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Abstract

We consider the class of concave distortion risk measures to study how choice is in�uenced
by the decision-maker�s attitude to risk and provide comparative statics results. We also assume
ambiguity about the probability distribution of the risk and consider a framework à la Klibano¤,
Marinacci, and Mukerji (2005) to study the value of information that resolves ambiguity. We
show that this value increases with greater ambiguity, with greater ambiguity aversion, and in
some cases with greater risk aversion. Finally we examine whether a more risk-averse and a
more ambiguity-averse individual will invest in more e¤ort to shift his initial risk distribution
to a better target distribution.

1 Introduction

This paper is concerned with the ambiguity about the probability distribution that is used to
evaluate risk measures. Almost all models used in the theory of risk measures assume that the
distributions of risks are perfectly known and implicitly agree that ambiguity does not matter
for decisions. We rather assume here that there exists an uncertainty about a parameter of the
risk distribution and that this uncertainty may modify decisions of the individuals if they are
ambiguity-averse. This paper aims to examine the e¤ect of ambiguity-aversion on the valuation of
risk reduction and give comparisons with e¤ect of risk aversion.

A risk measure is de�ned as a mapping from the set of random variables representing the risks
to the real numbers. It may be interpreted as the amount of money that should be added as a
bu¤er to a risk so that it becomes acceptable to an internal or external risk controller. It may be
used for evaluating capital requirements in order to avoid insolvency, for determining provisions,
for calculating insurance premiums... In this paper, the risk X may be thought as an insurance
company�s risk related to a particular policy, a particular line-of-business or to the entire insurance
portfolio over a speci�ed time horizon. A negative outcome for X means that a gain has occurred.
This means that a decision-maker will always try to act to minimize the risk measure associated
to X.
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We consider the class of distortion risk measures introduced by Wang (1996). This class of risk
measures used the concept of distortion function as proposed in Yaari�s dual theory of choice (see
Yaari (1987)). A distortion function is de�ned as a non-decreasing function g : [0; 1] ! [0; 1] such
that g(0) = 0 and g(1) = 1. The distortion risk measure associated with distortion function g is
de�ned by

Hg[X] = �

Z 0

�1

�
1� g( �FX(x))

�
dx+

Z 1

0
g( �FX(x))dx;

where X is a (random) risk with survival distribution function �FX . Under the assumption that
g( �FX(�)) is right-continuous, Hg[X] may also be interpreted as a distorted expectation of X evalu-
ated with a distorted survival distribution function g( �FX(�)).

Yaari�s dual theory and distortion risk measures have been considered for two decades by several
authors to study insurance decisions, such as pricing, reserving, designing optimal (re)insurance
contracts, setting capital, optimizing risk exchanges... (see among others: Denneberg (1990), Do-
herty and Eeckhoudt (1995), Wang and Young (1998), Wang (2000), Tsanakas and Desli (2003),
Tsanakas and Christo�des (2006))

Ellsberg (1961) observed that individuals prefer a lottery with a known probability distribution
to a lottery with an unknown distribution. This preference violates the expected utility theory,
but can be explained by ambiguity-aversion of the individuals. Among the several approaches to
model this aversion that have been provided in the economic literature (see Etner et al. (2012)),
the approach developed by Klibano¤ et al. (2005) is very useful to study the e¤ect of ambiguity
about the risk distribution because it permits to separate the e¤ect of ambiguity-aversion from
that of risk-aversion. In their model the ambiguity-aversion is captured by introducing a concave
transfer of the expected utility. This approach has been recently used to examine the e¤ect of
ambiguity-aversion on insurance demand (see e.g. Alary et al. (2012), Snow (2011)) and it is
shown that the demand for self-insurance raises with ambiguity-aversion whereas the demand for
self-protection is less clear.

In this paper we assume that the decision-maker is uncertain about a parameter of the risk
distribution in order to examine the e¤ect of ambiguity-aversion on the valuation of risk reduction.
Our results are established using a similar recursive model of ambiguity preferences as developed by
Klibano¤ et al. (2005), but with second-order probability distribution for the unknown parameter.

Although the problem of parameter and model uncertainty in insurance has been raised for sev-
eral years (see e.g. Cairns (2000) for a general point of view), the impact of parameter uncertainty
on risk measures has only been recently studied. Bignozzi and Tsanakas (2013) have introduced
the notion of residual estimation risk when the risk measures are positive homogeneous, translation
invariant and law invariant. The residual estimation risk is then de�ned as the risk measure of the
di¤erence between the risk itself and its risk measure when the parameter is replaced by a random
estimator. This estimation risk re�ects the amount of capital that needs to be subtracted from the
di¤erence between the risk and its (random) risk measure such that it becomes acceptable. It is
expected that, as the size of the sample that is used to construct the estimator increases, the resid-
ual risk decreases. Our approach di¤ers from Bignozzi and Tsanakas (2013) since we are interested
in the measure of aversion to parameter uncertainty rather than only its measure. Moreover we
want to understand how this aversion modi�es decisions. Finally note that we don�t need to know
the distribution of the di¤erence between the risk and its (random) risk measure.

The remainder of the paper is organized as follows. In Section 2, we explain how the notion of
risk aversion can be translated into the class of distortion risk measures in order to permit com-
parative statics results analysis of greater risk aversion. We present the framework à la Klibano¤,
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Marinacci, and Mukerji (2005) to take into account ambiguity about the probability distribution in
Section 3. We also introduce characterizations for ambiguity measures in order to study the value
of information that resolves ambiguity. We show that this value increases with greater ambiguity,
with greater ambiguity-aversion, and in some cases with greater-risk aversion. In Section 4, we
consider the case of a decision-maker that is able to invest in e¤ort to reduce risk by shifting the
initial risk distribution to a better target distribution. We examine whether a more risk-averse and
a more ambiguity-averse individual will invest in more e¤ort to shift his initial risk distribution.
Section 5 contains brief conclusions and proofs are postponed to Section 6.

