precisely control the view-

point. These are typically used when navigation is a primary task of the application,

one without which it would not be the same. They most often provide only elementary

input-to-control mappings to move and orient the viewpoint.

Games using a first-person perspective are probably the most popular 3D applica-

tions supporting this kind of navigation on multi-touch platforms. A common practice

is to use one or two on-screen joysticks for moving and turning (or

). Virtual joysticks make control grouping explicit and make it possible to use

non-linear transfer functions for a trade-off between speed and control. They can also

be complemented by buttons, sliders or other widgets for discrete or continuous ac-

tions on other controls (e.g.). Coordinating interactions on multiple screen

locations is not necessarily easy, though, especially without haptic feedback. Com-

pound controls such as orbiting are thus usually difficult in these settings. Instead of

spreading controls across the screen, some techniques combine them using modes. In

the RealMyst
1
 game, for example, touching the screen and moving horizontally or

vertically changes the orientation of the viewpoint while holding still moves forward.

Such an approach is of course only practical for a small number of modes.

Multi-touch devices can be used to interact with a 3D scene displayed elsewhere.

The ability to use a different view of the scene, a different orientation, or a different

physical shape offers new interesting possibilities. The Finger Walking in Place

(FWIP) technique allows to navigate in a CAVE by mimicking walking movements

with fingers on a horizontal multi-touch device [14, 15]: repeated single-touch sliding

gestures move the viewpoint forward or backward (), while multi-touch turn ges-

tures rotate it left or right (). The Follow my Finger (FmF) technique uses a hori-

zontal multi-touch table to navigate in a scene shown on a vertical screen [1]. The

table shows a 2D bird's-eye view of the scene with a camera icon that users can move

() and orient () using the 2D Rotate'N Translate technique [16]. The Cub-

Tile [24] takes the idea of aligning the perceptual structure of the tasks with the input

device in the opposite direction. This device combines 5 multi-touch surfaces ar-

ranged as a cube so that gestures performed on multiples sides at the same time define

a 3D gesture that can be used for 3D interaction. Although designed for object manip-

ulation, the CubTile may well be suitable for navigation tasks.

2.2 Viewpoint control facilitation

It might well be the case that the 3D environment in which a user wants to navigate is

extremely large [19]. Or the user might be willing to quickly get a glimpse of the

scene from different perspectives. Or (s)he might be engaged in repeated tasks requir-

ing frequent switches between two or more viewpoints. In these situations, navigation

is just a mean and not an end. One wants to transition between viewpoints but does

not necessarily care about all the details of the transition. Even with sophisticated

transfer functions, basic viewpoint controls are not enough: one needs faster and inte-

grated techniques to move and orient the viewpoint.

The Point Of Interest (POI) desktop technique was precisely designed for rapid

controlled movement through a 3D space [17]. After selecting a POI with the mouse,

it allows to quickly move there by simply pressing a key, the system taking care of the

1 http://www.cyanworlds.com/iOS_realMyst/

http://en.wikipedia.org/wiki/Cave_automatic_virtual_environment
http://www.cyanworlds.com/iOS_realMyst/

transition with an animation adjusting the viewpoint position (using a logarithmic

function of the remaining distance) and reorienting it to face the POI. UniCam [25] is

a mouse or stylus-based system that uses simple gesture recognition to facilitate a

variety of complex navigation tasks including orbiting around specific points, click-

to-focus on points and edges, and region zooming. Navidget [8] expands on these

ideas by allowing the user to not only specify a point of interest but also control the

final position and orientation of the viewpoint, rather than inferring them. The system

uses single-stroke symbolic gestures and animations in constant time to combine trav-

el and inspection with the ability to go back to a previous viewpoint configuration.

A difficulty when trying to control the viewpoint without any external representa-

tion (as in FmF) is that by definition, it cannot be seen. As a consequence, it can only

be indirectly manipulated. There is, however, a way to change this: by giving users

the impression they can grab the whole scene and manipulate it. Instead of indirectly

moving the viewpoint to a particular place, for example, they would thus manipulate

the whole scene so that the place comes into the viewpoint. To support this, one needs

to make sure that any object touched by a finger remains under it as long as it stays in

contact with the surface. This approach has its roots in Gleicher & Witkin's early

work on through-the-lens camera control [7] and recently received renewed attention

after Reisman et al. adapted it to the interactive manipulation of 3D content on 2D

multi-touch systems under the name screen-space [23]. The DabR system [5] uses it

in a strict way to support the direct manipulation of basic viewpoint controls, for ex-

ample. A drawback of the screen-space approach is that its output (viewpoint trans-

formation) is not always predictable due to ambiguities in potential mappings between

points in screen space and the 3D scene. To avoid these ambiguities, the Drag'n Go

technique [20] assigns viewpoint controls to input gestures based on kinematic corre-

spondence, i.e. the similarity of the input and output paths [3].

