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Abstract—The Modal Method by Gegenbauer polynomials Expan-
sion (MMGE) has been recently introduced for lamellar gratings by
Edee [8]. This method shows a promising potential of outstanding
convergence but still suffers from instabilities when the number of
polynomials is increased. In this work, we identify the origin of these
instabilities and propose a way to remove them.

1. INTRODUCTION

Among the numerical methods developed for the analysis of lamellar
diffraction gratings, modal methods play an important role because of
their great versatility and relative effectiveness. In the classical modal
method [1, 2], the eigenvalues are obtained by solving a transcendental
equation. In other modal methods, the eigenmodes and propagation
constants are generally obtained by searching the eigenvalues and
eigenvectors [3–8] of a matrix which is derived from the Maxwell’s
equations by using the method of moments [9]. Mathematically
speaking, for one-dimensional gratings with piecewise homogeneous
media, and plane wave excitation, the eigenmodes are solutions
of the Helmholtz equation subject to boundary conditions at the
interfaces between two media and to the pseudo-periodicity condition.
Numerically, the rate of convergence of the method depends on how
the matrix from which eigenvalues are sought takes into account the
continuity relations. Indeed, one of the main differences between
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the variants of modal methods is the choice of the expansion and
test functions. In a previous paper [10], we have developed a modal
method based on Gegenbaueur polynomials expansions (MMGE) and
emphasized that the main advantage of such an approach is that
continuity relations can be written in an exact manner. We have
shown through various examples that this method outperforms other
modal methods. However, we found that under its original form, the
MMGE suffers from some instabilities for large values of polynomials
degree. Even if it is not, for a certain class of grating problems,
necessary to use a large number of polynomials in order to have very
reliable results (because the MMGE converges very rapidly), it is of
fundamental importance to identify the origin of instabilities and find
a way to remove them. In [10], it has already been highlighted that
the instabilities were linked with the way we calculated the inner
product required by the Galerkin method. In the present work, we
track precisely the origin of the numerical problems and study the
influence of the weighting function appearing in the inner products.
It is shown that introducing this latter makes the calculation of inner
products analytical in one hand and ensures unconditional stability
on the other hand; on the contrary to our first implementation. The
Gegenbauer polynomials of degree m denoted by CΛ

m differ from each
other through a parameter Λ. Special cases where Λ is equal to 0.5
corresponds to the Legendre polynomial and as Λ approaches 0, these
polynomials are Chebychev polynomials. In addition, we investigate
the influence of Λ on the rate of convergence for the two fundamental
cases of polarization.

2. STATEMENT OF THE PROBLEM AND THE
FRAMEWORK OF MMGE

The MMGE consists in defining a partition Ωi corresponding to the
different homogeneous subintervals of Ω (which is nothing but the
elementary period of the structure), that can be, possibly, divided
into layers Ωij , 1 ≤ j ≤ Ni. For example, in Figure 1, Ω is subdivided
into two homogeneous subintervals Ω1 and Ω2 and each subinterval
Ωi, (i = 1, 2) contains Ni layers.

We will denote by NΩ the number of subintervals. The
eigenfunctions Xp(x) of the L-operator (LTE = k−2∂2

x + ν2(x) and
LTM = k−2ν2(x)∂xν−2(x)∂x + ν2(x) with k = 2π/λ) are described in
each homogeneous layer Ωij as follows:

∣∣Xi,j
p

〉
=

N∑

n=1

ai,j
n,p

∣∣bi,j
n

〉
, (1)
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Figure 1. The grating configuration: one period is depicted.

where |Xi,j
p 〉 is the restriction of the eigenfunction |Xp〉 to the

homogeneous layer Ωij , characterized by its refractive index νi and
N is the number of basis functions on each homogeneous layer. It is
of fundamental importance to note that |Xi,j

p 〉 satisfies:

(i) the Helmholtz equation identical for both TE and TM
polarizations:

Li,j
∣∣Xi,j

p

〉
= β2

p

∣∣Xi,j
p

〉
, (2)

with

Li,j =
1
k2

d2

dx2
+ ν2

i . (3)

(ii) the following boundary conditions:
• for each layer Ωij of the same subinterval Ωi, (i, j) ∈

[1 : NΩ − 1] × [1 : Ni], the boundary equations obtained
by writing the continuity of the tangential components of
the electromagnetic field at the interfaces (xi,j)j∈[1 : Ni−1]

separating two adjacent layers, Ωij and Ωi,j+1:

Xi,j
p (xi,j) = Xi,j+1

p (xi,j), (4a)[
dXi,j

p

dx

]

x=xi,j

=

[
dXi,j+1

p

dx

]

x=xi,j

, (4b)

• at the interfaces separating two adjacent subintervals Ωi and
Ωi+1, i.e., for j = Ni, i ∈ [1 : NΩ − 1],

Xi,j
p (xi,j) = Xi+1,1

p (xi,j), (5a)

1
ηi

[
dXi,j

p

dx

]

x=xi,j

=
1

ηi+1

[
dXi+1,1

p

dx

]

x=xi,j

, (5b)
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where ηi = 1 for TE polarization and ηi = ν2
i for TM

polarization.
• for the last subinterval Ωi, i.e., when i = NΩ, Eq. (4) are

written for the first layers (Ωij)ij , (i, j) ∈ {NΩ}× [1 : Ni−1]
and the pseudo-periodic condition for j = Ni:

Xi,Ni
p (d) = eik sin θdX1,1

p (0), (6a)

1
ηi

[
dXi,Ni

p

dx

]

x=d

=
eik sin θd

η1

[
dX1,1

p

dx

]

x=0

, (i = NΩ). (6b)

From Eq. (1), Eq. (2) may be written as follows:
N∑

n=1

ai,j
n,pLi,j

∣∣bi,j
n

〉
= β2

p

N∑

n=1

ai,j
n,p

∣∣bi,j
n

〉
. (7)

Finally, by projecting Eq. (7) on the basis functions
(
|bi,j

m 〉
)

m∈[1 : N−2]
,

we obtain:

Li,j
[N−2]×[N ]a

i,j
[1 : N ],p = β2

pG
i,j
[N−2]×[N ]a

i,j
[1 : N ],p, (8)

where

Li,j
[N−2]×[N ]

=
1
k2

Di,j
[N−2]×[N−1]

[
Gi,j

[N−1]×[N−1]

]−1
Di,j

[N−1]×[N ] + ν2
i G

i,j
[N−2]×[N ], (9)

ai,j
[1 : N ],p is a column vector formed by the coefficients ai,j

n,p, n ∈ [1 : N ]:

ai,j
[1 : N ],p =

[
ai,j

1,p, . . . , ai,j
N,p

]t
, (10)

and

Gi,j
[M ]×[Q] =

[〈bi,j
m , bi,j

q 〉
]
, (11a)

Di,j
[M ]×[Q] =

[
〈bi,j

m ,
dbi,j

q

dx
〉
]

. (11b)

The subscripts of the matrices denote their size; for example in
Eq. (11), (m, q) ∈ [1 : M ] × [1 : Q]. We are, thus, led to the
computation of the eigenvalues β2

p and their associated eigenvectors
ai,j

[1 : N−2],p of a matrix with dimension Nmax ×Nmax, with

Nmax = (N − 2)
NΩ∑

i=1

Ni. (12)
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We chose the basis functions formed by the Gegenbauer
polynomials [11] CΛ

m(ξ) defined over the interval [−1, 1] as follows:

CΛ
m(ξ) =

1
Γ(Λ)

[m/2]∑

q=0

(−1)q Γ(Λ + m− q)
(q + 1)!(1 + m− 2q)!

(2ξ)m−2q, (13)

where Λ > −1/2 and m denoted the degree of the polynomials. The
Gegenbauer polynomials CΛ

m are m degree orthogonal polynomials on
the interval [−1, 1] satisfying:

〈
CΛ

m, CΛ
n

〉
=

∫ 1

−1

(
1− ξ2

)Λ− 1
2 CΛ

m(ξ)CΛ
n (ξ)dξ = δnmhΛ

n , (14)

where δnm denotes the Kronecker’s symbol and

hΛ
n = π

1
2 CΛ

n (1)
Γ(Λ + 1

2)
Γ(Λ)(n + Λ)

, (15)

with 



CΛ
n (1) =

Γ(n + 2Λ)
Γ(2Λ)Γ(n + 1)

,

CΛ
n (−1) = (−1)nCΛ

n (1).
(16)

These relationships will be essential for the boundary conditions
associated with the transition points in the x direction. It is important
to note that the parameter N is referred to the number of basis
functions over each layer. Consequently, the highest degree of these
polynomials is N − 1.