2 Comparative statics results for the class of distortion risk mea-

sures

In Yaari�s dual theory of choice, a decision-maker is expected to act in order to maximize the
distorted expectation of his wealth. Here we say that the decision-maker bases his preferences
on the distorted expectations hypothesis if he acts in order to minimize the distorted expectation
of his risk: if his distortion function is denoted by g, then he prefers the risk X over the risk
Y when Hg[X] � Hg[Y ]. Note that a wealth, W , may be viewed as a negative risk, and that
Hg[�W ] = �Hg� [W ] where g

�(u) = 1� g(1� u) is the dual distortion operator of g. Therefore the
decision-maker�s preferences are equivalent if he uses the distortion function g� for calculating the
distorted expectation of his wealth.

Several de�nitions of risk aversion have been proposed for non-expected utility theories of choice
under uncertainty, see e.g. Montesano (1990). A �rst de�nition is linked with the risk premium,
i.e. the di¤erence between the expected value of the prospect under consideration and its certainty
equivalent: a decision-maker is said to be risk-averse if he always prefers a certain prospect to a
risky prospect with the same expectation. A second de�nes risk aversion as aversion to a mean
preserving spread in the distribution of prospects. These de�nitions are equivalent to the concavity
of the von Neumann-Morgenstern utility function for the expected utility theory. But they di¤er
in our case. The former refers to the condition g�(p) � p, or equivalently, to g(p) � p (a risk-averse
decision-maker systematically overestimates the tail probabilities related to the levels of his risk),
while the latter is stronger and refers to the condition that g� is convex, or equivalently, that g is
concave (see e.g. Yaari (1987), Röell (1987) and Section 2.6.1.4 of Denuit et al. (2004)).

We rather consider the second de�nition and assume that the distortion function of an individual
always belongs to the class of concave distortion functions. Note that, if g is a concave distortion
function, then Hg is also a coherent risk measure (i.e. it satis�es translativity, subadditivity, positive
homogeneity and monotonicity, see Artzner et al. (1999)). Finally we will say that a decision-maker
with distortion function h is more risk-averse than a decision-maker with distortion function g, if
there exists a concave distortion function f such that h = f E g (see e.g. Ross (1981) for equivalent
de�nitions when twice di¤erentiability may be assumed).

Example 1 The class of Normal distortion function has been introduced by Wang (2000) and is
characterized by the functions gD(�) = �

�
��1 (�) + D

�
with D > 0, where � is the standard normal

cumulative distribution function. These functions are concave and satisfy gD1+D2 = gD1 E gD2 =
gD2 E gD1 for D1; D2 > 0. Hence a decision-maker with distortion function g~D is more risk averse
than another decision-maker with distortion function gD if ~D > D.

Consider an agent who has to choose between two risks X and Y . Would a more risk-averse
agent make the same choice? Assume that the �rst agent has a Normal distortion function gD
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and that his choice has to be made between two Lognormal distributions, X � LN
�
�X ; �

2
X

�
and

Y � LN
�
�Y ; �

2
Y

�
. The risk measure of X is given by HgD [X] = exp

�
�X + �

2
X=2 + D�X

�
(see

Section 6.8). Assume moreover that the agent prefers X over Y , i.e. HgD [X] � HgD [Y ] . This
condition is equivalent to

�X � �Y + �
2
X=2� �

2
Y =2 � D(�Y � �X):

It follows that a more risk-averse agent with a Normal distortion function g~D such that ~D > D will
always choose X rather than Y if and only if (�Y � �X) > 0.

We now give a more general comparative statics result. It may be discussed and compared to
the results given by Hammond (1974), Diamond and Stiglitz (1974), Jewitt (1989) for the expected
utility framework. Let us before note that, since g is concave, the set where g0 fails to exist is
countable, and therefore its associated distortion risk measure can be written as

Hg[X] =

Z 1

0
g0(1� u)V aR[X;u]du; (2.1)

where V aR[X;u] = inffx 2 R : FX(x) � ug is the quantile function of X and is known as the
Value-at-Risk.

Theorem 1 Let us consider a decision-maker with concave distortion function g who prefers X
over Y . Then the following properties are equivalent:

i) A more risk-averse decision-maker with distortion function h prefers X over Y ;

ii) for all B 2 (0; 1),

Z 1

B

g0(1� u) (V aR[X;u]� V aR[Y ;u]) du � 0:

Note that condition ii) of the previous theorem is satis�ed for the case of a decision-maker
with a Normal distortion function who has to choose among the two risks X � LN

�
�X ; �

2
X

�
and

Y � LN
�
�Y ; �

2
Y

�
, if and only if (�Y � �X) > 0 (see Section 6.9). This condition does not depend

of D and is actually more general than needed for a more risk-averse decision-maker with a Normal
distortion function.

Let us de�ne recursively the family of functions
�
V aR(n)[X; �]

�
n�1

by V aR(1)[X;B] = V aR[X;B],

B 2 [0; 1], and, for n � 1,

V aR(n)[X;B] =

Z 1�B

0
V aR(n�1)[X; 1� u]du =

Z 1

B

V aR(n�1)[X;u]du; B 2 [0; 1].

Note that V aR(2)[X;B] is related to the Tail-Value-at-Risk in the following way: V aR(2)[X;B] =
(1� B)TV aR[X;B].

We derive from Theorem 1 several su¢cient conditions for a risk-averse decision-maker to have
the same preferences as a less risk-averse decision-maker.