Fu et al. assembled an impressive set of viewpoint control facilitation techniques

more or less inspired by the above ones for exploring large-scale 3D astrophysical

simulations [6]. Yet this assemblage seems quite ad-hoc. The fact is that designers

have little information to rely on when creating a new application.

2.3 A lack of systematic approach

Intuitive navigation techniques are needed to make multi-touch 3D applications

useful. Different techniques have been proposed to support basic viewpoint controls

and facilitate more complex ones. But comparing these techniques is hard, consider-

ing the little information available on their design process and performances. Alt-

hough the initial design motivation is usually clearly stated in the corresponding pa-

pers, the design rationale is largely undocumented. Which decisions were made dur-

ing the design process, and why, for example? How did the authors come up with the

proposed mapping between user actions and viewpoint controls? Why did they decide

to group them this way? Without these explanations, one might wonder if there was

actually a design process. The authors of UniCam somehow acknowledge this prob-

lem: “Our choice of how to gesturally map the 3 DOFs of camera translation to 2D

mouse movements involves some apparently arbitrary choices. (...) In lieu of an ex-

planation, we note that from our experience with gestural interaction, the most relia-

ble technique for insuring usable interactions is through empirical evaluations.” [25].

We collectively need more explanations on the design of these techniques. Evalua-

tions are also important and need to be properly reported. As illustrated by Table 1,

few of the techniques we reviewed have been evaluated and even less have been

compared to others. We definitely need more comparative evaluations. Without ex-

planations of what is being done and comparisons with existing solutions, there can

be no progress in the understanding of the problems and their solutions. Systematic

approaches are direly needed to inform the design of new techniques.

Technique

or system

Design

motivation

Reported

Evaluation

*FWIP [14,15] walking metaphor comparative (vs. joystick) & usability testing

*FmF [1] 2D directness None

 POI [17] speed and control none

 UniCam [25] integrated suite empirical?

 Navidget [8] ease of use and control comparative (vs. standard 3D viewer)

*Screen-space [23] 3D directness none

*DabR [5] 3D directness none

*Drag'n Go [20] multi-scale navigation comparative (vs. POI, DabR, keyboard+mouse)

*Fu et al [6] large scale navigation usability testing

Table 1. Summary of the characteristics of the most relevant techniques and systems discussed

in this section. Rows prefixed with a star correspond to those specifically designed for multi-

touch interaction.

3 DESIGN METHODOLOGY

Considering a set of application-specific tasks, how can one map the associated view-

point controls to the input handles provided by a multi-touch system? In this section,

we report on the design of such a mapping for a particular application. Although the

resulting technique is specific to that application, we believe our design methodology

should be of general interest. The application we worked on is one for reviewing inte-

rior designs (Figure 2) that typically runs on computers equipped with a multi-touch

screen. Our goal was to design an intuitive navigation technique for this application,

as defined earlier, i.e. one with reduced semantic and articulatory distances and a

close and continuous visual-motor loop. In the following, we explain how standard

user-centered practices and optical flow analysis helped us identify application con-

trols and input handles and define the mappings between them.

3.1 Identifying navigation tasks and associated controls

A way to reduce the semantic distance by design is to work with users to define the

navigation commands from their perspective, rather than the application developers'.

Developers usually think of viewpoint control in terms of parametric modifications of

the camera model, as these are ultimately the only controls available. But they typical-

ly have little insight into the ways these should be grouped. Users, on the other hand,

typically think in terms of high-level situated tasks (i.e. context-specific) that can help

structure the design space. To provide users with adequate commands to concisely

express what they want to do, application designers must identify these tasks.

Figure 2. Sample interior design. Reviewing such a scene requires the ability to quickly navi-

gate through it (including moving from one floor to the other), to orient the viewpoint in a

precise way (e.g. to check the view from the couch) and to inspect particular objects (e.g. the

ones on the table).

Based on our specific application context (Figure 2), the related work we previous-

ly described and interviews of potential users, we decided to focus on the following

tasks, in decreasing order of importance:

 Move around - Users need to be able to move around the virtual interior the way

they do in the real world, i.e. mostly by moving forward or backward () while

possibly turning left or right (). Although commonly supported by video games,

sidestepping (or strafing,) is rarely used in real world situations and thus of lesser

importance. Altitude control () is also pretty limited in the real world without as-

sistance, and thus also of lesser importance.

 Look around - Adjusting the viewpoint orientation is another important task that

must be supported by the considered application. Users need to be able to look left

and right () as well as up and down (). The third rotation of the camera ()

does not seem necessary as people have limited control on it in the real world and it

does not change what they see but only how they see it.