3. INNER PRODUCT CALCULATION

3.1. Computation without the Weighting Function:
Numerical Instabilities and Gamma Function

In a first attempt and for sake of lightening the computations, the
inner product described by Eq. (14) can be simplified by removing
the weighting function (1 − ξ2)Λ−1/2. This is the approach adopted
in [10] and which led to very good convergence rates. However, and as
we mentioned in the introduction, numerical instabilities arise when
the number of polynomials is increased. Obviously, the first idea
that comes to mind is that the origin of the instabilities might have
something to do with the removed weighting function. In general,
the instabilities of an algorithm based on a modal method may come
either from: (i) the fact that the modal decomposition is not able
to represent the actual fields (especially their discontinuities), (ii) the
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numerical computation of the modes and especially at the level of the
inner products computations, and (iii) the resolution of the algebraic
system stemming from the boundary conditions. In the present case,
we suspect the accuracy of evaluation of the inner products given in
Eq. (11) that use the inner product of Eq. (14) (under its simplified
form, i.e., by removing the weighting function). In order to clarify
the situation, we return to the construction of the matrix G which
elements are Gmn =< CΛ

m|CΛ
n >. Let’s consider as an example the

case of Λ = 0.5, where the elements Gmn computed by convolving
and integrating the polynomials must be perfectly equal to the inner
product defined by Eq. (14); i.e., if the polynomials are normalized by√

hΛ
n , Gmn must be equal to δmn. In Eq. (17) we give the numerical

computation of G elements for (m,n) ∈ [15 : 17]× [15 : 17]:

G[15 : 17],[15 : 17] =

[1.0000 0 0.0000
0 1.0000 0

0.0000 0 1.0000

]
. (17)

It can be seen that the results are satisfactory for this range of
integers. Nevertheless, when m or n increases, the results become
highly unstable as is shown in matrix (18):

G[29 : 31][29 : 31] = 104

[ −0.0193 0 1.4470
0 0.1740 0

0.8932 0 −6.4372

]
. (18)

This behavior suggests that the instabilities come from the
manipulation of the coefficients of Gegenbauer polynomials. We
verified and confirmed this fact through the numerical calculation of
CΛ

n (1) by use of the expression (13). The numerical evaluation of the
sum in Eq. (13) can be diverging. Indeed, this expression contains
Gamma functions which numerical expression leads to very large
values. The numerical calculation of the ratio between the numerator
and denominator appearing in the expression of the coefficients of
monomials (13) rapidly tends to infinity as a function of q and m,
while in reality the fraction tends to a finite value. The same behavior
is observed for CΛ

m(−1), (dCΛ
m/dξ)ξ=−1,1, i.e., all values of CΛ

m(ξ)
and (dCΛ

m/dξ)ξ, which are essential for boundary conditions. One
alternative to solve this problem, which was proposed in [10], consists
in increasing the number of homogeneous layers Ωij for each subinterval
Ωi. Indeed, by doing so the number of Gegenbauer polynomials needed
for the field description on each layer decreases. Another alternative,
which is presented in Subsection 3.2, consists in analytically computing
all the terms needed for the matrix of diffraction. This will be done by
taking into account the weighting function in the inner products and
by examining these ones case by case.
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3.2. Analytical Computation of the Inner Products with the
Weighting Function

The construction of the matrix of diffraction entailed the calculation
of the terms:

• 〈CΛ
m, CΛ

n 〉 =
∫ 1
−1 (1− ξ2)Λ−

1
2 CΛ

m(ξ)CΛ
n (ξ)dξ,

• 〈CΛ
m,

dCΛ
n

dξ
〉 =

∫ 1
−1 (1− ξ2)Λ−

1
2 CΛ

m(ξ)
(

dCΛ
n

dξ

)
(ξ)dξ.