Corollary 2 Let us consider a decision-maker with distortion function g who prefers the risk X
over the risk Y . Assume that one of the following condition holds:

i) V aR[X;B] � V aR[Y ;B] for all B 2 (0; 1);

ii) there exists B0 2 (0; 1) such that V aR[X;B] � V aR[Y ;B] for 0 < B � B0 and V aR[X;B] �
V aR[Y ;B] for B0 � B < 1;
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iii) g is twice di¤erentiable and V aR(2)[X;B] � V aR(2)[Y ;B] for all B 2 (0; 1);

iv) g is twice di¤erentiable and there exists B0 2 (0; 1) such that V aR
(2)[X;B0] = V aR(2)[Y ;B0],

for 0 < B � B0, V aR
(2)[X;B]�V aR(2)[Y ;B] is non-increasing and, for B0 � B < 1, V aR(2)[X;B] �

V aR(2)[Y ;B].

Then a more risk-averse decision-maker with distortion function h also prefers X over Y .

These su¢cient conditions are strongly linked with well-known stochastic order relations:

F The risk X is said to be smaller than the risk Y in stochastic dominance (denoted by X �ST
Y ) if �FX(d) � �FY (d) for all d 2 R, or equivalently if E [u(�X)] � E [u(�Y )] for all non-
decreasing function u (such that the expectations exist). This is also equivalent to Condition
i) of Corollary 2 (see e.g. Section 3.3 in Denuit et al. (2005)).

F The risk X is said to precede the risk Y in the stop-loss order (denoted by X �SL Y ) if
E[(X � d)+] � E[(Y � d)+] for all d 2 R. It is well-known that this condition is equivalent to
one of the following conditions (a) E [u(�X)] � E [u(�Y )] for all non-decreasing and concave
function u (such that the expectations exist), (b) TV aR[X;B] � TV aR[Y ;B] for all B 2 (0; 1),
(c) Hg[X] � Hg[Y ] for any concave distortion functions g (see e.g. Section 3.4 in Denuit et
al. (2005)). It follows that Condition ii) of Corollary 2 may appear as too strong, as well as
Condition i) since it implies Condition ii).

Finally note that Condition iv) of Corollary 2 looks like Condition (2:13) in Theorem 2 of Jewitt
(1989) where V aR[X; �] is replaced by �FX(�). Therefore it should be close to a necessary condition
if Condition iii) does not hold.

We are now interested in the willingness to pay for reducing risk. Let X and Y be two risks
such that X is preferred over Y , i.e. Hg[X] � Hg[Y ]. The willingness to pay for reducing risk from
Y to X, � = � (Y;X; g) � 0, is implicitly de�ned by

Hg[X] + � (Y;X; g) = Hg[Y ]:

We are interested in a condition for a more risk-averse decision-maker to be willing to pay more
for an improvement from Y to X. Consider again the decision-maker with a Normal distortion
function gD who chooses X � LN

�
�X ; �

2
X

�
rather than Y � LN

�
�Y ; �

2
Y

�
. Then � (Y;X; gD) will

increase with D (i.e. with risk aversion in the class of Normal distortion function) if and only if

@� (Y;X; g)

@D
= �YHg[Y ]� �XHg[X] > 0: (2.2)

If we assume moreover that, any more risk-averse decision-maker with distortion function g~D (~D > D)
will always prefer X over Y , which is equivalent to �Y > �X , we see that Condition (2:2) necessarily
holds.

The following corollary gives a necessary and su¢cient condition in the general case.

Corollary 3 Assume a decision-maker with distortion function g prefers X over Y , i.e. � (Y;X; g) �
0, and that any more risk-averse decision-maker also prefers X over Y . Then the following prop-
erties are equivalent:

i) A more risk-averse decision-maker with distortion function h has willingness to pay � (Y;X;h)
that is larger than � (Y;X; g);
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ii) for all B 2 (0; 1),

Z 1

B

g0(1� u) (V aR[X;u]� V aR[Y ;u]) du � g (1� B)

Z 1

0
g0(1� u) (V aR[X;u]� V aR[Y ;u]) du:

(2.3)

Let (gB)B2(0;1) be the class of distortion functions de�ned by

gB(u) =

�
g(u)=g(1� B); u � 1� B;
1; u > 1� B:

The distortion function gB is the distortion function of a more risk-averse decision-maker than the
decision-maker with distortion function g. Condition (2:3) is then equivalent to the condition that
any decision-maker with distortion function gB has a larger willingness to pay than the decision-
maker with distortion function g

� (Y;X; gB) � � (Y;X; g) ; B 2 (0; 1).

We may also note that a su¢cient condition for the more risk-averse decision-maker to have a
larger willingness to pay is given by Condition ii) of Corollary 2: there exists B0 2 (0; 1) such that
V aR[X;B] � V aR[Y ;B] for 0 < B � B0 and V aR[X;B] � V aR[Y ;B] for B0 � B < 1.

Consider the agent with a Normal distortion function gD who chooses X � LN
�
�X ; �

2
X

�
rather

than Y � LN
�
�Y ; �

2
Y

�
. Condition (2:3) is equivalent to

Hg[Y ]
�
�
�
�Y + D � �

�1 (B)
�
� �

�
D � ��1 (B)

��
> Hg[X]

�
�
�
�X + D � �

�1 (B)
�
� �

�
D � ��1 (B)

��
;

for all B 2 (0; 1). Since a more risk-averse decision-maker with distortion function h also prefers X
over Y if and only if �Y > �X , we see that Condition (2:3) always holds for this particular case.

3 Distortion risk measures and ambiguity aversion

We assume that the risk X is a random variable whose probability distribution belongs to a certain
family of distributions fF�; � 2 T g (� is a parameter for this family), called the parametric model,
so that FX = F�0 for some �0 2 T . The value �0 is unknown and is referred to as the true value
of the parameter. We denote by X� a risk whose probability distribution function is F�. The risk
measure of X, Hg[X], is then equal to Hg[X�0 ].