 Circle around - When focusing on a particular object or area, users need to be

able to look at it from different sides. This is typically achieved by orbiting around

a previously specified point () in the horizontal plane ().

 Scrutinize - Looking at a particular point of interest () from different sides might

not be enough. One might want to have a closer look at it. In real-life, one can bend

over or use optical tools such as a magnifying glass or binoculars to temporarily

modify one's field of view ().

Table 2 summarizes the viewpoint controls of Figure 1 associated with the above

four tasks to be supported by our particular application. Having identified the view-

point model's degrees of freedom we want to control and taken a few first steps into

their organization, we must now turn to the input device (the multi-touch screen) and

examine the handles it provides for that control.

 Tx Ty Tx Rx Ry FOV Oy

Move around ◐ ◐ ● ○ ● ○ ○

Look around ○ ○ ○ ● ● ○ ○
Circle around ○ ○ ○ ○ ○ ○ ●
Scrutinize ○ ○ ○ ○ ○ ● ○

Table 2. Relevance of viewpoint controls to high-level navigation tasks, by decreasing order of

importance.●: relevant,◐: partially relevant, ○: not relevant.

3.2 Identifying input handles

Although some touch sensing technologies provide rich information about contact

regions, including their shape or the applied force, most multi-touch APIs only expose

the 2D coordinates of their centroid. One might thus think that using fingers, users

should be able to control degrees of freedom. But in reality, it is never the case.

Multi-touch systems can't distinguish between fingers, so degrees of freedom cannot

be univocally associated to them. The order of appearance of contacts or hit-testing

with specific on-screen areas can be used for these associations. But in the end, inter-

action will always be constrained by limited finger individuation: it is quite difficult

to move one finger without some degree of involuntary movement at one or more of

the others [11].

Instead of considering contacts individually, one can group them using different

methods (e.g. hit-testing, proximity, hand identification) and extract from the collated

movement information global parameters to be associated with degrees of freedom to

control. A common practice is to consider multi-touch gestures on objects as Rotate-

Scale-Translate (RST) manipulations and to determine and characterize the principal

transformation involved - e.g. for a turn gesture, for a pinch or a

spread, and for a swipe
2
. Figure 3 shows a simplified view of the state ma-

chine we used, based on this approach. The machine differentiates four interaction

states (shown in gray): one for single-touch interaction, and three differentiating mul-

ti-touch interactions based on the first principal transformation detected.

Having described the desirable viewpoint controls for our application (Table 2) and

the different handles provided by a multi-touch screen, i.e. for single-touch

interactions and , & for multi-touch ones, we will now exam-

ine the mappings between them.

2 The parameters associated to each transformation will be explained in the next section.

Figure 3. Simplified view of a multi-touch state machine based on an RST classifier. +1 and -1

transitions are triggered by contact addition and removal. The R, S and T transitions are trig-

gered based on the first principal transformation detected. Note that once in mode #1, #2 or #3,

multi-touch interaction does not have to be restricted to the transformation initially detected.

3.3 Choosing the right mappings

A way to reduce the articulatory distance and ensure tight coupling between percep-

tion and action is to choose the mappings between viewpoint controls and multi-touch

gestures so that contact trajectories match the scene transformations caused by view-

point modifications. To achieve this, we created video clips illustrating the effect of

the 7 viewpoint controls of Table 2 on a particular scene. We used OpenCV to com-

pute and visualize the optical flow of each of these videos (Figure 4). We then com-

pared these flows to those corresponding to multi-touch RST manipulations, i.e.

 when using a single finger and , , otherwise.

Figure 4. Top image: optical flow computed over time with OpenCV when circling the view-

point along the vertical axis (). Bottom images: stylized renderings of the flows correspond-

ing to the 7 viewpoint controls of Table 2 (arrows could all point in the opposite direction).

http://opencv.willowgarage.com/wiki/

Table 3 summarizes the compatibility between gesture flows and optical flows us-

ing a three-level scale. Starting from this table, we applied the following heuristics to

choose between alternative mappings:

 As MT- is the most compatible gesture with , we decided to map the two.

 and are compatible with the same gestures, MT- and ST- .

Since is one of the most important controls, we wanted to keep it as simple as

possible and thus preferred a single-touch gesture for it. Moving forward/backward

seemed better matched with a vertical movement rather than a horizontal one, so we

chose ST- . For , we chose MT- .

 For ST- , we were left with , and , the first two being more important

than the third one. We decided to map ST- to so that single-touch interac-

tion would support both Move around (with and) and Look around (with).

 For MT- , we were left with and . We chose the latter, as looking

up/down was considered more important than controlling one's altitude.

 For MT- , we were left with and . Informal tests convinced us that the

latter was preferable, considering our previous choice of for MT- .