The computation of 〈CΛ
m, CΛ

n 〉 is simple and directly deduced, in closed

form, from Eq. (14). For terms 〈CΛ
m,

dCΛ
n

dξ
〉, we first treat the terms

for (m,n = 0) and (m,n = 1) before dealing with the general case. It

is easy to verify that 〈CΛ
m,

d

dξ
CΛ

0 〉 vanish for all m and, since,
dCΛ

1

dξ
is

a constant, we can write:
〈

CΛ
m,

dCΛ
1

dξ

〉
=

dCΛ
1

dξ

∫ 1

−1

(
1− ξ2

)Λ− 1
2 CΛ

m(ξ)dξ. (19)

In the particular case of m = 0, the calculation of terms 〈CΛ
0 ,

dCΛ
1

dξ
〉,

leads to the following relationship:
〈

CΛ
0 ,

dCΛ
1

dξ

〉
= CΛ

0

dCΛ
1

dξ

∫ π

0
sin2Λ θdθ. (20)

The integral of the right-hand of Eq. (20) is computed by using the
following expression, which involves Bessel and Gamma functions [11]:

JΛ(ξ)(
ξ

2

)Λ
=

1

π
1
2 Γ(Λ + 1

2)

∫ π

0
cos(ξ cos θ) sin2Λ θdθ. (21)

For non-negative values of Λ and for small arguments ξ (ξ ∈[
0 :
√

Λ + 1
]
), Bessel functions have the following asymptotic form:

JΛ(ξ)(
ξ

2

)Λ
' 1

Γ(Λ + 1)
. (22)

By combining Eq. (22) and Eq. (21), when ξ is closed to 0, we obtain:
∫ π

0
sin2Λ θdθ ' π

1
2
Γ(Λ + 1

2)
Γ(Λ + 1)

. (23)
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Thus 〈CΛ
0 ,

dCΛ
1

dξ
〉 has the following analytical expression:

〈
CΛ

0 ,
dCΛ

1

dξ

〉
' π

1
2 CΛ

0

dCΛ
1

dξ

Γ(Λ + 1
2)

Γ(Λ + 1)
. (24)

For m ≥ 1, by using the integral Eq. (25) which involves Gegenbauer
polynomials:

m(2Λ+m)
2Λ

∫ ξ

0

(
1−y2

)Λ− 1
2 CΛ

m(y)dy= CΛ+1
m−1(0)−(

1−ξ2
)Λ+ 1

2CΛ+1
m−1(ξ), (25)

we easily demonstrate that 〈CΛ
m,

dCΛ
1

dξ
〉 = 0, for all values of m ≥ 1.

At this stage, elements 〈CΛ
m,

dCΛ
0

dξ
〉 and 〈CΛ

m,
dCΛ

1

dξ
〉, are known for all

values of m. In order to calculate terms 〈CΛ
m,

dCΛ
n

dξ
〉, when n ≥ 2 and

for all values of m, we introduce the following recursive relation:

CΛ
n (ξ) =

1
2(n + Λ)

d

dξ

[
CΛ

n+1(ξ)− CΛ
n−1(ξ)

]
, (26)

which leads to
d

dξ
CΛ

n (ξ) = 2(n− 1 + Λ)CΛ
n−1(ξ) +

d

dξ
CΛ

n−2(ξ). (27)

Consequently, terms 〈CΛ
m,

d

dξ
CΛ

n 〉 are obtained as:

〈
CΛ

m,
dCΛ

n

dξ

〉
= 2(n− 1 + Λ)

〈
CΛ

m, CΛ
n−1

〉
+

〈
CΛ

m,
dCΛ

n−2

dξ

〉
. (28)

Finally, we will need to use the following formula
(

dCΛ
n

dξ

)
(ξ) = 2ΛCΛ+1

n−1 (ξ), (29)

which is essential for the boundary conditions;, i.e., to express the
continuity of the field derivative at the interfaces ξ = 1 and ξ = −1.
From Eq. (29), we obtain:





(
dCΛ

n

dξ

)
(ξ = 1) = 2ΛCΛ+1

n−1 (1),
(

dCΛ
n

dξ

)
(ξ = −1) = 2ΛCΛ+1

n−1 (−1) = 2Λ(−1)n−1CΛ+1
n−1 (1).

