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We give a necessary and sufficient condition for the convergence in distribution of a conditioned Galton-Watson tree to Kesten's tree. This yields elementary proofs of Kesten's result as well as other known results on local limits of conditioned Galton-Watson trees. We then apply this condition to get new results in the critical case (with a general offspring distribution) and in the sub-critical cases (with a generic offspring distribution) on the limit in distribution of a Galton-Watson tree conditioned on having a large number of individuals with out-degree in a given set.

Introduction

Galton-Watson (GW) processes constitute a very simple model of population growth where all individuals give birth independently of each others to a random number of children with the same offspring distribution p. This population growth can be described by a genealogical tree τ that we call the GW tree. It is well-known that in the sub-critical case (the mean number of children of a single individual is strictly less than 1) and in the (non-degenerate) critical case (the mean number of children of an individual is 1) the population becomes a.s. extinct. However, one can define in these two cases a tree τ * with an infinite spine, that we call Kesten's tree in this paper, which can be seen as the tree conditioned on non-extinction, defined as the local limit in distribution of the tree τ conditioned to reach height n, when n tends to infinity, see Kesten [16]. This result is recalled here in Section 2.4. The tree τ * happens to be the size-biased tree already studied earlier, see e.g. Hawkes [START_REF] Hawkes | Trees generated by a simple branching process[END_REF], Joffe and Waugh [START_REF] Joffe | Exact distributions of kin numbers in a Galton-Watson process[END_REF] as well as Lyons, Pemantle and Peres [START_REF] Lyons | Conceptual proofs of L logL criteria for mean behavior of branching processes[END_REF]. It also appears (for GW processes only) as a Q-process and can be viewed as a GW tree with immigration, see Athreya and Ney [START_REF] Athreya | Branching processes[END_REF]. We want to stress that we only consider here local limits i.e. we look at the trees up to a fixed height h. Other limits can be considered such as scaling limits of conditioned GW trees (see [START_REF] Duquesne | A limit theorem for the contour process of conditioned Galton-Watson trees[END_REF][START_REF] Kortchemski | Limit theorems for conditioned non-generic Galton-Watson trees[END_REF][START_REF] Rizzolo | Scaling limits of Markov branching trees and Galton-Watson trees conditioned on the number of vertices with out-degree in a given set[END_REF]) but this is not the purpose here.

It is also known that, at least in the critical case, other conditionings such as conditioning by the total progeny, see Kennedy [START_REF] Kennedy | The Galton-Watson process conditioned on the total progeny[END_REF] and Geiger and Kaufmann [START_REF] Geiger | The shape of large Galton-Watson trees with possibly infinite variance[END_REF], or by the number of leaves, see Curien and Kortchemski [START_REF] Curien | Random non-crossing plane configurations: a conditioned Galton-Watson tree approach[END_REF], lead to the same local limit in distribution. See also the survey from Janson [START_REF] Janson | Simply generated trees, conditioned Galton-Watson trees, random allocations and condensation[END_REF]. For all those cases, the conditioning event can be written as {τ ∈ A n } with A n of the form:

A n = {t, A(t) ≥ n} or A n = {t, A(t) = n},
where A : t → A(t) is a functional defined on the set of trees and satisfying an additive property, see Equation [START_REF] Geiger | The shape of large Galton-Watson trees with possibly infinite variance[END_REF]. The main result of this paper, see Theorem 3.1 for a precise statement, unifies all the previous conditionings and gives a necessary and sufficient condition to obtain Kesten's tree as a limit. In the non-degenerate critical case, if A satisfies the additive property [START_REF] Geiger | The shape of large Galton-Watson trees with possibly infinite variance[END_REF] , then the following two statements are equivalent (with some additional aperiodic condition for the converse):

• lim n→+∞ P(τ ∈ A n+1 )/P(τ

∈ A n ) = 1,
• The distribution of τ conditionally on {τ ∈ A n } converges to the distribution of Kesten's tree τ * . Using this result, we give elementary proofs for the convergence in distribution to Kesten's tree τ * of the GW tree conditioned on:

(i) Extinction after or at a large time (sub-critical and critical case), with A(t) = H(t) the height of the tree t and conditioning event {H(τ ) = n} or {H(τ ) ≥ n}. See Sections 4.1 and 4.2. (ii) Large total population size (critical case), with A(t) = Card (t) the total size of the tree and conditioning event {Card (τ ) = n} or {Card (τ ) ≥ n}. See Section 4.3. (iii) Large number of leaves (critical case), with A(t) = L 0 (t) the total number of leaves of t and conditioning event {L 0 (τ ) = n} or {L 0 (τ ) ≥ n}. See Section 4.4.

Let us mention that assertion (i) with the conditioning event {H(τ ) ≥ n} was first proved by Kesten [16] in the critical case under a finite variance condition, and in [START_REF] Janson | Simply generated trees, conditioned Galton-Watson trees, random allocations and condensation[END_REF], Theorem 7.1, in full generality. Property (ii) is also proved in full generality in [START_REF] Janson | Simply generated trees, conditioned Galton-Watson trees, random allocations and condensation[END_REF], Theorem 7.1 (the sub-critical case is also studied in [START_REF] Janson | Simply generated trees, conditioned Galton-Watson trees, random allocations and condensation[END_REF], see the discussion below). Finally, assertion (iii) with the conditioning event {L 0 (τ ) = n} has been proved by Curien and Kortchemski [START_REF] Curien | Random non-crossing plane configurations: a conditioned Galton-Watson tree approach[END_REF], Theorem 4.1, in the critical and finite variance case only.

In fact the conditioning on the large total population size or on the large number of leaves are particular cases of conditioning trees on large number of individuals with a given number of children. This corresponds to the functional A(t) = L A (t) which gives the total number of individuals of the tree t whose number of children belongs to a given set A of nonnegative integers. Such conditioning has already been studied by Rizzolo [START_REF] Rizzolo | Scaling limits of Markov branching trees and Galton-Watson trees conditioned on the number of vertices with out-degree in a given set[END_REF], see also Mimami [20], but for global scaling limits and not local limits. We obtain the convergence in distribution to Kesten's tree τ * of a critical GW tree without any additional moment condition on the offspring distribution, conditioned on:

(iv) Large number of individuals with number of children in a given set A (critical case), with A(t) = L A (t) and conditioning event {L A (τ ) = n} or {L A (τ ) ≥ n}. Here, we use the fact that L A (τ ) is distributed according to the total progeny of another critical GW tree, which allows to use (ii), see [START_REF] Mimami | On the number of vertices with a given degree in a Galton-Watson tree[END_REF][START_REF] Rizzolo | Scaling limits of Markov branching trees and Galton-Watson trees conditioned on the number of vertices with out-degree in a given set[END_REF]. Let us remark that the total progeny (A = N), the number of leaves (A = {0}) and the number of internal nodes (A = N \ {0}) are particular cases of this conditioning.