 Tx Ty Tz Rx Ry FOV Oy

ST ● ○ ● ○ ◐(1) ● ◐(2)

 ○ ● ● ◐(3) ○ ● ○

MT ○ ○ ○ ◐(4) ◐(5) ○ ●

MT ○ ○ ● ○ ○ ● ○

MT ● ○ ◐(6) ○ ◐(1) ◐(6) ◐(2)

 ○ ● ◐(6) ◐(3) ○ ◐(6) ○

Table 3. Compatibility between gesture flows (rows) and optical flows (columns): ○ incom-

patible, ● compatible, ◐ compatible under one of the conditions below. A dot in place of or

 indicates that this component is ignored. The gray cells correspond to the chosen mapping.

(1) compatibility is inversely proportional to the

vertical distance to the center of the screen

(2) the point of interest () must have been previ-

ously specified

(3) compatibility is inversely proportional to the

horizontal distance to the center of the screen

(4) must be in the middle of a vertical border of

the screen, i.e. left or right

(5) must be in the middle of a horizontal border

of the screen, i.e. top or bottom

(6) contacts must be “close enough”, i.e. within a

certain radius, so they can be reduced to single-

touch interaction

4 IMPLEMENTATION: THE MOVE&LOOK TECHNIQUE

A close look at Table 2 and the chosen mapping in Table 3 shows that ST-

corresponds to Move around while MT- corresponds to Circle around, MT-

 to Scrutinize and MT- to Look around. As illustrated by Figure 5, each

of our 4 high-level navigation tasks can thus be associated to an interaction state of

the machine shown in Figure 3. This section details the implementation of the result-

ing navigation technique, which we called Move&Look.

Figure 5. The Move&Look technique, instanciated from Figure 3.

4.1 Single-touch interaction: move around

When a single contact is detected, subsequent finger movements are mapped

to camera movements to support the move around task. When touch is detect-

ed, a ray is casted in the 3D scene from the camera center through the contact point in

the camera plane. The intersection with the scene () defines the point of interest, and

the ray a path towards it. Progression along the path is controlled through finger

movements in the following way:

 Lateral movements () do not affect the camera position. Proximal finger

movements translate the camera towards and distal movements translate it back-

wards along the path ().

 The distance between the initial contact point and the bottom of the display is

mapped to the entire path length: the destination is reached when the finger reaches

the bottom of the display.

 Distal finger movements past the initial contact point (i.e. above it) continue mov-

ing the camera backwards along the path. For consistency, the scale factor remains

the same as when closing in on .

Users can turn the camera left and right) through lateral finger movements.

The camera orientation is computed so as to always keep the projection of under the

finger. is computed either analytically [7] or numerically [23] to minimize the

distance between the previous projection of and the current finger position (we

used the minimizer from ALGLIB to solve the different minimization problems).

4.2 Multi-touch interaction switch: RST classifier

When multiple contacts are detected, their movement is analyzed to determine wheth-

er the state machine should switch to circle around, scrutinize or look around. The

movement of the contact points is interpreted as a rigid transformation combining a

rotation , an homogeneous scaling , and a translation . The initial

position of the contact points is noted and their current position . The and

transformations correspond to the minimization of the cost function defined by

Equation 1. is first computed from the centroids of the initial set of contact

points (and the current one (according to equations 2, 3 and 4. The rotation

angle is the one that minimizes the cost function of Equation 5 and is computed

using Equation 6 where and . The scale factor is similarly

http://www.alglib.net/

the one that minimizes the cost function of Equation 7 and is computed using Equa-

tion 8 where :

 ∑ ‖ ‖

∑

 =

∑

 =

 = ∑ ‖ ‖

 = (∑

 ∑

)

 = ∑ ‖ ‖

 =

The only rotations considered in these equations are those centered on the centroid

of the contact points. Although we perceive it as an elementary rotation, moving one’s

index finger around one’s thumb while keeping this one steady will thus be interpret-

ed as a combination of a centroid-centered rotation and a translation. To tackle this

problem, we weight all contact positions by the inverse of their traveled distance

when computing , the center of both the rotation and the homogeneous scal-

ing is also adjusted by removing the displacement possibly introduced

by .

The and parameters resulting from the above computations are used to

determine the prominent gesture among Rotate, Swipe and Pinch. Our classifier con-

siders one model for each gesture type and returns the one that better fits the

observations (highest value). The models map the initial configuration to an

estimated state ̃ (Equation 9). The estimated error (the residual sum of squares) and

the coefficient of determination are then computed using Equations 10, 11 and 12.

 ̃ =

 ∑ ‖ ̃‖

 ∑ ‖ ‖

Our classifying method is similar to the GestureMatching method used by Nacenta

et al. [21], but instead of classifying the combined contribution of Rotate, Swipe and

Pinch gestures, ours allows to classify the contribution of individual gesture types.

