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ORNSTEIN-UHLENBECK LIMIT FOR THE VELOCITY

PROCESS OF AN N-PARTICLE SYSTEM INTERACTING

STOCHASTICALLY

BRUNO V. RIBEIRO AND YVES ELSKENS

ABSTRACT. An N-particle system with stochastic interactions is con-

sidered. Interactions are driven by a Brownian noise term and total en-

ergy conservation is imposed. The evolution of the system, in veloc-

ity space, is a diffusion on a (3N − 1)-dimensional sphere with radius

fixed by the total energy. In the N → ∞ limit, a finite number of veloc-

ity components are shown to evolve independently and according to an

Ornstein-Uhlenbeck process.
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1.. INTRODUCTION

The ensemble average of the stochastic evolution of a Brownian test par-
ticle immersed in a heat bath of constant temperature θ is given by the
Fokker-Planck equation with prescribed coefficients of diffusion and linear
friction [UO30]. The solution to this equation is well known and gives the
evolution of the ensemble’s probability density function in velocity space.

Kiessling and Lancellotti [KL06] have shown that, if the coefficients of
this partial differential equation for the Ornstein-Uhlenbeck process are
chosen to be constant functionals of the solution itself, the equation can
be reinterpreted to describe the kinetic evolution of an isolated N-particle
system with stochastic interactions satisfying total mass, energy and mo-

mentum conservation1. In their work, these authors consider an infinite en-
semble of independent and identically distributed (i.i.d.) random N-particle
velocity vectors {Vα}∞

α=1, each representing a possible microstate of the

system in velocity space (in R3N), while particle positions are considered
to be uniformly distributed over a periodic box. By a suitable transforma-
tion on the Vα’s, they show that the analysis of this N-particle system with
energy and momentum conservation can be done in terms of an N′-particle
system with only energy conservation and N′ = N −1.

Our purpose in this work is to analyse the evolution of the same particle
system with stochastic interactions driven by this Brownian noise term, but
from a many-body perspective, i.e. we look at a single realization of the
system and study its evolution pathwise. According to the arguments of
[KL06], it suffices to study the system with only the energy conservation
requirement, and so we do here, thus we drop the prime in N′ and refer to
an N-particle system, considering the “velocities” of this effective model
as if they related to actual particles (in the spirit of Kac’ one-dimensional
historical model [Kac56]). This model is also related to the class of Kac
systems in the terminology of [CCL03] (see App. B).

In a 3-dimensional setting, energy conservation bounds the evolution of
the system, in velocity space, to a (D−1)-dimensional sphere with radius
defined by initial energy (with D = 3N being the number of degrees of
freedom of the system). Therefore, the evolution of the system in velocity
space can be modeled by the Brownian motion on the given sphere. Thus,
we take advantage of the works of Stroock [St71] and Brillinger [Br97],
where the random evolution of a single particle on a sphere was modeled
with stochastic integrals, to write the proper differential equations for the
evolution of the D-dimensional vector V of all the velocity components for
the N particles. Singling out one component of V (call it V1), we show it to

1Carlen and Gangbo [CG04] studied a very similar kinetic equation, though using dif-

ferent techniques.
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converge, in the D → ∞ limit, to an Ornstein-Uhlenbeck process [UO30],
which is commonly used to describe the evolution of a single particle under
“white noise” and friction.

2.. OUTLINE AND STRATEGY

We look at the diffusion of a 3-dimensional N-particle system which
obeys conservation of energy. This requirement bounds the evolution of
the system, in velocity space, to a (3N−1)-dimensional sphere with radius
defined by initial energy. The dynamics of the system is given by a single
stochastic differential equation for a (D = 3N)-dimensional velocity vector
(V) driven by a D-dimensional Brownian noise term introduced in Sec. 3.

A quick look at this evolution equation shows that a single component
of V evolves independently of the remaining directions according to an
Ornstein-Uhlenbeck process driven by a single noise term along the same
direction, when this component is small enough. Our focus, however, is on
studying the limiting process for the components of V when these are of
order of unity. Formally, we define a reference one-dimensional Ornstein-
Uhlenbeck process, and show that the evolution of a single component of
V converges (in probability) to this reference process as D → ∞. This is
properly stated in Sec. 4. It is proved in Sec. 5.