The main ingredients in the proof for (ii), (iii) and (iv) are Dwass formula for the representation of the total progeny of a GW tree using random walks, and the strong ration theorem for these random walks which has some links with the local sub-exponential property of the total progeny of GW trees, see [START_REF] Asmussen | Asymptotics for sums of random variables with local subexponential behaviour[END_REF].

We then study the subcritical case and define a one-parameter family (p θ , θ ∈ I) of distributions on the set of integers such that the GW tree τ associated with the offspring distribution p and the GW tree τ θ associated with the offspring distribution p θ have the same conditional distributions given L A , see Proposition 5.5. This generalizes Kennedy's transformation [START_REF] Kennedy | The Galton-Watson process conditioned on the total progeny[END_REF] concerning the total progeny, and the pruning of Abraham, Delmas and He [START_REF] Abraham | Pruning Galton-Watson trees and tree-valued Markov processes[END_REF] concerning the number of leaves. According to [START_REF] Janson | Simply generated trees, conditioned Galton-Watson trees, random allocations and condensation[END_REF], we say that p is generic (with respect to A) if there exists θ c such that p θc is critical. We then immediately deduce, see Corollary 5.7, that if p is generic, then the distribution of τ conditionally on {L A (τ ) = n} (in the aperiodic case) or on {L A (τ ) ≥ n} converges to the distribution of the Kesten's tree τ * θc associated with the critical offspring distribution p θc . When there is no such θ c , then a condensation phenomenon may appear: Jonsson and Stefansson [START_REF] Jonsson | Condensation in nongeneric trees[END_REF] or [START_REF] Janson | Simply generated trees, conditioned Galton-Watson trees, random allocations and condensation[END_REF] proved for the conditioning on the total progeny that the limiting tree in that case is not Kesten's tree but a tree with a unique node with an infinite number of offsprings. We shall investigate this condensation phenomenon for other conditionings in a forthcoming paper [START_REF] Abraham | Local limits of conditioned Galton-Watson trees II: the condensation case[END_REF]. Let us add that an example is given in [START_REF] Abraham | Local limits of conditioned Galton-Watson trees II: the condensation case[END_REF] of an offspring distribution which is generic with respect to a set A and non-generic with respect to another set. Hence, it seems difficult to give a sufficient condition for an offspring distribution to be generic (i.e. to have existence of the critical value θ c ).

Finally, we consider another conditioning which does not enter in the framework of Theorem 3.1 : conditioning on the size on the n-th generation. However, we can adapt the proof of Theorem 3.1 to get an analogous result in that case, see Proposition 6.1. We apply this result to a critical geometric offspring distribution where explicit computations can be performed to prove that the corresponding GW tree conditioned on the n-th generation being positive but smaller that n 2 converges in distribution to Kesten's tree. Using results on local limit of GW processes from Nagaev and Vakhtel [START_REF] Nagaev | Limit theorems for probabilities of large deviations of a Galton-Watson process[END_REF][START_REF] Nagaev | On the local limit theorem for a critical Galton-Watson process[END_REF], this result can be extended to very general critical offspring distributions.

The paper is organized as follows. In Section 2, we recall the framework we use for discrete trees and define the GW tree τ and Kesten's tree τ * associated with offspring distribution p. In Section 3, we state and prove the necessary and sufficient condition for convergence in distribution of the conditioned tree to Kesten's tree. We apply this result in Section 4 to recover the classical results on critical conditioned GW trees and we study in Section 5 the case of the number of individuals with out-degree in a given set for the critical and sub-critical case. Finally, we study in Section 6 the conditioning on the size of the n-th generation of the GW tree.

Technical background on GW trees

2.1. First notations. We denote by N = {0, 1, 2, . . .} the set of non-negative integers and by N * = {1, 2, . . .} the set of positive integers.

If K is a subset of N * , we call the span of K the greatest common divisor of K. If X is an integer-valued random variable, we call the span of X the span of {n > 0, P(X = n) > 0} the restriction to N * of its support.

2.2.

The set of discrete trees. We recall Neveu's formalism [START_REF] Neveu | Arbres et processus de Galton-Watson[END_REF] for ordered rooted trees. We let

U = n≥0 (N * ) n
be the set of finite sequences of positive integers with the convention (N * ) 0 = {∅}. For u ∈ U let |u| be the length or generation of u defined as the integer n such that u ∈ (N * ) n . If u and v are two sequences of U , we denote by uv the concatenation of the two sequences, with the convention that uv = u if v = ∅ and uv = v if u = ∅. The set of ancestors of u is the set:

(1) A u = {v ∈ U ; there exists w ∈ U , w = ∅, such that u = vw}.

The most recent common ancestor of a subset s of U , denoted by M(s), is the unique element u of u∈s A u with maximal length |u|.

For u, v ∈ U , we denote by u < v the lexicographic order on U i.e. u < v if u ∈ A v or, if we set w = M(u, v), then u = wiu ′ and v = wjv ′ for some i, j ∈ N * with i < j.

A tree t is a subset of U that satisfies:

• ∅ ∈ t, • If u ∈ t, then A u ⊂ t.
• For every u ∈ t, there exists a non-negative integer k u (t) such that, for every positive integer i, ui ∈ t iff 1 ≤ i ≤ k u (t). The integer k u (t) represents the number of offspring of the vertex u ∈ t. The vertex u ∈ t is called a leaf if k u (t) = 0. The vertex ∅ is called the root of t. Let us remark that, for a tree t, we have

(2) u∈t k u = Card (t) -1.
Let t be a tree. The set of its leaves is L 0 (t) = {u ∈ t; k u (t) = 0}, its height is defined by

H(t) = sup{|u|, u ∈ t}
and can be infinite. For u ∈ t, we define the sub-tree S u (t) of t "above" u as:

S u (t) = {v ∈ U , uv ∈ t}.
We denote by T the set of trees, by

T 0 = {t ∈ T; Card (t) < +∞} the subset of finite trees, by T (h) = {t ∈ T; H(t)
≤ h} the subset of trees with height at most h ∈ N, and by

T 1 = {t ∈ T; lim n→+∞ |M({u ∈ t; |u| = n})| = +∞}
the subset of trees with a unique infinite spine. Notice that T 0 and T (h) are countable and T 1 is uncountable as the set of infinite sequences of positive integers can be embedded in T 1 . For h ∈ N the restriction function r h from T to T is defined by:

r h (t) = {u ∈ t, |u| ≤ h}.
We endow the set T with the ultrametric distance

d(t, t ′ ) = 2 -max{h∈N, r h (t)=r h (t ′ )} .
A sequence (t n , n ∈ N) of trees converges to a tree t with respect to the distance d if and only if, for every h ∈ N,

r h (t n ) = r h (t)
for n large enough.