Our method requires enough information to properly work. The classifier is thus ena-

bled only when the summed distance covered by the contact points is beyond a given

threshold. Based on preliminary tests, we found that a value of 10 pixels on a 90PPI

display (around 2.8 mm) provides a good trade-off between latency and success rate,

which is in agreement with other thresholds reported in the literature for similar appli-

cations [25].

4.3 Multi-touch gestures: circle around, look around and scrutinize

When the classifier detects a prominent Rotate gesture, the technique enters the circle

around state of Figure 5 until all contacts are lost. provides the pivot point to

rotate the scene and the angle of rotation (the center of the 3D rotation is computed

from the projection of in the 3D scene).

When a Swipe gesture is detected, the technique enters the look-around state until

all contacts are lost. is then used to rotate the camera) in a way similar

to move around, but with two degrees of freedom instead of one.

When a Pinch gesture is detected, the technique enters the scrutinize state until all

contacts are lost. The scale factor of is used to adjust the of the camera.

To ensure smooth camera movements, its look-at point remains fixed while contacts

are moving. The is restored to its initial value when all contacts are lost. This

state further supports remote inspection by using to rotate the camera (),

as in the look-around state.

5 EXPERIMENT

Our main motivation in this experiment was to assess our design choices by compar-

ing Move&Look to other techniques from the literature (Screen-space [23], DabR [5]

and Drag'n Go [20]) or available in commercial products (Virtual joysticks and the

RealMyst technique described above), most of which have never been evaluated nor

compared.

5.1 Task

Informal user testing with Move&Look suggested the technique was particularly effi-

cient for interior designs mainly consisting of flat orthogonal surfaces. Encouraged by

this, we wanted to assess the effectiveness of the technique in a more demanding en-

vironment. The task we chose consisted in collecting spheres placed inside boxes in

an outdoor environment, and dropping them in a fountain at the center of the scene

(Figure 6). To provide a fair comparison between multi-scale navigation techniques

(Drag’n Go and Move&Look) and the others and focus on the evaluation of camera

movements, the boxes were not positioned far away from each other but close to the

central drop zone.

Participants had to find the boxes in the scene. For each box, they had to position

the camera in front of its only open face to pick up the sphere it contained. A sphere

would turn from red to green when the camera was close enough to indicate one could

touch it to pick it up. Participants could carry only one sphere at a time, and it was

automatically dropped once in the drop zone. Collision detection prevented partici-

pants from moving through objects, and a trial was considered as fully completed

after all the spheres had been dropped. Participants were instructed to perform this as

quickly as possible. They could ask the experimenter to reset the camera to its initial

position or withdraw a trial if they felt unable to complete it. They were not encour-

aged to do so, however. The experimenter rather encouraged them to finish a trial if

he felt they could succeed.

Figure 6. Left: overview of the 3D environment used in the experiment. Right: detailed view

showing a box containing a sphere to pick up and drop in the fountain.

5.2 Participants

Twelve unpaid male participants with a mean age of 35 (SD=14) served in the exper-

iment. Five of them used a computer on a daily basis, played 3D video games and

were familiar with touch-screens through mobile phones or tablets. Seven of them had

a low experience with video games and were novice with touch interfaces.

5.3 Apparatus, design and procedure

Participants were seated in front of a 22” 3M multi-touch screen orientated at an angle

of about from a horizontal desk. The experiment was implemented using Unity

3.5
3
. A repeated measures within-subjects design was used. The independent variable

was the interaction technique (TECH) with six levels: DabR, Screen-space, Drag’n

Go, RealMyst (a custom implementation of the RealMyst technique), Virtual joy-

sticks (a standard combination of two Unity virtual joysticks displayed at fixed posi-

tions) and Move&Look. A trial consisted in collecting 4 spheres and each technique

was evaluated with 3 successive trials (TRIAL). In summary the experimental design

was: 12 participants 6 TECH 3 TRIAL = 212 total trials.

The presentation order for TECH was counter-balanced across participants using a

balanced Latin Square design. To favor expert usage and a fair comparison between

techniques, each was first introduced by the experimenter with a demo and then a

training session. Participants could also use a cheat sheet throughout the experiment.

After each technique, participants filled a questionnaire inspired by the Nasa TLX test

3 http://unity3d.com/unity/whats-new/unity-3.5

http://unity3d.com/unity/whats-new/unity-3.5

and at the end of the experiment, they were asked to rank the techniques and give

additional feedback.

5.4 Results

The dependent variables were the completion time, the number of give-ups and cam-

era resets, and the qualitative results.

Numbers of give-ups and camera resets — of trials were aborted for

Screen-space, for RealMyst, for Virtual joysticks and for Drag’n Go,

DabR and Move&Look. The camera was reseted in of all trials for Screen-

space, for Virtual joysticks, for RealMyst, for DabR and Move&Look,

and for Drag’n Go.