The subjective beliefs about the value of �0 are captured by a random variable � with density
probability function �. This random variable satis�es the following condition ensuring that the
decision-maker�s ambiguous beliefs are objectively unbiased

Hg[X] = Hg[X�0 ] = E[Hg[X�]]:

This condition ensures that the behavior of an ambiguity-neutral decision maker will be una¤ected
by the introduction of ambiguity into the choice setting. The same type of assumption is made for
the framework of the expected utility theory by Klibano¤ et al. (2005) to disentangle the e¤ect
of ambiguity-aversion from that of risk-aversion. Note that, if Y� is the random variable whose
quantile function is de�ned by

V aR[Y�;B] =

Z

T
V aR[X�;B]� (�) d�; 0 � B � 1;
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then its risk measure equals that of X since

Hg[X] = E[Hg[X�]] =

Z

T

�Z 1

0
g0(1� B)V aR[Xj�;B]dB

�
� (�) d�

=

Z 1

0
g0(1� B)

Z

T
[V aR[Xj�;B]� (�) d�] dB

= Hg[Y�]:

In the case where the probability distribution functions, F�, are probability distribution functions of
comonotonic risks, Y� is an average of these risks over � (see also the discussion in Wang and Young
(1998)). For example, suppose that T = f��1; �0; �1g and that P (� = ��1) = p and P (� = �1) = q
with 0 < p < 1, 0 < q < 1, p+ q < 1. Assume moreover that there exists a non-decreasing function
h�1 (resp. h1) such that X��1 = h�1(X) (resp. X�1 = h1(X)). Then

V aR[Y�;B] = pV aR[X��1 ;B] + (1� p� q)V aR[X�0 ;B] + qV aR[X�1 ;B]

= (ph�1 + (1� p� q) + ph1)(V aR[X;B])

= V aR[(ph�1 + (1� p� q) + ph1)(X);B];

and therefore Y� has the same distribution as ph�1(X) + (1� p� q)X + qh�1(X).

The recursive model of ambiguity preferences with second-order probability distribution devel-
oped by Klibano¤ et al. (2005) is now adapted to the class of distortion risk measures to investigate
the value of information that resolves ambiguity or resolves risk. The main element of this model
is a non-decreasing and convex transformation function ' that captures the ambiguity preference.
The decision-maker�s risk measure is de�ned by

~Hg;'[X;�] = '�1 (E[' (Hg[X�])]) = '�1
�Z

T
' (Hg[X�])� (�) d�

�
:

By Jensen�s inequality, we derive that

'�1 (E[' (Hg[X�])]) � E[Hg[X�]] = Hg[X] = Hg[Y�]:

Therefore ~Hg;'[X;�] is always larger than Hg[X], the risk measure that would be used if �0 was
known, and the decision maker is ambiguity-averse when ' is convex. If ' is linear, ~Hg;'[X;�] =
Hg[X] and the decision maker is ambiguity-neutral.

If gD(�) = �
�
��1 (�) + D

�
and X � LN

�
�X ; �

2
X

�
, we have HgD [X] = E[X] exp (D�X). Suppose

that the mean of X is ambiguous in the sense that the decision-maker has an imperfect knowledge
of it. Let �0 = E[X] and assume that X� � LN

�
log(�)� �2X=2; �

2
X

�
with � 2 T =(0;1). Note

that HgD [X�] = � exp (D�X). The ambiguity takes the form of probability distributions for � and
we may assume for example that � � Gamma(�0C; C), with C > 0. Since E[�] = �0, we have
E[HgD [X�]] = HgD [X] and since V[�] = �0=C, ambiguity should decrease as C increases. Assume
moreover that ' (x) = exp(Bx) with B � 0, then for C > B exp (D�X)

~HgD ;'[X;�] = �
C

B
ln

�
1�

B

C
exp (D�X)

�
�0 = ��

�1(B; C; D) ln (1� �(B; C; D))HgD [X];

where �(B; C; D) = BC�1 exp (D�X). The ambiguity-averse decision-maker�s risk measure, ~HgD ;'[X;�],
decreases with C, but increases with B. As B tends to zero, the risk measure tends to the risk mea-
sure of the ambiguity-neutral decision maker, i.e. HgD [X].
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Let �1 and �2 be two random variables that capture the subjective beliefs about the value �0
and that satisfy the mean-preserving condition

E[Hg[X�1 ]] = E[Hg[X�2 ]] = Hg[X�0 ]: (3.4)

We say that the information used for constructing the prior distribution of �2 �reduces� ambiguity
with respect to the information used for constructing the prior distribution of �1 if

~Hg;'[X;�1] � ~Hg;'[X;�2]:

Information that reduces ambiguity has a positive value for decision makers who are ambiguity
averse. A su¢cient condition is given by the condition that Hg[X�1 ] dominates Hg[X�2 ] in the
stop-loss order, i.e. Hg[X�1 ] �SL Hg[X�2 ].

Example 2 A location-scale family is a family of probability distributions parametrized by a loca-
tion parameter and a (non-negative) scale parameter: if X is any random variable whose probability
distribution belongs to such a family, then Y = a+ bX, b > 0, also belongs to this family. Let � be
the mean of X and � its standard deviation, then

V aR[X�;�;B] = �+ �qB;

where qB is the quantile function of the centered and standardized distribution and

Hg[X�;�] = �+ �

Z 1

0
g0(1� B)qBdB:

The ambiguity may then concern � or �. In this case Hg[X�1;�
] �SL Hg[X�2;�

] is equivalent to
�1 �SL �2 when �1 and �2 are random variables and � is �xed, or Hg[X�;�1 ] �SL Hg[X�;�2 ] is

equivalent to �1 �SL �2 if
R 1
0 g

0(1� B)qBdB > 0, �1 and �2 are random variables and � is �xed.

For a large number of parametric families of distributions, it is possible to order the distribution
by using a distortion risk measure.

De�nition 1 We say that fF�; � 2 T g is �invariant� with respect to Hg, if, for all �1; �2 2 T �R,
such that �1 � �2, then Hg[X�1 ] � Hg[X�2 ]. If � satis�es the mean preserving condition, i.e.
Hg[X�0 ] = E[Hg[X�]], then �

�
�;g;', de�ned implicitly by

Hg[X��
�;g;'

] = ~Hg;'[X;�];

is larger than �0 and is called the cautious parameter associated to �, g and '.