The Borel σ-field associated with the distance d is the smallest σ-field containing the singletons for which the restrictions functions (r h , h ∈ N) are measurable. With this distance, the restriction functions are contractant. Since T 0 is dense in T and (T, d) is complete, we get that (T, d) is a Polish metric space. Consider the closed ball

B(t, 2 -h ) = {t ′ ∈ T; d(t, t ′ ) ≤ 2 -h
} for some t ∈ T and h ∈ N and notice that:

B(t, 2 -h ) = r -1 h ({r h (t)}).
Since the distance is ultrametric, the closed balls are open and the open balls are closed, and the intersection of two balls is either empty or one of them. We deduce that the family ((r -1 h ({t}), t ∈ T (h) ), h ∈ N) is a π-system, and Theorem 2.3 in [START_REF] Billingsley | Convergence of probability measures[END_REF] implies that this family is convergence determining for the convergence in distribution. Let (T n , n ∈ N * ) and T be T-valued random variables. We denote by dist (T ) the distribution of the random variable T (which is uniquely determined by the sequence of distributions of r h (T ) for every h ≥ 0), and we denote dist

(T n ) -→ n→+∞ dist (T )
for the convergence in distribution of the sequence (T n , n ∈ N * ) to T . We deduce from the portmanteau theorem that the sequence (T n , n ∈ N * ) converge in distribution to T if and only if for all h ∈ N, t ∈ T (h) :

lim n→+∞ P(r h (T n ) = t) = P(r h (T ) = t).
For t ∈ T and u ∈ t, set k u (t) = -1. The convergence in distribution of the sequence (T n , n ∈ N * ) to T is also equivalent to the finite dimensional convergences in distribution of the sequence ((k

u 1 (T n ), . . . , k um (T n )), n ∈ N * ) to (k u 1 (T ), . . . , k um (T )) for all m ∈ N * and u 1 , . . . , u m ∈ U .
As we shall only consider T 0 -valued random variables that converge in distribution to a T 1 -valued random variable, we shall give an alternative characterization of convergence in distribution that holds for this restriction. To present this result, we introduce some notations. If t, s ∈ T and x ∈ L 0 (t) we denote by:

t ⊛ (s, x) = {u ∈ t} ∪ {xv, v ∈ s}
the tree obtained by grafting the tree s on the leaf x of the tree t. For every t ∈ T and every x ∈ L 0 (t), we shall consider the set of trees obtained by grafting a tree on the leaf x of t:

T(t, x) = {t ⊛ (s, x), s ∈ T}.
It is easy to see that T(t, x) is closed. It is also open, as for all s ∈ T(t, x) we have that B(s, 2 -H(t)-1 ) ⊂ T(t, x).

Moreover, notice that the set T 1 is a Borel subset of the set T.

Lemma 2.1. Let (T n , n ∈ N * ) and T be T-valued random variables which belong a.s. to T 0 T 1 . The sequence (T n , n ∈ N * ) converges in distribution to T if and only if for every t ∈ T 0 and every x ∈ L 0 (t), we have:

(3) lim n→+∞ P(T n ∈ T(t, x)) = P(T ∈ T(t, x)) and lim n→+∞ P(T n = t) = P(T = t).
Proof. The subclass F = {T(t, x), t ∈ T 0 , x ∈ L 0 (t)} ∪ {{t}, t ∈ T 0 } of the Borel sets on T 0 T 1 forms a π-system since we have

T(t 1 , x 1 ) ∩ T(t 2 , x 2 ) =          T(t 1 , x 1 ) if t 1 ∈ T(t 2 , x 2 ), T(t 2 , x 2 ) if t 2 ∈ T(t 1 , x 1 ), {t 1 } if t 1 = t 2 and x 1 = x 2 , ∅
in the other cases.

For every h ∈ N and every t ∈ T (h) , we have that t ′ belongs to r -1 h ({t}) T 1 if and only if t ′ belongs to some T(s, x) where x is a leaf of t such that |x| = h and s belongs to r -1 h ({t}) T 0 such that x is also a leaf of s. Since T 0 is countable, we deduce that F generates the Borel σ-field on T 0 ∪ T 1 . In particular F is a separating class on T 0 T 1 .

Since A ∈ F is closed and open as well, according to Theorem 2.3 of [START_REF] Billingsley | Convergence of probability measures[END_REF], to prove that the family F is a convergence determining class, it is enough to check that for all t ∈ T 0 T 1 and h ∈ N, there exists A ∈ F such that:

(4) t ∈ A ⊂ B(t, 2 -h ).
If t ∈ T 0 , this is clear as {t} = B(t, 2 -h ) for all h > H(t). If t ∈ T 1 , for all s ∈ T 0 and x ∈ L 0 (s) such that t ∈ T(s, x), we have t ∈ T(s, x) ⊂ B(t, 2 -|x| ). Since we can find such a s and x such that |x| is arbitrary large, we deduce that (4) is satisfied. This proves that the family F is a convergence determining class on T 0 T 1 . Since, for t ∈ T 0 and x ∈ L 0 (t) the sets T(t, x) and {t} are open and closed, we deduce from the portmanteau Theorem that if (T n , n ∈ N * ) converges in distribution to T , then (3) holds for every t ∈ T 0 and every x ∈ L 0 (t).

2.3. GW trees. Let p = (p(n), n ∈ N) be a probability distribution on the set of the nonnegative integers. We assume that [START_REF] Billingsley | Convergence of probability measures[END_REF] p(0) > 0, p(0) + p(1) < 1, and µ :=

+∞ n=0 np(n) < +∞.
A T-valued random variable τ is a Galton-Watson (GW) tree with offspring distribution p if the distribution of k ∅ (τ ) is p and for n ∈ N * , conditionally on {k ∅ (τ ) = n}, the sub-trees (S 1 (τ ), S 2 (τ ), . . . , S n (τ )) are independent and distributed as the original tree τ . Equivalently, for every h ∈ N * and every t ∈ T (h) , we have

P(r h (τ ) = t) = u∈r h-1 (t) p(k u (t)).
In particular, the restriction of the distribution of τ on the set T 0 is given by:

(6) ∀t ∈ T 0 , P(τ = t) = u∈t p(k u (t)).
The GW tree is called critical (resp. sub-critical, super-critical) if µ = 1 (resp. µ < 1, µ > 1).

2.4.

Conditioning on non-extinction. Let p be an offspring distribution satisfying Assumption (5) with µ ≤ 1 (i.e. the associated GW process is critical or sub-critical). We denote by p * = (p * (n) = np(n)/µ, n ∈ N) the corresponding size-biased distribution.