Task completion time — Task completion time is defined as the time needed to

successfully collect the four spheres and drop them in the fountain. Trials where par-

ticipants gave up were removed for the analysis. Trials at least three standard devia-

tions away from the mean for each TECH condition were considered as outliers and

also removed. A repeated measures ANOVA showed a significant effect of TECH

(). Subsequent pairwise comparison showed significant differ-

ences () between Drag’n Go and Screen-space, Drag’n Go and RealMyst,

Move&Look and Screen-space, and Move&Look and RealMyst. No significant dif-

ference was found between Drag’n Go and Move&Look. Completion times were

for DabR, for Screen-space, for Drag’n Go, for RealMyst, for

Virtual joysticks and for Move&Look.

User ranking and questionnaire — The participants ranked the techniques in de-

creasing order of preference. Overall, Move&Look came first (10 participants ranked

it first and 2 ranked it second) followed by Drag’n Go, DabR, Virtual joysticks,

RealMyst and Screen-space. The participants who ranked Move&Look first explained

it nicely complements Drag’n Go as it allows to control more degrees of freedom

while keeping the navigation intuitive: it does not require focusing on the gestures to

execute nor does it require planning a trajectory in the scene to reach a target. Screen-

space was ranked last considering its lack of intuitiveness: in spite of the frequent use

of the cheat sheet the participants did not understand how to effectively use the tech-

nique to navigate the way they wanted (we believe the important semantic distance

explains this gap between users’ intentions and the system’s behaviours). These sub-

jective results are in agreement with the quantitative results found for completion time

and the numbers of give-ups up and camera resets.

After each technique, the participants answered questions related to the following

six criteria on a 5 point Likert scale: mental demand, physical demand, performance,

effort, frustration and satisfaction. The questions asked were similar to the ones avail-

able in the Nasa TLX test. We ran a Friedman analysis with Bonferroni-corrected

Wilcoxon post-hoc analyses. This analysis shows significant differences between the

techniques for all criteria, especially for the techniques at the bottom of the partici-

pants' ranking. Table 5 summarizes the significant differences that were found.

 Mental

demand

Physical

demand
Perfor-

mance
Effort Frustra-

tion
Satisfac-

tion

Move&Look-Screen-space ● ● ● ● ● ●

Move&Look-RealMyst ● ● ● ○ ● ●
Drag’n Go-Screen-space ● ● ● ● ○ ●
Drag’n Go-RealMyst ● ● ● ○ ○ ○
Drag’n Go-DabR ○ ● ○ ○ ○ ○
RealMyst-Virtual joysticks ○ ● ○ ○ ○ ○
RealMyst-DabR ○ ○ ○ ○ ● ○
Screen-space-DabR ● ○ ○ ○ ● ●
Screen-space-Virtual joystick ● ● ○ ○ ○ ●

Table 5. Details of the post-hoc analysis for cases where one or more significant differences

were found (●: significant difference, ○: non significant difference).

User feedback and observations — During the experiment we encouraged the

participants to "think aloud" and freely comment on the interaction techniques. Com-

ments were overall in agreement with the user ranking.

Screen-space received the most negative critics. All participants repeatedly report-

ed their frustration with this technique. They felt out of control and found the map-

pings between fingers and camera movements inconsistent. The finger movements

corresponding to different screen-space controls can indeed be quite similar, as illus-

trated by the optical flows of Figure 4 (e.g. and). The output of the screen-

space solver is also strongly influenced by the picked point in the 3D scene, and thus

by the geometrical shape of the underlying objects. Lastly, the movements to execute

in order to move forward () and to zoom () depend on whether the initial con-

tact point is above or below the invisible horizon (in the former case, one has to move

up, in the latter, one has to move down). All these reasons probably contribute to the

fact that users were not able to anticipate camera motions. The comparison of Screen-

space to other interaction techniques in 3D manipulation tasks corroborates these

observations [18].

Participants found DabR, Virtual joysticks and RealMyst either too slow or too

fast. We hypothesize this was caused by the use of transfer functions not specifically

tuned for the particular 3D environment we used: long distances took too much time

to travel while participants traveled too fast on short distances. Participants found the

Virtual joysticks to be less fatiguing. We hypothesize this was due to the use of rate

control, which reduces physical movements. Participants reported an important fa-

tigue when using DabR and complained they had to pay attention to the number of

fingers they used. They complained about the delay introduced by the time-based

mode switch used by RealMyst and the fact that the traveling direction is not towards

the selected point but along the axis of the camera. Drag’n Go was particularly

appreciated for its ability to quickly reach distant targets, but moving to a box while

orienting the viewpoint in order to pick the sphere was found more difficult and re-

quired some planning. This was not reported as a problem with Move&Look.