This proof is easily extended to any finite d-dimensional process (d < D)
constructed from d components of the original diffusion. Thus, we show
that these processes are independent and identically distributed (i.i.d.) in
the D → ∞ limit, thereby proving the propagation of initial independence of
d particles, viz. the “propagation of molecular chaos” or of “Boltzmann’s
property” ([Kac56, Kac59], see the recent review by Mischler and Mouhot
[MM11] for an extensive discussion), in Sec. 6. Vakeroudis and Yor’s recent
central limit theorem on paths [VY11] may also provide further insight into
the evolution of d ≫ 1 degrees of freedom in the D → ∞ limit.

The system with total energy and momentum conservation is considered
in Sec. 7. We model its dynamics with a stochastic differential equation for
the 3N-dimensional velocity vectors driven by a 3N-dimensional Brown-
ian noise term. Here, we use the original N particles (before dropping the
prime) and show that the velocity processes of any finite number m of par-
ticles, in the N → ∞ limit, converge to m independent three-dimensional
Ornstein-Uhlenbeck processes.

In App. A, we sketch the answer to a question raised by Kiessling and
Lancellotti [KL06] on the explicit characterization of the many-body sto-
chastic process. In App. B, we show how this model relates to the class of
Kac systems.



4 BRUNO V. RIBEIRO AND YVES ELSKENS

3.. DIFFUSION ON A SPHERE

Consider a system of N particles. The particles exchange momentum
according to some interaction between them, and total energy is assumed to
be conserved.

Let D = 3N denote the number of degrees of freedom of the system. The
system state is described by the D-dimensional vector

(1) V = (V1,V2, ...,VD),

where the Vi’s are all the D = 3N components of the three-dimensional vec-
tors V̄k = (V3k−2,V3k−1,V3k) representing the velocity of the k-th particle in

R3. Conservation of energy requires the vector V to assume values in the
(3N−1)-dimensional manifold of total energy Ne0

(2) M
3N−1
e0

=

{

(V̄1, . . .V̄N) :
3N

∑
i=1

|Vi|2
2

= Ne0

}

,

viz. the (3N −1)-dimensional sphere with radius
√

2Ne0.
Starting from an arbitrary initial data, the evolution of vector V is mod-

eled by the Brownian motion on the sphere, given by the stochastic differ-
ential equation [Br97]

(3) dV = λσ(V) · ◦dB,

where λ is the noise amplitude,

(4) σi j(V) = δi j −
ViVj

|V|2

is the orthogonal projector onto the hyperplane orthogonal to V,

(5) B = (B1,B2, ...,BD)

is the standard D-dimensional Brownian motion, and ◦d denotes the use of
Stratonovich calculus [Øk10]. Although the Stratonovich view-point seems
physically natural in the sense that it leads to the same chain rules as clas-
sical calculus and occurs in taking limits from ordinary differential equa-
tions driven by smooth noises [WZ65], we shall change view-points and
prefer working with the Itô representation. This representation has some
advantages to our purposes, for instance, Itô integrals are well known to be
martingales [Øk10], which is crucial for stochastic analysis and comput-
ing expectations. The disadvantage is that Itô integrals do not transform so
nicely under changes of variables, e.g. the chain rule for Itô differentials
involves second order terms [Øk10, KPS03].
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Therefore, we work with the spherical Brownian motion as the solution
of the Itô differential equation [St71, Pr05]

(6) dV = λσ(V) · dB−λ 2 D−1

2
b(V)dt,

where

(7) b(V) =
V

|V|2 .

The process (3) remains on the surface of the sphere, the first (Itô) term
in the right hand side of (6) displaces the velocity inside the tangent plane
to the sphere, and the last term in (6) may be thought of as pulling the
process back onto the sphere [Br97]. Introducing θ := 2e0/3, we rescale

time to t ′ = λ 2t/θ , the Wiener process to B′ = λθ−1/2B and velocity to

V′ = θ−1/2V, so that, dropping primes, the system (6)-(7) reduces to

(8) dV = σ(V) · dB− D−1

2D
Vdt.