We define an infinite random tree τ * (the size-biased tree that we call Kesten's tree in this paper), whose distribution is as follows. There exists a unique infinite sequence (V k , k ∈ N * ) of positive integers such that, for every h

∈ N, V 1 • • • V h ∈ τ * , with the convention that V 1 • • • V h = ∅ if h = 0. The joint distribution of (V k , k ∈ N *
) and τ * is determined recursively as follows: for each h ∈ N, conditionally given (V 1 , . . . , V h ) and r h (τ * ), we have:

• The number of children (k v (τ * ), v ∈ τ * , |v| = h) are independent and distributed according to p if v = V 1 • • • V h and according to p * if v = V 1 • • • V h . • Given also the numbers of children (k v (τ * ), v ∈ τ * , |v| = h), the integer V h+1 is uniformly distributed on the set of integers {1, . . . , k V 1 •••V h (τ * )}.
Notice that by construction, τ * ∈ T 1 a.s. Following Kesten [START_REF] Kesten | Subdiffusive behavior of random walk on a random cluster[END_REF], the random tree τ * can be viewed as the tree τ conditioned on non-extinction as:

∀h ∈ N * , ∀t ∈ T (h) , P(r h (τ * ) = t) = lim n→+∞ P(r h (τ ) = t H(τ ) ≥ n).
As a direct consequence we get that for all h ∈ N, t ∈ T (h) , u ∈ t such that |u| = h:

P(r h (τ * ) = t, V 1 • • • V h = u) = µ -h P(r h (τ ) = t),
and for all t ∈ T 0 , x ∈ L 0 (t): [START_REF] Duquesne | A limit theorem for the contour process of conditioned Galton-Watson trees[END_REF] P(τ * ∈ T(t, x)) = µ -|x| P(τ ∈ T(t, x)).

Since, for t ∈ T 0 and x ∈ L 0 (t), P(τ = t) = P(τ ∈ T(t, x), k x (τ ) = 0) = P(τ ∈ T(t, x))p(0), we deduce that:

(8) P(τ * ∈ T(t, x)) = 1 µ |x| p(0) P(τ = t).
Since τ * is in T 1 a.s., this implies that (8) with t ∈ T 0 and x ∈ L 0 (t) characterizes the distribution of τ * .

Main result

Let A be an integer-valued function defined on T which is finite on T 0 and satisfies the following additivity property: there exists an integer-valued function D defined on T such that, for every t ∈ T 0 , every x ∈ L 0 (t) and for every t such that A(t ⊛ ( t, x)) is large enough, ( 9)

A(t ⊛ ( t, x)) = A( t) + D(t, x).
Let n 0 ∈ N ∪ {+∞} be given. We define for all n ∈ N * , the subset of trees

A n = {t ∈ T; A(t) ∈ [n, n + n 0 )}.
Common values of n 0 that will be considered are 1 and +∞.

The following theorem states that the distribution of the GW tree τ conditioned to be in A ∞ , the limit of A n , is distributed as τ * as soon as the probability of A n satisfies some regularity. We denote by dist (τ |τ ∈ A n ) the conditional law of τ given {τ ∈ A n }. Theorem 3.1. Assume that Assumptions (5) and ( 9) hold, that P(τ ∈ A n ) > 0 for n large enough and that one of the two following conditions

• µ = 1 or • µ < 1 and D(t, x) = |x| for all t ∈ T 0 , x ∈ L 0 (t). Then, if [START_REF] Hawkes | Trees generated by a simple branching process[END_REF] lim

n→+∞ P(τ ∈ A n+1 ) P(τ ∈ A n ) = µ,
we have:

dist (τ |τ ∈ A n ) -→ n→+∞ dist (τ * ). Conversely, if dist (τ |τ ∈ A n ) -→ n→+∞ dist (τ *
) and if the span of {D(t, x); t ∈ T 0 and x ∈ L 0 (t)} N * is one, then (10) holds.

Recall that the local convergence in distribution towards τ * is equivalent to

(11) ∀h ∈ N * , ∀t ∈ T (h) , lim n→+∞ P(r h (τ ) = t τ ∈ A n ) = P(r h (τ * ) = t).
Proof. Let us first remark that, as we supposed that µ ≤ 1, we have a.s. τ ∈ T 0 and thus we are in the setting of Lemma 2.1. Using (6), we have for every t ∈ T 0 , x ∈ L 0 (t) and t ∈ T 0 :

P(τ = t ⊛ ( t, x)) = 1 p(0) P(τ = t)P(τ = t).
Let t ∈ T 0 and x ∈ L 0 (t). Then, if n is large enough so that we can apply Equation (9), we get:

P(τ ∈ T(t, x), τ ∈ A n ) = t∈T 0 P(τ = t ⊛ ( t, x))1 {n≤A(t⊛( t,x))<n+n 0 } = 1 p(0) t∈T 0 P(τ = t)P(τ = t)1 {n≤A( t)+D(t,x)<n+n 0 } = 1 p(0) P(τ = t)P(n -D(t, x) ≤ A(τ ) < n + n 0 -D(t, x)) = µ |x| P(τ * ∈ T(t, x))P(τ ∈ A n-D(t,x) ),
where we used [START_REF] Dwass | The total progeny in a branching process and a related random walk[END_REF] for the last equality. Therefore we have ( 12)

P(τ ∈ T(t, x) τ ∈ A n ) = P(τ * ∈ T(t, x)) µ |x| P(τ ∈ A n-D(t,x) ) P(τ ∈ A n ) •
Then, using [START_REF] Hawkes | Trees generated by a simple branching process[END_REF] and that D(t, x) = |x| if µ < 1, we obtain that:

(13) lim n→+∞ P(τ ∈ T(t, x) τ ∈ A n ) = P(τ * ∈ T(t, x)).
For all t ∈ T 0 and all n > A(t), we have

P(τ = t, τ ∈ A n ) = P(τ = t, t ∈ A n ) ≤ 1 {t∈An} = 0
and thus:

P(τ = t τ ∈ A n ) = 0 = P(τ * = t). (14) lim n→+∞ 
We deduce from Lemma 2.1 that (11) holds. Conversely, if (11) holds, then Lemma 2.1 implies that ( 13) and ( 14) hold. The fact that the span of {D(t, x); t ∈ T 0 and x ∈ L 0 (t)} N * is one and (12) imply, with Bezout theorem, that (10) holds.

Examples

4.1. Conditioning on extinction after large time. We give here a simple proof of Kesten's result for the convergence in distribution of a critical or sub-critical GW tree conditioned on non-extinction, see [START_REF] Kesten | Subdiffusive behavior of random walk on a random cluster[END_REF] under a finite variance condition and [START_REF] Janson | Simply generated trees, conditioned Galton-Watson trees, random allocations and condensation[END_REF] for the general case.