6 Conclusion and future work

In this paper, we proposed an original methodology based on user-centered practices

and optical flow analysis to address the problem of designing intuitive multi-touch

navigation techniques for 3D environments. User-centered practices allow to define

the navigation commands from the user's perspective while the optical flow analysis

provides guidelines for defining intuitive multi-touch gestures to perform these com-

mands. We instantiated this methodology for tasks articulated around the review of

interior designs, which led to the design of a new interaction technique, Move&Look.

The comparison of this technique to state of the art ones in a controlled experiment

showed its overall superiority and revealed usability problems with the others. These

results provide a first validation of the proposed design methodology. The methodol-

ogy should be applied in other navigation contexts in order to further assess its effec-

tiveness. The robustness of the proposed RST classifier should be formally evaluated,

and it can certainly be improved. Even if participants did not complain about it, we

observed them flattening their rotation gestures for the circle around command, prob-

ably because they unconsciously followed the corresponding optical flow. Our classi-

fier could be modified to better take into account this oval shape, for example.

References

1. Ajaj, R., Vernier, F., Jacquemin, C.: Follow my finger navigation. In: Proc. of

INTERACT '09. pp. 228˗231. Springer ˗ Verlag (2009).

2. Bowman, D.A., Kruijff, E., LaViola, J.J., Poupyrev, I.: 3D user interfaces: theory and

practice. Addison-Wesley/Pearson Education (2003).

3. Britton, E.G., Lipscomb, J.S., Pique, M.E.: Making nested rotations convenient for the us-

er. In: Proc. of SIGGRAPH '78. pp. 222 ˗ 227. ACM (1978).

4. Christie, M., Olivier, P.: Camera control in computer graphics: models, techniques and ap-

plications. In: ACM SIGGRAPH ASIA 2009 Courses. pp. 3:1 ˗ 3:197. ACM (2009).

5. Edelmann, J., Schilling, A., Fleck, S.: The DabR - a multitouch system for intuitive 3D

scene navigation. In: Proc. of 3DTV-CON. pp.1 ˗ 4. (2009).

6. Fu, C.W., Goh, W.B., Ng, J.A.: Multi-touch techniques for exploring large-scale 3D astro-

physical simulations. In: Proc. of CHI '10. pp. 2213 ˗ 2222. ACM (2010).

7. Gleicher, M., Witkin, A.: Through-the-lens camera control. Proc. of SIGGRAPH '92 26,

331 ˗ 340. (July 1992).

8. Hachet, M., Decle, F., Knodel, S., Guitton, P.: Navidget for easy 3D camera positioning

from 2D inputs. In: Proc. of 3DUI '08. pp. 83 ˗ 89. IEEE (2008).

9. Hutchins, E.L., Hollan, J.D., Norman, D.A.: Direct manipulation interfaces. Human-

Computer Interaction 1(4), 311 ˗ 338. (Dec 1985).

10. Ingram, A., Wang, X., Ribarsky, W.: Towards the establishment of a framework for intui-

tive multi-touch interaction design. In: Proc. of AVI '12. pp. 66 ˗ 73. ACM (2012).

http://dx.doi.org/10.1007/978-3-642-03658-3_29
http://people.cs.vt.edu/~bowman/3dui.org/3D%20UI%20Book.html
http://people.cs.vt.edu/~bowman/3dui.org/3D%20UI%20Book.html
http://doi.acm.org/10.1145/800248.807394
http://doi.acm.org/10.1145/800248.807394
http://doi.acm.org/10.1145/1665817.1665820
http://doi.acm.org/10.1145/1665817.1665820
http://dx.doi.org/10.1109/3DTV.2009.5069671
http://dx.doi.org/10.1109/3DTV.2009.5069671
http://doi.acm.org/10.1145/1753326.1753661
http://doi.acm.org/10.1145/1753326.1753661
http://doi.acm.org/10.1145/142920.134088
http://doi.ieeecomputersociety.org/10.1109/3DUI.2008.4476596
http://doi.ieeecomputersociety.org/10.1109/3DUI.2008.4476596
http://dx.doi.org/10.1207/s15327051hci0104_2
http://doi.acm.org/10.1145/2254556.2254571
http://doi.acm.org/10.1145/2254556.2254571

11. Ingram, J.N., Körding, K.P., Howard, I.S., Wolpert, D.M.: The statistics of natural hand

movements. Experimental brain research 188(2), 223 ˗ 236. (Jun 2008).

12. Jacob, R.J.K., Sibert, L.E., McFarlane, D.C., Mullen, Jr., M.P.: Integrality and separability

of input devices. ACM ToCHI 1(1), 3 ˗ 26. (Mar 1994).