Note that if, for all B 2 (0; 1) and �1; �2 2 T , such that �1 � �2, we have

Z 1

B

g0(1� u) (V aR[X�2 ;u]� V aR[X�1 ;u]) du � 0;

we deduce by Theorem 1 that, for any more risk-averse decision-maker with distortion function h,
fF�; � 2 T g is also invariant with respect to Hh.

If gD(�) = �
�
��1 (�) + D

�
with D � 0, X� � LN

�
log(�)� �2X=2; �

2
X

�
with � 2 T =(0;1),

� � Gamma(�0C; C), with C > 0, 'B (x) = exp(Bx) with 0 < B < C exp (�D�X), then fF�; � 2 T g
is invariant with respect to HgD and, for X = X�0 ,

���;gD ;'B = ��
�1(B; C; D) ln (1� �(B; C; D)) �0; (3.5)
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where �(B; C; D) = BC�1 exp (D�X).

If ~Hg;'[X;�1] � ~Hg;'[X;�2], the willingness to pay for information that reduces ambiguity
from �1 to �2, ! = ! (�1;�2), is de�ned implicitly by

~Hg;'[X;�1] = ~Hg;'[X + !;�2]:

It is the amount of money that is necessary to use to pass from the a priori knowledge �1 to that
of �2. The value of information that resolves ambiguity, ! (�; �0), is therefore de�ned by

! (�; �0) = ~Hg;'[X;�]�Hg[X]:

We immediately derive the following proposition.

Proposition 4 The willingness to pay for information that resolves ambiguity increases with the
stop-loss order:

Hg[X�1 ] �SL Hg[X�2 ] =) ! (�1; �0) � ! (�2; �0) :

As for the risk-aversion, we de�ne the notion of a greater ambiguity-aversion: a decision-maker
with ambiguity function  is said to be more ambiguity-averse than a decision-maker with ambiguity
function ', if there exists an increasing and convex function � such that  = � E '.

Theorem 5 For ambiguity-averse decision makers, the willingness to pay for information that
resolves ambiguity increases with greater ambiguity aversion.

This result is coherent with Theorem 3 in Snow (2012) which studies the value of information
in an expected utility model of ambiguity with second-order probabilities. The next theorem gives
a su¢cient condition on the distortion functions of two decision-makers with the same ambiguity
function such that the willingness to pay for information that resolves ambiguity is larger than for
the more risk-averse decision-maker.

Let us consider a decision-maker with distortion function g and ambiguity function ', and a
more risk-averse decision-maker with distortion function h and ambiguity function '. Let � be a
random variable that captures the subjective beliefs about the value �0 such that

E[Hg[X�]] = Hg[X�0 ] and E[Hh[X�]] = Hh[X�0 ]:

Theorem 6 Assume that fF�; � 2 T g is invariant with respect to Hg and Hh. The willingness to
pay for information that resolves ambiguity is larger for the decision-maker with distortion function
h than for the decision-maker with distortion function g if ���;h;' � ���;g;' and, for all B 2 (0; 1),

Z 1

B

g0(1� u)
�
V aR[X�0 ;u]� V aR[X��

�;g;'
;u]
�
du (3.6)

� g (1� B)

Z 1

0
g0(1� u)

�
V aR[X�0 ;u]� V aR[X��

�;g;'
;u]
�
du:

Assume that gD(�) = �
�
��1 (�) + D

�
and X� � LN

�
log(�)� �2X=2; �

2
X

�
with � 2 T =(0;1).

If X = X�0 , � � Gamma(�0C; C), with C > 0, and 'B (x) = exp(Bx) with 0 < B < C exp (�D�X),
then we have ���;g~D ;'B � ���;gD ;'B for ~D � D by Equation (3:5), and Condition (3:6) is equivalent to

�
1 + ��1(B; C; D) ln (1� �(B; C; D))

�
exp (D�X)

�
�
�
�X + D � �

�1 (B)
�
� �

�
D � ��1 (B)

��
� 0;

where �(B; C; D) = BC�1 exp (D�X). This condition holds since 0 < �(B; C; D) < 1. We therefore
deduce that the willingness to pay for information that resolves ambiguity is larger for the more
risk-averse decision-maker.
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4 Ambiguity aversion and optimal e¤ort

We consider a decision-maker with distortion function g who faces a risk Z. Assume that this
decision-maker could make an e¤ort e 2 [0; 1] to shift his risk distribution toward a better target
distribution of a risk Y such that Y is preferred over Z, i.e. Hg[Y ] � Hg[Z]. But this e¤ort has a
monetary cost characterized by a function c with c(0) = 0, c0 > 0 and c00 > 0. After the investment
in e¤ort e, the decision maker�s �nal risk is denoted by X(e) whose quantile function is assumed to
be given by

V aR[X(e);B] = eV aR[Y ;B] + (1� e)V aR[Z;B]; 0 < B < 1:

The objective function of the decision maker is then given by

min
e2[0;1]

�
Hg[X

(e)] + c(e)
�
:

We assume that the optimal e¤ort e�g belongs to the interval (0; 1).

Theorem 7 Assume that for all B 2 (0; 1),

Z 1

B

g0(1� u) (V aR[Y ;u]� V aR[Z;u]) du � g (1� B)

Z 1

0
g0(1� u) (V aR[Y ;u]� V aR[Z;u]) du:

(4.7)
Then a more risk-averse decision-maker will invest more in e¤ort.

Note that, if Condition (4:7) holds, then, by Corollary 3, a more risk-averse decision-maker
with distortion function h has a willingness to pay � (Z; Y ;h) that is larger than � (Z; Y ; g). This
explains why he will invest more in e¤ort than the decision-maker with distortion function g.