Proposition 4.1. Let τ be a critical or sub-critical GW tree with offspring distribution p satisfying Assumption [START_REF] Billingsley | Convergence of probability measures[END_REF]. Then, we have

(15) dist (τ |H(τ ) ≥ n) -→ n→+∞ dist (τ * ).
Proof. Consider A(t) = H(t) and n 0 = +∞ that is A n = {t ∈ T; H(t) ≥ n}. Notice that in this case for a tree t such that H( t) is larger than H(t), we have for every x ∈ L 0 (t) ( 16)

A(t ⊛ ( t, x)) = A( t) + |x|.
Therefore, Condition (9) is satisfied by A.

According to Theorem 3.1, it suffices to prove [START_REF] Kortchemski | Invariance principles for Galton-Watson trees conditioned on the number of leaves[END_REF] 

lim n→+∞ P(H(τ ) ≥ n + 1) P(H(τ ) ≥ n) = µ
to get [START_REF] Kennedy | The Galton-Watson process conditioned on the total progeny[END_REF].

We denote by ϕ the generating function of p and we define recursively ϕ 1 = ϕ and for n ≥ 1, ϕ n+1 = ϕ n • ϕ. As ϕ n is the generating function of the distribution of {u ∈ τ ; |u| = n} the number of individuals at height n, we have P(τ ∈ A n ) = 1ϕ n (0). We also have lim n→+∞ ϕ n (0) = 1 and

lim n→+∞ P(τ ∈ A n+1 ) P(τ ∈ A n ) = lim n→+∞ 1 -ϕ(ϕ n (0)) 1 -ϕ n (0) = ϕ ′ (1) = µ which is (17).
4.2. Conditioning on extinction at large time.

Proposition 4.2. Let τ be a critical or sub-critical GW tree with offspring distribution p satisfying Assumption [START_REF] Billingsley | Convergence of probability measures[END_REF]. Then we have

(18) dist (τ |H(τ ) = n) -→ dist (τ * ).
Proof. We consider A(t) = H(t) with n 0 = 1 that is A n = {t ∈ T; H(t) = n}. Since ( 16) is in force, we get that Condition (9) still holds. Again it suffices to prove ( 19)

lim n→+∞ P(H(τ ) = n + 1) P(H(τ ) = n) = µ
to get [START_REF] Kortchemski | Limit theorems for conditioned non-generic Galton-Watson trees[END_REF]. Recall notation ϕ n introduced in Section 4.1 and that lim n→+∞ ϕ n (0) = 1. We have P(τ ∈ A n ) = ϕ n+1 (0)ϕ n (0) and:

lim n→+∞ P(τ ∈ A n+1 ) P(τ ∈ A n ) = lim n→+∞ 1-ϕ(ϕn(0)) 1-ϕn(0) -1-ϕ 2 (ϕn(0)) 1-ϕn(0) 1 -1-ϕ(ϕn(0)) 1-ϕn(0) = µ -µ 2 1 -µ = µ, which is (19).
4.3. Conditioning on the total population size, critical case. We recover here results from Theorem 7.1 in [START_REF] Janson | Simply generated trees, conditioned Galton-Watson trees, random allocations and condensation[END_REF] on the convergence in distribution of a critical GW tree conditioned on the size of its total progeny to Kesten's tree.

Our proof is based on Dwass formula (see [START_REF] Dwass | The total progeny in a branching process and a related random walk[END_REF]) that we recall now. Let (τ k , k ∈ N * ) be independent GW trees distributed as τ . Set W k = Card (τ k ). Let (X k , k ∈ N * ) be independent integer-valued random variables distributed according to p. For k ∈ N * and n ≥ k, we have: [START_REF] Mimami | On the number of vertices with a given degree in a Galton-Watson tree[END_REF] P(W 1 + . . .

+ W k = n) = k n P(X 1 + . . . + X n = n -k).
We also recall some results on random walks. Let Y be an integrable random variable taking values in Z, such that E[Y ] = 0, P(Y = 0) < 1 and the span of |Y | is 1. We consider the random walk S = (S n , n ∈ N) defined by: ( 21)

S 0 = 0 and S n = n k=1 Y k for n ∈ N * .
Then the random walk S is recurrent. We define the period of S as the span of the set {n > 0, P(S n = 0) > 0}. If S is aperiodic (i.e. has period 1), the strong ratio theorem for recurrent aperiodic random walks, see Theorem T1 p49 of [START_REF] Spitzer | Principles of random walk[END_REF], gives that, for ℓ ∈ Z:

(22) lim n→+∞ P(S n = ℓ) P(S n = 0) = lim n→+∞ P(S n = 0) P(S n+1 = 0) = 1.
If S has period d, then for all k ∈ {1, . . . , d}, there exist j k ∈ Z and n k ∈ N * such that (23) ∀n ≥ n k , P(S nd+k = j k ) > 0.

The strong ratio theorem can then easily be adapted to get that, for ℓ ∈ Z, k ∈ {1, . . . , d}:

(24) lim m→+∞ P(S md+k = ℓd + j k ) P(S md = 0) = 1.
Notice that ( 20) and ( 24) directly imply that the total progeny distribution enjoys the local sub-exponential property, see [START_REF] Asmussen | Asymptotics for sums of random variables with local subexponential behaviour[END_REF].

Proposition 4.3. Let τ be a critical GW tree with offspring distribution p satisfying Assumption [START_REF] Billingsley | Convergence of probability measures[END_REF]. Let d be the span of Card (τ ) -1 (that is the span of the set {k > 0, p(k) > 0}).

Then we have

(25) dist (τ |Card (τ ) = nd + 1) -→ n→+∞ dist (τ * )
and 

(26) dist (τ |Card (τ ) ≥ n) -→ n→+∞ dist (τ * ).
P(Card (τ ) ≥ n) = 1.
Proof of Proposition 4.3. Consider A(t) = Card (t) and n 0 = d. Then we have

A n = {t ∈ T; Card (t) ∈ [n, n + d)}.
We have for every t ∈ T, without any additional assumption, to get [START_REF] Spitzer | Principles of random walk[END_REF]. By the definition of d, a.s. we have A(τ ) ∈ dN + 1. We consider an integer valued random variable X distributed according to p and we set Y = X -1 so that E[Y ] = 0 since we supposed that µ = 1. The random walk defined by [START_REF] Nagaev | Limit theorems for probabilities of large deviations of a Galton-Watson process[END_REF] has period d and we can choose j 1 = -1 in [START_REF] Neveu | Arbres et processus de Galton-Watson[END_REF] as P(Y = -1) > 0. Dwass formula [START_REF] Mimami | On the number of vertices with a given degree in a Galton-Watson tree[END_REF] implies that, for k = ⌊(n -1)/d⌋:

P(τ ∈ A n ) = P(A(τ ) ∈ [n, n + d)) = P(A(τ ) = kd + 1) = 1 kd + 1 P(S kd+1 = -1).
Using [START_REF] Rizzolo | Scaling limits of Markov branching trees and Galton-Watson trees conditioned on the number of vertices with out-degree in a given set[END_REF], we deduce that:

lim n→+∞ P(τ ∈ A n+1 ) P(τ ∈ A n ) = lim k→+∞ P(S (k+1)d+1 = -1) P(S kd+1 = -1) = 1
which readily implies (29).