(30)
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4. THE PLANE WAVE IN GEGENBAUER POLYNO-
MIALS BASIS AND BOUNDARY CONDITIONS IN THE
Y DIRECTION: S-MATRIX ALGORITHM

Usually when solving problems of diffraction from lamellar gratings,
with modal methods, one follows roughly the main steps consisting
in (i) solving Maxwell’s equations through an eigenvalue problem in
the incidence, the transmittance and the grating regions, (ii) writing
the appropriate boundary conditions (TE or TM) and (iii) solving
the resulting algebraic system through the S-matrix algorithm for
example. Except for the original Fourier Modal Method (FMM) where
the solutions in the homogeneous media are given by the classical
Rayleigh expansions, for the other modal approaches, it is necessary
to solve numerically at least one eigenvalue problem [12]. This can
lead to numerical difficulties if one is dealing with normal incidence
or the Littrow configuration where some eigenvalues are degenerate
which make it difficult to associate them with the appropriate orders.
This problem has been first encountered with the C-method [6] and
has been solved by simply replacing propagating plane waves by their
expressions in the new modal basis. For the sake of completeness
we give, in the following, the expressions of these waves in terms of
Gegenbauer polynomials. Let us consider the x dependence of the
function describing a plane wave:

Xm(x) = eikαmx. (31)

Let Xs
m(x) be the restriction of Xm(x) to the interval Ωs = [a, b] and

ξ be the reduced variable in the interval [−1, 1] defined as follow:

x =
b− a

2
ξ +

b + a

2
. (32)

If we set
ε =

b− a

2
and δ =

b + a

2
, (33)

then

Xs
m(ξ) = eikαmδeikαmεξ =

M∑

n=0

BΩs
nm,ΛCΛ

n (ξ), (34)

with

BΩs
nm,Λ =

eikαmδ

hΛ
n

∫ 1

−1
(1− ξ2)Λ−

1
2 CΛ

n (ξ)eikαmξdξ. (35)

Since Fourier integrals of Gegenbauer polynomials can be expressed in
terms of Bessel functions, this integral can be finally expressed under
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the form:

BΩs
nm,Λ = Γ(Λ)

(
2

kαmε

)Λ

in(n + Λ)Jn+Λ(kαmε)eikαmδ. (36)

Remark that, in the case of αm = 0, the orthogonal properties of
Gegenbauer polynomials can be used. The numerical resolution of the
wave equation, in a medium l defined by a refractive index function
νl(x), gives [1 : Nmax] eigenvectors denoted by

Ψl
p =

[
al,i

[1 : N−2],p

]
i∈[1 : NΩ]

. (37)

In this nomenclature, i is referred to the subinterval Ωi; i.e.:

al,i
[1 : N−2],p =

[
al,i,j=1

[1 : N−2],p al,i,j=2
[1 : N−2],p . . . al,i,j=Ni

[1 : N−2],p

]t
. (38)

The matrix of the eigenvectors Ψl has consequently the following
form:

Ψl =
[
Ψl

p

]
p∈[1 : Nmax]

. (39)

The second components needed for boundary conditions in y direction,
i.e., Ex in TM polarization and Hx in TE polarization are represented
by the following vector Φl

p:

Φl
p =

[
βl

p

ηi
al,i

[1 : N−2], p

]

i∈[1 : NΩ]

. (40)

According to the exp(−ikβl
py) dependence and in order to satisfy the

outgoing Summerfeld condition, the root of eigenvalues βl
p are sorted

such that: {
βl

p

}
= U+ ∪ U− (41)

with

U+ =
{

βl
p — βl

p ∈ R+ or
(
βl

p ∈ C and =(βl
p) < 0

)}
, (42a)

U− =
{

βl
p — βl

p ∈ R− or
(
βl

p ∈ C and =(βl
p) > 0

)}
. (42b)

The eigenvalues belonging to U+ (resp U−) and their corresponding
eigenvectors are affected by the subscript + (resp −). According to
this convention, the S matrix of the interface separating the media l
and l + 1 has the following form:

Sl =

[
Ψl

+ −Ψl+1
−

Φl
+ −Φl+1

−

]−1 [
Ψl+1

+ −Ψl−
Φl+1

+ −Φl−

]
. (43)



Progress In Electromagnetics Research, Vol. 133, 2013 27

5. NUMERICAL RESULTS AND DISCUSSION

In order to discuss the issue of stability of the MMGE we chose
a case known to be rather difficult for modal methods: a highly
conducting lamellar grating with the following parameters: ν1 = 1,
ν21 = 1 − 40i, ν22 = 1, ν3 = ν21, h = 0.4λ, d = 1.2361λ, f = 0.57,
and θ = arcsin(λ/2d). We give, as an example, the R−1 efficiency
computed via the classical MMGE (that we will designate MMGE1
from now on) without subdividing the two homogeneous regions Ω1/2,
i.e., N1 = N2 = 1. For a shake of fluidity these results are given for
only one value of Λ(Λ = 0.5). Nevertheless, the conclusions deduced
from this study still valid for any value of Λ. Figure 2 summarizes
the results for both TE and TM polarizations as the total number of
polynomials N is varied.