We now impose ambiguity on the target distribution of Y as in Huang (2012) for the framework
of the expected utility. Let Y and �Y be two risks such that Hg[Y ] � Hg[ �Y ] � Hg[Z]. We assume
that Y is a random variable whose probability distribution belongs to the family of distributions
fF�; � 2 [0; 1]g characterized by the random variables Y� with probability distribution functions F�
and quantile functions

V aR[Y�;B] = (1� �)V aR[Y ;B] + �V aR[ �Y ;B]; 0 � B � 1:

The true value of the parameter is denoted by �0. The subjective beliefs about the value of �0 are
captured by a random variable � satisfying E[�] = �0.

For a given � 2 [0; 1], the decision-maker�s �nal risk after the investment in e¤ort e is denoted

by X
(e)
� and has a quantile function which is given by

V aR[X
(e)
� ;B] = e

�
(1� �)V aR[Y ;B] + �V aR[ �Y ;B

�
] + (1� e)V aR[Z;B]; 0 < B < 1:

The objective function of the decision maker is then given by

min
e2[0;1]

~Hg;'[X
(e) + c(e);�] = min

e2[0;1]
'�1

�
E

h
'
�
Hg[X

(e)
� ] + c(e)

�i�
:

We assume that the optimal e¤ort e�' belongs to the interval (0; 1).

Theorem 8 A more ambiguity-averse decision-maker will invest less in e¤ort.

This result shows that risk-aversion and ambiguity-aversion may have di¤erent impact on the
e¤ort to reduce risk.
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5 Conclusion

We consider concave distortion risk measure minimizers choosing two risks and examine how choice
is in�uenced by the decision-makers attitude to risk. We provide a necessary and su¢cient condition
such that, if a decision-maker prefers a risk over another, then a more risk-averse decision-maker
will make the same choice. We derive a condition for a more risk-averse decision-maker to be willing
to pay more for an improvement in risk measures.

We then assume that the decision-maker is uncertain about a parameter of the risk distribution
and we use this last condition to study the e¤ect of ambiguity-aversion on the valuation of risk
reduction. We show that the willingness to pay for information that resolves ambiguity is always
larger for a more ambiguity-averse decision-maker, but is not necessarily larger for a more risk-averse
decision maker. Moreover we prove that, if a decision-maker is able to make an e¤ort to reduce
his risk, then a more risk-averse decision-maker will invest more in e¤ort if it willingness to pay to
reduce the risk is larger than the less risk-averse decision-maker. However a more ambiguity-averse
decision-maker will always invest less in e¤ort when the ambiguous beliefs concern the distribution
of the less risky distribution. This result is of practical interest for loss prevention and safety
incentive programs if there exists ambiguity about the target distributions of risks.

6 Appendix

6.1 Proof of Theorem 1

Suppose i) holds. Hg[X] � Hg[Y ] is equivalent to

Z 1

0
g0(1� u) (V aR[X;u]� V aR[Y ;u]) du � 0:

Since g is concave and g(0) = 0, we have, for u0 2 (0; 1), g(u0) > 0. Let us de�ne the concave
distortion function f0 by

f0(u) =

�
u=g(u0) u � g(u0)
1 u > g(u0)

:

Then we have

h(u) =

�
g(u)=g(u0) u � u0
1 u > u0

and Hh[X] � Hh[Y ] is equivalent to
R 1
1�u0

g0(1� u) (V aR[X;u]� V aR[Y ;u]) du � 0. Therefore for

all B 2 (0; 1),
R 1
B
g0(1� u) (V aR[X;u]� V aR[Y ;u]) du � 0.

Suppose ii) holds. Let h = f E g where f is a concave distortion function. Let Eg (resp. Ef ) be
the set where g0 (resp. f 0) fails to exist. For u 2 Ecg \ E

c
f , we have

h0(u) = f 0(g(u))g0(u);

and therefore

Z 1

0
h0(1� u) (V aR[X;u]� V aR[Y ;u]) du

=

Z 1

0
f 0(g(1� u))g0(1� u) (V aR[X;u]� V aR[Y ;u]) du:
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We now use the same type of arguments as in the proof of Theorem 5.2.1 in Dhaene et al. (2006). We
�rst prove the implication for concave piecewise linear distortion functions f . Any such distortion
function can be written in the form

f(x) =

nX

i=1

ai(Ci � Ci+1)min(x=ai);

where 0 = a0 < a1 <. . .< an�1 < an = 1. Further, Ci is the derivative of f in the interval (ai�1; ai)
and is non-negative, and Cn+1 = 0. Because of the concavity of f , we have that Ci is a decreasing
function of i. And since f is a distortion function f(1) =

Pn
i=1 ai(Ci � Ci+1) = 1. Since

f 0(x) =

nX

i=1

(Ci � Ci+1)If0<x<aig;

we deduce that

Z 1

0
h0(1� u) (V aR[X;u]� V aR[Y ;u]) du

=
nX

i=1

(Ci � Ci+1)

Z 1

0
g0(1� u) (V aR[X;u]� V aR[Y ;u]) If0<g(1�u)<aigdu

=
nX

i=1

(Ci � Ci+1)

Z 1

1�g�1(ai)
g0(1� u) (V aR[X;u]� V aR[Y ;u]) du � 0

and then Hh[X] � Hh[Y ]. The result is derived for general concave distortion functions f by using
the monotone convergence theorem as in Dhaene et al. (2006).