The second assertion (26) is then a straightforward consequence of (29).

Remark 4.5. Notice that the local limit theorem gives asymptotics for P(S n = -1) when the distribution of X belongs to the domain of attraction of a stable law, see Theorem 4.2.1 of [START_REF] Ibraginov | Independent and stationary sequences of random variables[END_REF] or Theorem 1.10 in [START_REF] Kortchemski | Invariance principles for Galton-Watson trees conditioned on the number of leaves[END_REF]. This gives asymptotics for P(τ ∈ A n ) which in turns allow to recover Condition [START_REF] Hawkes | Trees generated by a simple branching process[END_REF].

4.4.

Conditioning on the number of leaves, critical case. For a finite tree t ∈ T 0 , we denote by L 0 (t) = Card (L 0 (t)) the number of leaves of t. The next proposition (which seems to be a new result) is in fact a particular case of the proposition of the next section. However, we prove it separately for methodological purpose as its proof and in particular the construction of the GW tree that codes L 0 (t) of Remark 4.8 are much simpler in that particular case.

Proposition 4.6. Let τ be a critical GW tree with offspring distribution p satisfying Assumption [START_REF] Billingsley | Convergence of probability measures[END_REF]. Let d 0 be the span of the random variable L 0 (τ ) -1. Then we have

(30) dist (τ |L 0 (τ ) = nd 0 + 1) -→ n→+∞ dist (τ * )
and

(31) dist (τ |L 0 (τ ) ≥ n) -→ n→+∞ dist (τ * ).
Proof. We consider A(t) = L 0 (t) and n 0 = d 0 which yields

A n = {t ∈ T; L 0 (t) ∈ [n, n + d 0 )}.
We have for every trees t, t ∈ T 0 and every x ∈ L 0 (t) (32)

A(t ⊛ ( t, x)) = A( t) + A(t) -1.
According to [START_REF] Mimami | On the number of vertices with a given degree in a Galton-Watson tree[END_REF], see also Remark 4.8 below, L 0 (τ ) is distributed as the total size of a critical GW tree τ 0 with offspring distribution given by the distribution of:

(33) X 0 = N -1 k=1 Z k ,
with (Z k , k ∈ N * ) and N independent random variables such that (Z k , k ∈ N * ) are independent and distributed as X -1 conditionally on {X ≥ 1} (where X is a random variable distributed according to p) and N has a geometric distribution with parameter p(0). As E[X 0 ] = 1, we get that τ 0 is critical. Notice that d 0 is also the span of the random variable X 0 . It follows from (29) that:

(34) lim n→+∞ P(L 0 (τ ) ∈ [n + 1, n + 1 + d 0 )) P(L 0 (τ ) ∈ [n, n + d 0 )) = 1.
Then use Theorem 3.1 to get that (30) holds.

If we consider n 0 = +∞ that is:

A n = {t ∈ T 0 ; L 0 (t) ≥ n},
arguing as in the proof of the second part of Proposition 4.3, we get (31).

Remark 4.7. We deduce from Remark 4.4 that (31) implies

lim n→+∞ P(L 0 (τ ) ≥ n + 1) P(L 0 (τ ) ≥ n) = 1.
Remark 4.8. We shall briefly recall how one can prove that L 0 (τ ) is distributed as the total size of a GW process by mapping the set of leaves L 0 (τ ) onto a GW tree, see [START_REF] Mimami | On the number of vertices with a given degree in a Galton-Watson tree[END_REF][START_REF] Rizzolo | Scaling limits of Markov branching trees and Galton-Watson trees conditioned on the number of vertices with out-degree in a given set[END_REF] for details.

Let t be a tree. For u ∈ t, we define the left branch starting from u as:

B t g (u) = {uv; |v| ≥ 1 and v = {1} |v| } ∩ t.
We also define the left leaf G(u) of u and the left ancestors A g (v) of a leaf v as:

G t (u) = B t g (u) ∩ L 0 (t) and A t g (v) = {u ∈ A v ; G t (u) = v}.
For a leaf v ∈ L 0 (t), we define its leaf-children as:

C t (v) = {G t (ui); u ∈ A t g (v), 1 < i ≤ k u (t)
}, labeled according to the following order: G t (ui) < G t (u ′ i ′ ) if u < u ′ in the lexicographic order or if u = u ′ and i < i ′ . This defines a tree, obtained from the leaves of t, denoted by t {0} = F {0} (t). And we have Card (t {0} ) = L 0 (t).

If τ is a GW tree then τ {0} = F {0} (τ ) is also a GW tree with offspring distribution given by the distribution of X 0 in (33).

Figure 1. A tree t on the left and the coding of L 0 (t) by a tree t 0 = F (t) tree on the right.

Conditioning on the number of individuals having a given number of children

Let A be a non-empty subset of N. For a tree t ∈ T, we write L A (t) = {u ∈ t; k u (t) ∈ A} the set of individuals whose number of children belongs to A and L A (t) = Card (L A (t)) its cardinal. The case A = {0} represents the set of leaves of t and has been treated in Section 4.4. We can also have L A (t) = Card (t) by taking A = N or L A (t) can also be the number of internal nodes by taking A = N * .

We set:

p(A) = k∈A p(k).
5.1. The critical case. Let us first remark that for every t ∈ T 0 , every x ∈ L 0 (t) and every t ∈ T

L A (t ⊛ ( t, x)) = L A (t) + L A ( t) -1 if 0 ∈ A, L A (t) + L A ( t) if 0 ∈ A,
and hence L A satisfies the additive property (9) with D(t, x) = L A (t) -1 {0∈A} .

Theorem 5.1. Let τ be a critical GW tree with offspring distribution p satisfying Assumption [START_REF] Billingsley | Convergence of probability measures[END_REF] and such that p(A) > 0. Let d A be the span of the random variable L A (τ ) -1. Then we have

(35) dist (τ |L A (τ ) = nd A + 1) -→ n→+∞ dist (τ * ) and (36) dist (τ |L A (τ ) ≥ n) -→ n→+∞ dist (τ * ).
Remark 5.2. It is interesting to note that previous works [START_REF] Rizzolo | Scaling limits of Markov branching trees and Galton-Watson trees conditioned on the number of vertices with out-degree in a given set[END_REF][START_REF] Kortchemski | Invariance principles for Galton-Watson trees conditioned on the number of leaves[END_REF] studying conditioned GW trees involving L A required additional assumptions on the moments of p or on A (finite variance offspring distribution and 0 ∈ A in [START_REF] Rizzolo | Scaling limits of Markov branching trees and Galton-Watson trees conditioned on the number of vertices with out-degree in a given set[END_REF], and offspring distribution p in the domain of attraction of a stable law with either A or N \ A finite in the case of infinite variance offspring distribution in [START_REF] Kortchemski | Invariance principles for Galton-Watson trees conditioned on the number of leaves[END_REF]).