Our probability space is the standard space of D-dimensional continuous
brownian motions (see e.g. sec. I.3 in [Pr05]).

4.. CONVERGENCE TO THE ORNSTEIN-UHLENBECK PROCESS

We single out one component of V to study its evolution. Evidently, this
evolution will have a contribution from all the other directions (the D− 1
remaining dimensions), so we define

(9) U = V−V1ê1,

where êi is the unit vector along the direction of the i-th dimension. A
simple rewriting of (8) leads to the system

dV1 = σ1(V1)dB1 −
D−1

2
b1(V1)dt −H(U,V1) · dBU ,(10)

dU = σU (U) · dBU − D−1

2
bU (U)dt −H(U,V1)dB1,(11)

given

σ1(V1) = 1− V 2
1

|V|2 , b1(V1) =
V1

|V|2 , H(U,V1) =
V1

|V|2 U,

(σU(U))i j = δi j − UiU j

|V|2 , bU (U) = U
|V|2 , BU = (B2, ...,BD)(12)

with the constraint |V|=
√

D.
One obtains a simple estimate of the evolution of V1 by first looking at

the limit of small values for V1 (V1 ∼ 0). In such a limit,

(13) σ1(V1)∼ 1, H(U,V1)∼ 0.
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So, the resulting evolution equation would be

(14) dV1 ≃ dB1 −
D−1

2|V|2 V1 dt,

which reads, in the D → ∞ limit,

(15) dV1 ≃ dB1 −
V1

2
dt,

which has as solution the standard Ornstein-Uhlenbeck process.
Let us now look at the general evolution of V1 in the D → ∞ limit, i.e.

we want to know what is the limiting process defined by (10) when V1 is of
order unity. From the result (15), we can expect this process to, at least, be
similar to the Ornstein-Uhlenbeck process. Our main result is expressed in
the following

THEOREM 4..1. Let V1 be a component of V defined by equation (8). For

|V| =
√

D, the process V1 with initial data c1 obeying (10) converges, in

the D → ∞ limit, to the 1-dimensional Ornstein-Uhlenbeck process with the

same initial data and driving noise B1, where convergence is in the mean-

square sense in C([0,T ],R) for any time T > 0.

Of course, given c1 ∈R, the finite-D model makes sense only for D ≥ c2
1.

5.. PROOF OF THEOREM 4..1

We start our analysis by defining the reference (or target for the limit)
1-dimensional Ornstein-Uhlenbeck process

(16) dV ′
1 = α dB1 −βV ′

1 dt, α,β ∈ R.

driven by the same (driving) noise B1 as in (10). With this, we introduce

(17) v =V1 −V ′
1.

We compute the expectation of the square of this new process to grasp
the evolution of V1 compared to the evolution of the reference process. So,
we start by writing explicitly
(18)

v(t)= v0+
∫ t

0

[

(σ1(V1)−α)dB1 −
(

D−1

2
b1(V1)−βV ′

1

)

dt −H(U,V1) · dBU

]

,

where v0 = v(t = 0).
We set the parameters α = 1 and β = 1/2. Thus, the expectation reads

(19)

E[|v(t)|2] =E

[

(

v0 −
∫ t

0

(

v(s)

2
− V1(s)

2D

)

ds−
∫ t

0

V 2
1

D
dB1 −

∫ t

0

V1

D
U · dBU

)2
]

,
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which is readily bounded as
(20)

E[|v(t)|2]
3

≤E[|v0|2]+E

[

(

∫ t

0

(

v(s)

2
− V1(s)

2D

)

ds

)2
]

+E

[

(

∫ t

0

V1

D
V · dB

)2
]

.