6.2 Proof of Corollary 2

By Theorem 1, it is su¢cient to prove that for all B 2 (0; 1),

d(B) =

Z 1

B

g0(1� u) (V aR[X;u]� V aR[Y ;u]) du � 0:

Note that
d0(B) = �g0(1� B) (V aR[X;B]� V aR[Y ;B]) ; B 2 (0; 1); (6.8)
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and that by integrating by part (when g is twice di¤erentiable)

d(B) =

Z 1�B

0
g0(u) (V aR[X; 1� u]� V aR[Y ; 1� u]) du

=

�
g0(u)

�Z u

0
(V aR[X; 1� v]� V aR[Y ; 1� v]) dv

��1�B

0

�

Z 1�B

0
g00(u)

�Z u

0
(V aR[X; 1� v]� V aR[Y ; 1� v]) dv

�
du

= g0(1� B)

�Z 1�B

0
(V aR[X; 1� v]� V aR[Y ; 1� v]) dv

�

�

Z 1�B

0
g00(u)

�Z u

0
(V aR[X; 1� v]� V aR[Y ; 1� v]) dv

�
du

= g0(1� B)
�
V aR(2)[X;B]� V aR(2)[Y ;B]

�

�

Z 1�B

0
g00(u)

�
V aR(2)[X; 1� u]� V aR(2)[Y ; 1� u]

�
du

= g0(1� B)
�
V aR(2)[X;B]� V aR(2)[Y ;B]

�
�

Z 1

B

g00(1� u)
�
V aR(2)[X;u]� V aR(2)[Y ;u]

�
du:(6.9)

i) Obvious.

ii) By Equation (6:8), d is non-increasing for 0 < B � B0 and non-decreasing for B0 � B < 1.
Since d(0) � 0 and d(1) = 0, d(B) � 0 for all B 2 (0; 1).

iii) By Equation (6:9) and the concavity of g, d(B) � 0 for all B 2 (0; 1).

iv) By Equation (6:8), d is non-increasing for 0 < B � B0 and by Equation (6:9) and the
concavity of g, d(B) � 0 for all B0 � B < 1. The result follows.

6.3 Proof of Corollary 3

First recall that

� (Y;X; g) = Hg[Y ]�Hg[X] =

Z 1

0
g0(1� u) (V aR[Y ;u]� V aR[X;u]) du:

Let X� = X + � (Y;X; g). We have Hg[X�] = Hg[Y ]. By Theorem 1, a more risk-averse decision-
maker with distortion function h prefers X� to Y , i.e.

Hh[X�] � Hh[Y ], Hh[X] + � (Y;X; g) � Hh[Y ], � (Y;X; g) � � (Y;X;h) ;

if and only if, for all B 2 (0; 1),

Z 1

B

g0(1� u) (V aR[X�;u]� V aR[Y ;u]) du � 0

,

Z 1

B

g0(1� u) (V aR[X;u]� V aR[Y ;u]) du � �� (Y;X; g)

Z 1

B

g0(1� u)du

,

Z 1

B

g0(1� u) (V aR[X;u]� V aR[Y ;u]) du � g (1� B)

Z 1

0
g0(1� u) (V aR[X;u]� V aR[Y ;u]) du:
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6.4 Proof of Theorem 5

We have

 (Hg[X�0 ] + ! (�; �0; )) = E[ (Hg[X�])]

= E[� (' (Hg[X�]))]

� � (E[' (Hg[X�])])

� � (' (Hg[X�0 ] + ! (�; �0;')))

=  (Hg[X�0 ] + ! (�; �0;'))

and then, since  is an increasing function, we deduce that

! (�; �0; ) � ! (�; �0;') :

6.5 Proof of Theorem 6

Since fF�; � 2 T g is invariant with respect to Hg, the willingness to pay for information that
resolves ambiguity of the decision-maker with distortion function g is

! (�; �0; g) = ~Hg;'[X;�]�Hg[X�0 ] = Hg[X��
�;g;'

]�Hg[X�0 ]

= �(X��
�;g;'

; X�0 ; g);

and, since fF�; � 2 T g is invariant with respect to Hh, the willingness to pay for information that
resolves ambiguity of the decision-maker with distortion function h is

! (�; �0;h) = ~Hh;'[X;�]�Hh[X�0 ] = Hh[X��
�;h;'

]�Hh[X�0 ]

= �(X��
�;h;'

; X�0 ;h):

Therefore

! (�; �0;h)� ! (�; �0; g)

= �(X��
�;h;'

; X�0 ;h)� �(X��
�;g;'

; X�0 ; g)

=
h
�(X��

�;h;'
; X�0 ;h)� �(X��

�;g;'
; X�0 ;h)

i
+
h
�(X��

�;g;'
; X�0 ;h)� �(X��

�;g;'
; X�0 ; g)

i

=
�
Hh[X��

�;h;'
]�Hh[X��

�;g;'
]
�
+
h
�(X��

�;g;'
; X�0 ;h)� �(X��

�;g;'
; X�0 ; g)

i
:

First we have
Hh[X��

�;h;'
]�Hh[X��

�;g;'
] � 0, ���;h;' � ���;g;':

Then by Corollary 3
�(X��

�;g;'
; X�0 ;h)� �(X��

�;g;'
; X�0 ; g) � 0;

if for, all B 2 (0; 1),

Z 1

B

g0(1� u)
�
V aR[X�0 ;u]� V aR[X��

�;g;'
;u]
�
du

� g (1� B)

Z 1

0
g0(1� u)

�
V aR[X�0 ;u]� V aR[X��

�;g;'
;u]
�
du;

and the result follows.
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6.6 Proof of Theorem 7

The objective function of the decision-maker with distortion function g is given by

min
e2[0;1]

Fg (e) = min
e2[0;1]

�
Hg[X

(e)] + c(e)
�
:

The �rst order condition of the objective function is

@Fg(e)

@e

CCCC
e=e�g

= Hg[Y ]�Hg[Z] + c
0(e�g) = 0;

and the second order condition is

@2F (e)

@e2

CCCC
e=e�g

= c00(e�g) > 0:

Let us now consider a more risk-averse decision-maker with distortion function h = f E g where f
is a concave distortion function f . His objective function is given by

min
e2[0;1]

Fh (e) = min
e2[0;1]

Hh[X
(e)] + c(e)

whose �rst order condition is given by

@Fh(e)

@e

CCCC
e=e�

h

= Hh[Y ]�Hh[Z] + c
0(e�h) = 0:

But note that
@Fh(e)

@e

CCCC
e=e�g

= (Hh[Y ]�Hh[Z])� (Hg[Y ]�Hg[Z]) < 0

by Corollary 3. Therefore e�h > e�g and the result follows.