Remark 5.3. In the proof of Theorem 5.1, we will see that if 0 ∈ A, then d A = 1.

Remark 5.4. As a corollary, we get the following result, which is proven using the same technique as in Remark 4.4:

(37)

lim n→+∞ P(L A (τ ) ≥ n + 1) P(L A (τ ) ≥ n) = 1.
Proof of Theorem 5.1. In what follows, we denote by X a random variable distributed according to p. We consider only P(X ∈ A) < 1, as the case P(X ∈ A) = 1 corresponds to the critical case with A = N of Section 4.3.

For a tree t such that L A (t) = ∅, following [START_REF] Rizzolo | Scaling limits of Markov branching trees and Galton-Watson trees conditioned on the number of vertices with out-degree in a given set[END_REF], we can map the set L A (t) onto a tree t A . We first define a map φ from L A (t) on U and a sequence (t k ) 1≤k≤n of trees (where n = L A (t)) as follows. Recall that we denote by < the lexicographic order on U . Let u 1 < • • • < u n be the ordered elements of L A (t).

• φ(u 1 ) = ∅, t 1 = {∅}.

• For 1 < k ≤ n, recall that S M ({u k-1 ,u k }) (t) denotes the tree above the most recent common ancestor of u k-1 and u k , and we set

s = {M ({u k-1 , u k })u, u ∈ S M ({u k-1 ,u k }) (t)} and v = min(L A (s)). Then, we set φ(u k ) = φ(v)(k φ (v)(t k-1 ) + 1)
the concatenation of the node φ(v) with the integer k φ (v)(t k-1 ) + 1, and

t k = t k-1 ∪ {φ(u k )}.
In other words, φ(u k ) is a child of φ(v) in t k and we add it "on the right" of the other children (if any) of φ(v) in the previous tree t k-1 to get t k . It is clear by construction that t k is a tree for every k ≤ n. We set t A = t n . Then φ is a one-to-one map from L A (t) onto t A . The construction of the tree t A is illustrated on Figure 2. If τ is a GW tree with offspring distribution p, the tree τ A associated with L A (τ ), conditioned on L A (τ ) = ∅, is then, according to [START_REF] Rizzolo | Scaling limits of Markov branching trees and Galton-Watson trees conditioned on the number of vertices with out-degree in a given set[END_REF] Theorem 6, a GW tree whose offspring distribution is the law of the random variable X A defined as follows:

• Let (X i , i ≥ 1) be a sequence of independent random variables distributed according to p.

• Let N = inf{k, X k ∈ A} and T = inf{k, k i=1 (X i -1) = -1}. • Let X be a r.v. distributed as 1 + N i=1 (X i -1) conditioned on N ≤ T .
• Then X A is distributed conditionally given { X = k} as a binomial r.v. with parameters k and q = P(N ≤ T ) = P(L A (τ ) = ∅). Moreover, as τ is critical, τ A (conditioned on {L A (τ ) = ∅}) is also critical, see [START_REF] Rizzolo | Scaling limits of Markov branching trees and Galton-Watson trees conditioned on the number of vertices with out-degree in a given set[END_REF] Lemma 6.

Then, L A (τ ) is just the total progeny of τ A . Remark that d A is also the span of X A . Remark that, if 0 ∈ A, then L A (τ ) > 0 and thus q = 1 and X A = X. Notice that we may have d A > 1. On the contrary, if 0 ∈ A, we have q < 1 and therefore P(X A = 1) > 0. As a consequence, we have d A = 1.

Consider n 0 = d A which gives

A n = {t ∈ T; L A (t) ∈ [n, n + d A )}.
As L A (τ ) , conditioned on being positive, is distributed as the total size of a critical GW tree, we deduce from Subsection 4.3 that

(38) lim n→+∞ P(L A (τ ) ∈ [n + 1, n + 1 + d A )) P(L A (τ ) ∈ [n, n + d A )) = 1
and thus by Theorem 3.1 that (35) holds.

5.2.

The sub-critical case. Let p be an offspring distribution. Let A ⊂ N such that p(A) > 0. For every θ > 0 such that k∈N θ k p(k) is finite, we define on N the function p θ by

∀k ≥ 0, p θ (k) = c A (θ)θ k p(k) if k ∈ A, θ k-1 p(k) if k ∈ A
where the normalizing constant c A (θ) is given by:

c A (θ) = 1 -k ∈A θ k-1 p(k) k∈A θ k p(k)

•

We denote by I the set of θ such that p θ defines a probability distribution on N. Notice that I is an interval with bounds θ 0 < 1 ≤ θ 1 . We have the special cases θ 0 = 0 if 0 ∈ A and θ 0 = p(0) if A = N * . Proposition 5.5. Let τ be a GW tree with offspring distribution p satisfying p(0) > 0 and p(0) + p(1) < 1. Let A ⊂ N such that p(A) > 0. For every θ ∈ I, let τ θ be a GW tree with offspring distribution p θ . Then the conditional distributions of τ given {L A (τ ) = n} and of τ θ given {L A (τ θ ) = n} are the same. Remark 5.6. This proposition covers Kennedy's result [START_REF] Kennedy | The Galton-Watson process conditioned on the total progeny[END_REF] for A = N and the pruning procedure of [START_REF] Abraham | Pruning Galton-Watson trees and tree-valued Markov processes[END_REF] for A = {0}.

Proof. Let t ∈ T 0 . Then we have, using the definition of p θ and (2):

P(τ θ = t) = v∈t p θ (k v (t)) = v∈t,kv(t)∈A c A (θ)θ kv(t) p(k v (t)) v∈t,kv(t) ∈A θ kv(t)-1 p(k v (t)) = c A (θ) L A (t) θ v∈t kv(t)-L A c (t) P(τ = t) = c A (θ) L A (t) θ Card (t)-1-L A c (t) P(τ = t) = θ -1 (θc A (θ)) L A (t) P(τ = t).
We deduce that

P(L A (τ θ ) = n) = t∈T 0 , L A (t)=n P(τ θ = t) = θ -1 (θc A (θ)) n t∈T 0 , L A (t)=n P(τ = t) = θ -1 (θc A (θ)) n P(L A (τ ) = n)
and finally, for every t ∈ T 0 such that L A (t) = n, we have

P(τ θ = t L A (τ θ ) = n) = P(τ θ = t) P(L A (τ θ ) = n) = θ -1 (θc A (θ)) n P(τ = t) θ -1 (θc A (θ)) n P(L A (τ θ ) = n) = P(τ = t L A (τ ) = n).
We shall say that the offspring distribution p is generic (with respect to A) if there exists θ c ∈ I such that p θc is critical.