As can be seen, the MMGE1 witnesses instabilities as the number
of polynomials is increased regardless of the polarization. To overcome
this problem, it has been proposed [10] to subdivide the subintervals
Ωi into layers. The upper part of the Table 1 contains the results
when each homogeneous subinterval is subdivided into four layers
(N1 = N2 = 4).

The gain in stability is clearly established. Nevertheless, in the
case of MMGE1 with subdivisions, one can notice that the size of the
matrices increases too rapidly in comparison with the former case; i.e.,

0 20 40 60 80 100

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Nmax

R

 

 

TE

TM

-1

Figure 2. Minus-first order reflected efficiency R−1 of highly
conductive metal in TE and TM polarizations. Instability of the results
obtained by MMGE1 for N1 = N2 = 1.
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Table 1. Minus-first order reflected efficiency R−1 of highly conductive
metal in TE and TM polarizations. Comparison between the results
obtained by MMGE1 for N1 = N2 = 4 and those obtained by MMGE2
for N1 = N2 = 1.

MMGE1
N Nmax TE polarization TM polarization
4 16 0.67443 0.95306
8 48 0.62024 0.52578
12 80 0.60925 0.78212
16 112 0.60875 0.79040
20 144 0.60875 0.79057
24 176 0.60875 0.79057

MMGE2
N Nmax TE polarization TM polarization
16 28 0.61503 0.58047
32 60 0.60873 0.79048
36 68 0.60875 0.79056
40 76 0.60875 0.79057
44 84 0.60875 0.79057
48 92 0.60875 0.79057

MMGE1 without subdivisions. This can be a serious drawback since
the eigenvalue problem is the most time consuming step in the MMGE
approach. The current version of the MMGE (MMGE2) removes this
disadvantage. The results obtained by the MMGE2 are presented in
the lower part of the Table 1 and show a remarkable stability. Under
TE polarization, the forth digit of R−1 = 0.6087 is stabilized as soon
as Nmax reaches 60 while it is necessary to use Nmax = 112 in order
to have the same result with the MMGE1 (N1 = N2 = 4). Under
TM polarization, the same behavior is observed on R−1 = 0.7905 as
soon as Nmax reaches 76; while it is necessary to use Nmax = 144 with
the MMGE1. Thus with the new implementation of the MMGE one
not only gains in stability but lowers the computational cost by using
smaller matrices.

In order to highlight how striking the improvement of convergence
brought by the MMGE is, we present in Figures 3(a) and 3(b) a
comparison between the results obtained by the Fourier Modal Method
and MMGE2 for three arbitrary values of Λ: Λ = 0.0005, 0.5 and 1.
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Figure 3. Minus-first order reflected efficiency of highly conductive
metal obtained by MMGE2 in (a) TE and (b) TM polarizations.
Comparison with Fourier modal method.

For that purpose, we introduced the error function:

ζ(Nmax) = log10 | 1−
R−1(Nmax −

∑NΩ
i=1 Ni)

R−1(Nmax)
|, (44)

that measures the relative variation of the efficiency.
After this discussion on the stability, let us turn to the study of

the influence of the parameter Λ in the MMGE2 implementation. It is
of fundamental importance to notice that this parameter acts through
the weighting function w(ξ), also known as the density function, by
introducing the measure (1 − ξ2)Λ−1/2dξ in the integral of the inner
product. The density increases or decreases in the vicinity of ξ = ±1
depending on the value of Λ. When Λ is close to zero, it is easy to see
that the density increases around ξ = ±1; and in this case Gegenbauer
polynomials are similar to Chebychev ones. The particular case of
Λ = 0.5, which, corresponds to Legendre polynomials, involves an
equipartition on the interval [−1, 1]. This density decreases around
ξ = ±1 when Λ is greater than 0.5. All this, is from a theoretical
point of view. In practice, it is reasonable to think, that for a given
grating problem at least one optimal value of Λ may exist that allows
describing the field at best. Indeed if we look to Tables 2 and 3, we find
that the convergence is slightly improved in the case of TM polarization
for Λ = 0.45 while Λ = 0.5 seems to be the best value in the case of
TE polarization.