13. Jacob, R.J., Girouard, A., Hirshfield, L.M., Horn, M.S., Shaer, O., Solovey, E.T., Zigel-

baum, J.: Reality-based interaction: a framework for post-wimp interfaces. In: Proc. of

CHI '08. pp. 201 ˗ 210. ACM (2008).

14. Kim, J.S., Gračanin, D., Matković, K., Quek, F.: iPhone/iPod Touch as input devices for

navigation in immersive virtual environments. In Proc. of VR '09. 261 ˗ 262. IEEE.

15. Kim, J.S., Gračanin, D., Matković, K., Quek, F.: Finger Walking in Place (FWIP): A trav-

eling technique in virtual environments. In Proc of SG '08 58 ˗ 69. Springer-Verlag.

16. Kruger, R., Carpendale, S., Scott, S.D., Tang, A.: Fluid integration of rotation and transla-

tion. In: Proc. of CHI '05. pp. 601 ˗ 610. ACM (2005).

17. Mackinlay, J.D., Card, S.K., Robertson, G.G.: Rapid controlled movement through a virtu-

al 3D workspace. In: Proc. of SIGGRAPH '90. pp. 171 ˗ 176. ACM (1990).

18. Martinet, A., Casiez, G., Grisoni, L.: Integrality and separability of multitouch interaction

techniques in 3D manipulation tasks. IEEE TVCG 18(3), 369 ˗ 380. (Mar 2012).

19. McCrae, J., Mordatch, I., Glueck, M., Khan, A.: Multiscale 3D navigation. In: Proc. of

I3D '09. pp. 7 ˗ 14. ACM (2009).

20. Moerman, C., Marchal, D., Grisoni, L.: Drag'n Go: Simple and fast navigation in virtual

environment. In: Proc. of 3DUI '12. pp. 15 ˗ 18. IEEE (2012).

21. Nacenta, M.A., Baudisch, P., Benko, H., Wilson, A.: Separability of spatial manipulations

in multi-touch interfaces. In: Proc. of GI '09. pp. 175 ˗ 182. Canadian Information Pro-

cessing Society (2009).

22. Rasmussen, J.: Skills, rules, and knowledge; signals, signs, and symbols, and other distinc-

tions in human performance models. IEEE Transactions on Systems, Man and Cybernetics

13(3), 257 ˗ 266. (May 1983).

23. Reisman, J.L., Davidson, P.L., Han, J.Y.: A screen-space formulation for 2D and 3D direct

manipulation. In: Proc. of UIST '09. pp. 69 ˗ 78. ACM (2009).

24. de la Rivière, J.B., Kervégant, C., Orvain, E., Dittlo, N.: CubTile: a multi-touch cubic in-

terface. In: Proc. of VRST '08. pp. 69 ˗ 72. ACM (2008).

25. Zeleznik, R., Forsberg, A.: UniCam - 2D gestural camera controls for 3D environments.

In: Proc. of I3D '99. pp. 169 ˗ 173. ACM (1999).

http://dx.doi.org/10.1007/s00221-008-1355-3
http://dx.doi.org/10.1007/s00221-008-1355-3
http://doi.acm.org/10.1145/174630.174631
http://doi.acm.org/10.1145/174630.174631
http://doi.acm.org/10.1145/1357054.1357089
http://dx.doi.org/10.1109/VR.2009.4811045
http://dx.doi.org/10.1109/VR.2009.4811045
http://dx.doi.org/10.1007/978-3-540-85412-8_6
http://dx.doi.org/10.1007/978-3-540-85412-8_6
http://doi.acm.org/10.1145/1054972.1055055
http://doi.acm.org/10.1145/1054972.1055055
http://doi.acm.org/10.1145/97879.97898
http://doi.acm.org/10.1145/97879.97898
http://dx.doi.org/10.1109/TVCG.2011.129
http://dx.doi.org/10.1109/TVCG.2011.129
http://doi.acm.org/10.1145/1507149.1507151
http://dx.doi.org/10.1109/3DUI.2012.6184178
http://dx.doi.org/10.1109/3DUI.2012.6184178
http://dl.acm.org/citation.cfm?id=1555880.1555919
http://dl.acm.org/citation.cfm?id=1555880.1555919
http://www.carlosrighi.com.br/177/Ergonomia/Skills%20rules%20and%20knowledge%20-%20Rasmussen%20seg.pdf
http://www.carlosrighi.com.br/177/Ergonomia/Skills%20rules%20and%20knowledge%20-%20Rasmussen%20seg.pdf
http://doi.acm.org/10.1145/1622176.1622190
http://doi.acm.org/10.1145/1622176.1622190
http://doi.acm.org/10.1145/1450579.1450593
http://doi.acm.org/10.1145/1450579.1450593
http://doi.acm.org/10.1145/300523.300546