Corollary 5.7. Let τ be a sub-critical GW tree with offspring distribution p satisfying Assumption [START_REF] Billingsley | Convergence of probability measures[END_REF]. Let A ⊂ N such that p(A) > 0. For every θ ∈ I, let τ θ be a GW tree with offspring distribution p θ . If p is generic, that is there exists θ c ∈ I such that p θc is critical, then

dist (τ |L A (τ ) = nd A + 1) -→ n→+∞ dist (τ * θc ) and dist (τ |L A (τ ) ≥ n) -→ n→+∞ dist (τ * θc ).
Remark 5.8. The first convergence of the corollary remains valid for a super-critical offspring distribution but not the second one as the conditional distribution cannot be written as a mixture of the first one as the tree may be infinite.

Remark 5.9. If the critical value θ c of Corollary 5.7 does not exist, then we observe a condensation phenomenon: the limiting tree does not have an infinite spine, but exhibits a unique vertex with an infinite number of children, see [START_REF] Janson | Simply generated trees, conditioned Galton-Watson trees, random allocations and condensation[END_REF] for A = N and the forthcoming paper [START_REF] Abraham | Local limits of conditioned Galton-Watson trees II: the condensation case[END_REF] for the general case.

Conditioning by the size of a high generation

We end this paper with a conditioning which does not enter into the framework of Theorem 3.1. However its proof can be easily adapted. For a tree t, we denote by

G n (t) = Card ({u ∈ t, |u| = n})
the size of the n-th generation of t. Then we have Proposition 6.1. Let τ be a critical GW tree with offspring distribution p satisfying Assumption [START_REF] Billingsley | Convergence of probability measures[END_REF]. Let (α n , n ∈ N) be a sequence of positive integers. If for all j ∈ N * Proof. For every tree t ∈ T 0 , every x ∈ L 0 (t) and every tree t ∈ T, we have

G n (t ⊛ ( t, x)) = G n (t) + G n-|x| ( t)
which generalizes Assumption [START_REF] Geiger | The shape of large Galton-Watson trees with possibly infinite variance[END_REF]. The same computations as in the proof of Theorem 3.1 give for t ∈ T 0 , x ∈ L 0 (t) and n ≥ H(t): The result follows from Lemma 2.1. Corollary 6.2. Let τ be a critical GW tree with offspring distribution p given by a mixture of a geometric distribution with parameter q ∈ (0, 1) and a Dirac mass at 0, i.e. p(0) = 1q and p(k) = q 2 (1q) k-1 for k ≥ 1. Let (α n , n ∈ N) be a sequence of positive integers such that lim n→+∞ n -2 α n = 0. Then we have:

dist (τ |G n (τ ) = α n ) -→ n→+∞ dist(τ * ).
Proof. In that particular case, the generating function ϕ n of G n (τ ) is explicitly known and we have for every s ∈ [0, 1] ϕ n (s) = nc -(nc -1)s (nc + 1)ncs with c = (1q)/q. Expanding ϕ n gives for every k ≥ 1: Then use Proposition 6.1 to conclude. Remark 6.3. As for Theorem 3.1, we can obtain the converse of Proposition 6.1. We deduce that, in the geometric case of Corollary 6.2, the GW tree τ conditioned on {G n (τ ) = k⌊n a ⌋}, with k ∈ N * , converges in distribution to Kesten's tree if and only if a ∈ [0, 2).

P(G n (τ ) = k) = (nc) k-1 (nc + 1)
Let X be a random variable with distribution p, d the span of X and set B = E[X(X -1)]. We recall the theorem of [START_REF] Nagaev | On the local limit theorem for a critical Galton-Watson process[END_REF]. Assume that p is critical, that Assumption (5) holds and that B is finite. If We also recall Theorem 1 of [START_REF] Nagaev | Limit theorems for probabilities of large deviations of a Galton-Watson process[END_REF]. Let ρ be the convergence radius of the generating function of p. Assume that p is critical, that Assumption (5) holds and that ρ > 1. Assume also that (42) lim 
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 44 If we consider A(t) = Card (t) and n 0 = +∞ that is A n = {t ∈ T, Card (t) ≥ n}, the converse of Theorem 3.1 gives the sub-exponential property: (27) lim n→+∞ P(Card (τ ) ≥ n + 1)

  ⊛ ( t, x)) = A( t) + A(t), so Condition (9) holds. Again, it therefore suffices to prove (29) lim n→+∞ P(Card (τ ) ∈ [n + 1, n + 1 + d)) P(Card (τ ) ∈ [n, n + d)) = 1
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 2 Figure 2. left: a tree t, right: the tree t A for A = {3}
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  (τ ∈ T(t, x), G n (τ ) = α n ) = 1 p(0) P(τ = t)P(G n-|x| (τ ) = α n -G n (t)) = P(τ * ∈ T(t, x))P(G n-|x| (τ ) = α n ).Therefore, we obtain by Assumption (39):lim n→+∞ P(τ ∈ T(t, x)|G n (τ ) = α n ) = lim n→+∞ P(τ * ∈ T(t, x)) P(G n-|x| (τ ) = α n ) P(G n (τ ) = α n ) = P(τ * ∈ T(t, x)).

  k+1 , and therefore for j ≥ 1lim n→+∞ P(G n-j (τ ) = α n ) P(G n (τ ) = α n ) = lim n→+∞ n(nc + 1) (nj)((nj)c + 1)

  n (τ ) = dα n ) = 4d.

n n 2 Proposition 6 . 4 .

 264 = 0. Then there exists c ∈ R such that:lim n→+∞ B 2 n 2 e 2dαn Bn +c αn n 2 log(αn/n) P(G n (τ ) = dα n ) = 4d.Then using Proposition 6.1, we give an immediate extension of Corollary 6.2 to a large class of offspring distributions. Let p be a critical offspring distribution satisfying Assumption[START_REF] Billingsley | Convergence of probability measures[END_REF] and such that B is finite. Assume either that (α n , n ∈ N) is a sequence of positive integers satisfying (41) or that ρ > 1 and (α n , n ∈ N) is a sequence of positive integers satisfying (42). Let τ be a critical GW tree with offspring distribution p. Then we have dist (τ |G n (τ ) = dα n ) -→ n→+∞ dist (τ * ).
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