Other numerical investigations (not reported here) concerning the
filling factor, the dielectric permittivity and the angle of incidence did
not allow us to draw a general rule about the choice of Λ. All we can
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Figure 4. Minus-first order reflected efficiency of a metallic
lamellar grating with respect to the groove width in TM polarization.
Numerical parameters: θ = 30◦, ν3 = ν22 = 10i, ν1 = ν21 = 1,
d = h = 0.5µm, λ = 0.6328µm, Nmax = 20.

Table 2. Minus-first order reflected efficiency obtained by MMGE2 of
highly conductive metal in TE polarization. Influence of the parameter
Λ in the convergence of the results.

TE polarization
Nmax N Λ = 5e− 4 Λ = 0.15 Λ = 0.25 Λ = 0.45 Λ = 0.5
50 27 0.60854 0.60858 0.60863 0.60877 0.60882
54 29 0.60865 0.60866 0.60868 0.60875 0.60877
58 31 0.60870 0.60871 0.60871 0.60874 0.60875
62 33 0.60873 0.60873 0.60873 0.60874 0.60875
66 35 0.60874 0.60874 0.60874 0.60874 0.60875
70 37 0.60874 0.60874 0.60874 0.60874 0.60875
74 39 0.60874 0.60874 0.60874 0.60874 0.60875
78 41 0.60874 0.60874 0.60874 0.60875 0.60875
82 43 0.60874 0.60874 0.60874 0.60875 0.60875
86 45 0.60874 0.60874 0.60874 0.60875 0.60875
90 47 0.60875 0.60875 0.60875 0.60875 0.60875
94 49 0.60875 0.60875 0.60875 0.60875 0.60875
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Table 3. Minus-first order reflected efficiency obtained by MMGE2 of
highly conductive metal in TM polarization. Influence of the parameter
Λ in the convergence of the results.

TM polarization
Nmax N Λ = 5e− 4 Λ = 0.15 Λ = 0.25 Λ = 0.45 Λ = 0.5
50 27 0.79273 0.79229 7.9178 0.79023 0.78972
54 29 0.79164 0.79149 7.9128 0.79054 0.79028
58 31 0.79107 0.79102 7.9094 0.79060 0.79048
62 33 0.79079 0.79078 7.9075 0.79060 0.79054
66 35 0.79067 0.79067 7.9065 0.79059 0.79056
70 37 0.79061 0.79061 7.9061 0.79058 0.79057
74 39 0.79059 0.79059 7.9059 0.79058 0.79057
78 41 0.79058 0.79058 7.9058 0.79058 0.79057
82 43 0.79058 0.79058 7.9058 0.79058 0.79057
86 45 0.79058 0.79058 7.9058 0.79058 0.79057
90 47 0.79058 0.79058 7.9058 0.79058 0.79058
94 49 0.79058 0.79058 7.9058 0.79058 0.79058

assert is that the extreme values of the interval [0, 0.5] are far from
being the optimal in certain cases.

Finally, we test the stability of our approach over a grating
configuration that posed numerical problems to the FMM [13] and
for which solutions have been proposed by some authors [14, 15]. It
consists of a grating with a relative dielectric permittivity equal to
−100 and all the other parameters are given in Figure 4.

The minus-first reflected order is drawn versus the groove width.
It is remarkable to see that this curve is obtained by Nmax as small as
20 without any instability.

6. CONCLUSION
In the present work, the modal method by Gegenbauer polynomials
expansions has been improved by getting rid of undesirable
instabilities. These ones have been shown to be directly linked to
the computation of the Gegenbauer polynomials through a series sum.
The introduction of a suitable weighting function in the inner product
gives an additional degree of freedom that allows for stable and efficient
evaluation of this latter. Thus the current version of the MMGE is
very stable, accurate and converges very rapidly. It clearly extends the
domain of action of modal methods with outstanding performances.
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APPENDIX A. AN EXAMPLE OF THE MATRICES
CONSTRUCTION IN THE CASE OF TWO MEDIA Ω1

AND Ω2

For the both media, the resolution of the wave equation leads to:[
LΩ1

[N−2]×[N ] 0
0 LΩ2

[N−2]×[N ]

] [
aΩ1

[1 : N ],p

aΩ2

[1 : N ],p

]

= β2
p

[
GΩ1

[N−2]×[N ] 0
0 GΩ2

[N−2]×[N ]