6.7 Proof of Theorem 8

The objective function of the decision-maker is given by

min
e2[0;1]

G' (e) = min
e2[0;1]

'�1
�
E

h
'
�
Hg[X

(e)
� ] + c(e)

�i�
:

The �rst order condition of the objective function is

@G' (e)

@e

CCCC
e=e�'

=
1

'0 ('�1(E['�]))
E

2

4'0
�
Hg[X

(e�')

� ] + c(e�')
�
0

@ @Hg[X
(e)
� ]

@e

CCCCC
e=e�'

+ c0(e�')

1

A

3

5 = 0;

where '� = '
�
Hg[X

(e�')

� ] + c(e�')
�
, and is equivalent to

E

2

4'0
�
Hg[X

(e�')

� ] + c(e�')
�
0

@ @Hg[X
(e)
� ]

@e

CCCCC
e=e�'

+ c0(e�')

1

A

3

5 = 0; (6.10)
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since '0 > 0. Note that

@Hg[X
(e)
� ]

@e
= (1��) (Hg[Y ]�Hg[Z]) + �

�
Hg[ �Y ]�Hg[Z]

�

is non-positive and does not depend on e.

The second order condition is given by

@2G' (e)

@e2

CCCC
e=e�'

=
1

'0 ('�1(E['�]))
E

2

4'00
�
Hg[X

(e�')

� ] + c(e�')
� @Hg[X

(e�')

� ]

@e
+ c0(e�')

!23

5

+
1

'0 ('�1(E['�]))
c00(e�')E

h
'0
�
Hg[X

(e�')

� ] + c(e�')
�i

which is positive since '0 > 0, '00 > 0 and c00 > 0.

Let us now consider a more ambiguity-averse decision maker with ambiguity function  = �E'
where � is an increasing and convex function. His objective function is given by

min
e2[0;1]

G (e) = min
e2[0;1]

 �1
�
E[ 

�
Hg[X

(e)
� ] + c(e)

�
]
�
:

whose �rst order condition is given by

E

2

4 0
�
Hg[X

(e�
 
)

� j�] + c(e� )

�0

@ @Hg[X
(e)
� ]

@e

CCCCC
e=e�

 

+ c0(e� )

1

A

3

5 = 0

or equivalently by

E

2

4�0
�
'

�
Hg[X

(e�
 
)

� ] + c(e� )

��
'0
�
Hg[X

(e�
 
)

� ] + c(e� )

�0

@ @Hg[X
(e)
� ]

@e

CCCCC
e=e�

 

+ c0(e� )

1

A

3

5 = 0

Now note that

@Hg[X
(e)
� ]

@e
+ c0(e) = (1��) (Hg[Y ]�Hg[Z]) + �

�
Hg[ �Y ]�Hg[Z]

�
+ c0(e):

By the �rst order condition on e�' (6:10), we deduce that there exists �b 2 (0; 1) such that, for

0 < � � �b, @Hg[X
(e)
� ]=@e

CCC
e=e�'

� c0(e) and, for �b < � < 1, @Hg[X
(e)
� ]=@e

CCC
e=e�'

� c0(e). It follows

that

E

2

4�0
�
'
�
Hg[X

(e�')

� ] + c(e�')
��

'0
�
Hg[X

(e�')

� ] + c(e�')
�
0

@ @Hg[X
(e)
� ]

@e

CCCCC
e=e�'

+ c0(e�')

1

A

3

5 > 0

since �00 > 0. Therefore e� > e�' and the result follows.

6.8 Risk measures for the class of Normal distortion functions

If X � LN
�
�X ; �

2
X

�
, then E [X] = exp

�
�X + �

2
X=2

�
and

V aR[X;B] = exp
�
�X + �X�

�1 (B)
�

V aR(2)[X;B] = exp
�
�X + �

2
X=2

�
�
�
�X � �

�1 (B)
�
:
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By Equation (2:1), we have

HgD [X] =

Z 1

0
V aR[X;u]g0(1� u)du =

Z 1

0
V aR[X;u] exp

�
D��1 (u)� D2=2

�
du

=

Z 1

0
exp

�
�X � D

2=2 + (D + �X) �
�1 (u)

�
du = exp

�
�X � D

2=2 + (D + �X)
2 =2

�

= exp
�
�X + D�X + �

2
X=2

�
:

6.9 Comparative static results for the class of Normal distortion functions

Let

d(B) =

Z 1

B

g0(1� u) (V aR[X;u]� V aR[Y ;u]) du

= exp
�
~�
(D)
X

�
�
�
~�
(D)
X � ��1 (B)

�
� exp

�
~�
(D)
X

�
�
�
~�
(D)
Y � ��1 (B)

�
:

where ~�
(D)
X = �X+D�X+�

2
X=2 and ~�

(D)
X = D+�X (resp. for Y ). We have d(0) = HgD [X]�HgD [Y ] �

0, d(1) = 0 and

d0(B) = � exp

�
~�
(D)
X +��1 (B) ~�

(D)
X �

�
~�
(D)
X

�2
=2

�
+ exp

�
~�
(D)
Y +��1 (B) ~�

(D)
Y �

�
~�
(D)
Y

�2
=2

�

= � exp
�
�X � D

2=2 + ��1 (B) (D + �X)
�
+ exp

�
�Y � D

2=2 + ��1 (B) (D + �Y )
�

It follows that d0(B) < 0 if and only if �X � �Y > ��1 (B) (�Y � �X). Therefore d(B) � 0 for all
B 2 [0; 1] if and only if (�Y � �X) > 0.
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