] [
aΩ1

[1 : N ],p

aΩ2

[1 : N ],p

]
. (A1)

By using the boundary conditions of Eqs. (4), (5) and (6), the
expansion coefficients of highest orders aΩ1

(N−1),p, aΩ1
N,p, aΩ2

(N−1),p and

aΩ2
N,p are expressed in terms of the coefficients of lower orders. For that

purpose let us set:

TΩi

[n](x0, κ) = κ




[
bΩi

[n](x0)
]

[
dbΩi

[n]

dx

]

x0


 . (A2)

Eqs. (4), (5) and (6) lead to
aΩ1

[N−1,N ],p

aΩ2

[N−1,N ],p


 = T


aΩ1

[1 : N−2],p

aΩ2

[1 : N−2],p


 , (A3)

where the matrix T is defined as follows:

T = −

TΩ1

[N−1,N ](0, 1) −TΩ2

[N−1,N ](0, 1)

TΩ1

[N−1,N ](fd− d, τ) −TΩ2

[N−1,N ](fd, 1)



−1


TΩ1

[1 : N−2](0, 1) −TΩ2

[1 : N−2](0, 1)

TΩ1

[1 : N−2](fd− d, τ) −TΩ2

[1 : N−2](fd, 1)


 . (A4)

τ = eik sin θd is the pseudo-periodic factor and f denoted the
filling factor of the lamellar grating. Therefore the vector[
aΩ1

[1 : N ],p, aΩ2

[1 : N ],p

]t
of Eq. (A1) can be expressed in term of the

vector
[
aΩ1

[1 : N−2],p, aΩ2

[1 : N−2],p

]t
with the following matrix relation:

[
aΩ1

[1 : N ],p

aΩ2

[1 : N ],p

]
= C

[
aΩ1

[1 : N−2],p

aΩ2

[1 : N−2],p

]
. (A5)
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The matrix C can be written in the following concise form:

C =
[
C11 C12

C21 C22

]
. (A6)

The matrices Cii of N × (N − 2) size, describe the coupling between
higher and lower coefficients of a same subinterval namely C11 in the
subinterval Ω1 and C22 in Ω2:

C11 =




1 0 . . . 0

0 1
. . . 0

... . . .
. . .

...
0 0 . . . 1

T1,1 T1,2 . . . T1,N−2

T2,1 T2,2 . . . T2,N−2




, (A7)

C22 =




1 0 . . . 0

0 1
. . . 0

... . . .
. . .

...
0 0 . . . 1

T3,N−2+1 T3,N−2+2 . . . T3,2(N−2)

T4,N−2+1 T4,N−2+2 . . . T4,2(N−2)




, (A8)

whereas Cij , i 6= j of N × (N − 2) size take onto account the
interconnection between the subintervals:

C12 =




0 0 . . . 0

0 0
. . . 0

... . . .
. . .

...
0 0 . . . 0

T1,N−2+1 T1,N−2+2 . . . T1,2(N−2)

T2,N−2+1 T2,N−2+2 . . . T2,2(N−2)




, (A9)

C21 =




0 0 . . . 0

0 0
. . . 0

... . . .
. . .

...
0 0 . . . 0

T3,1 T3,2 . . . T3,N−2

T4,1 T4,2 . . . T4,N−2




. (A10)
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It is easy to show that
[
GΩ1

[N−2]×[N ] 0
0 GΩ2

[N−2]×[N ]

][
C11 C12

C21 C22

]

=

[
GΩ1

[N−2]×[N−2] 0
0 GΩ2

[N−2]×[N−2]

]
, (A11)

consequently, Eq. (A1) is written as follows:
[
LΩ1

[N−2]×[N ] 0
0 LΩ2

[N−2]×[N ]

][
C11 C12

C21 C22

] [
aΩ1

[1 : N−2],p

aΩ2

[1 : N−2],p

]

= β2
p

[
GΩ1

[N−2]×[N−2] 0
0 GΩ2

[N−2]×[N−2]

][
aΩ1

[1 : N−2],p

aΩ2

[1 : N−2],p

]
. (A12)

Finally in the case of two media, we are led to the compu-
tation of the eigenvalues β2

p and their associated eigenvectors[
aΩ1

[1 : N−2],p, aΩ2

[1 : N−2],p

]t
of a matrix with dimension Nmax = (2(N −

2))× (2(N − 2)).
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