Using the property d〈Bi,B j〉 = δi j dt, where 〈•,•〉 denotes the cross-

variation process [Øk10], and the fact that E
[
∫ t

0 f (s)dBi(s)
]

= 0, for any
(adapted) function of time f , the last term in the r.h.s. can be rewritten as

(21)
D

∑
i=1

E

[

(

∫ t

0

V1

D
Vi dBi

)2
]

=
D

∑
i=1

E

[

∫ t

0

V 2
1

D2
V 2

i ds

]

= E

[

∫ t

0

V 2
1

D
ds

]

,

where we used Itô isometry in the intermediate step and recalled our con-

straint, |V|=
√

D, in the last step.
Going back to (20), we further bound

E[|v(t)|2]
3

≤ E[|v0|2]+
1

2
E

[

(

∫ t

0
v(s)ds

)2
]

+
1

2
E

[

(

∫ t

0

V1(s)

D
ds

)2
]

+E

[

∫ t

0

V 2
1

D
ds

]

≤ E[|v0|2]+
t

2

∫ t

0
E
[

v(s)2
]

ds+

(

t

2D2
+

1

D

)

∫ t

0
E
[

V 2
1 (s)

]

ds,

(22)

where we used Schwartz inequality on the second and third terms in the
r.h.s. To get a closed estimate, we must now control how fast E

[

V 2
1 (s)

]

grows in time. For this purpose, a standard Itô calculation leads to

(23) dV 2
1 = 2V1 dV1 +

(

1− V 2
1

D

)

dt,

which gives

(24) dE[V 2
1 ] =

(

1− E[V 2
1 ]

D

)

dt ≤ dt,

so that

(25)

∫ t

0
E
[

V 2
1 (s)

]

ds ≤
∫ t

0
(c2

1 + s)ds = c2
1t +

t2

2
.
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Thus, we find a bound on E[|v(t)|2] independent of the component V1,

E[|v(t)|2] ≤ 3E[|v0|2]+
3t

2

∫ t

0
E
[

v(s)2
]

ds+3

(

t

2D2
+

1

D

)

(c2
1t +

t2

2
)

(26)

≤ 3E[|v0|2]+
3

2D
(1+

T

2D
)(2c2

1T +T 2)+
3T

2

∫ t

0
E
[

v(s)2
]

ds(27)

over the interval [0,T ] for any T > 0. Gronwall’s lemma [Di80] then yields
the bound

(28) E[|v(t)|2]≤
[

3E[|v0|2]+
3

2D
(1+

T

2D
)(2c2

1T +T 2)

]

e3Tt/2.

For any finite t, we may set T = t in this estimate. Therefore, in the
D → ∞ limit, we have for finite times

(29) lim
D→∞

E[|v(t)|2]≤ 3E[|v0|2]e3t2/2,

ensuring that, given initial conditions such that v0 = 0, the process V1 con-
verges in mean square to the reference Ornstein-Uhlenbeck process in one
dimension over [0,T ] ∀ T < ∞, thus proving the theorem. �

Note that the type of convergence obtained (mean-square convergence
[KPS03]) implies convergence in probability in C([0,T ],R) for any time
T > 0.

6.. MOTION OF d PARTICLES

This result can be generalized if we consider, instead of the single compo-
nent V1, a finite d-dimensional vector U1 made up of the first d components
of V. Define

(30) U1 =
d

∑
i=1

Viêi, U2 =
D

∑
i=d+1

Viêi,

for a fixed d, and rewrite (6) as

(31) dU1 = σ1(U1) · dB1 −
D−1

2
b1(U1)dt −H(U1,U2) · dB2,

(32) dU2 = σ2(U2) · dB2 −
D−1

2
b2(U2)dt −HT (U1,U2) · dB1,
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where T denotes the transpose and

(σi)mn = δmn −
(Ui)m(Ui)n

|V|2 ; bi(Ui) =
Ui

|V|2 ; i = 1,2(33)

(H)mn =
(U1)m(U2)n

|V|2(34)

B1 = (B1, . . . ,Bd), B2 = (Bd+1, . . . ,BD).(35)

From this point of view, we derive the following

THEOREM 6..1. Let U1 be the d-dimensional component of V evolving

according to equation (31). For |V| =
√

D, the process U1 with initial

data U1(0) = c1 ∈ Rd converges, in the N → ∞ limit, to the d-dimensional

Ornstein-Uhlenbeck process with initial data c1 and driving noise B1, where

convergence is in the mean-square sense in C([0,T ],Rd) for any time T > 0.

Sketch of proof : The proof parallels the previous one, we need only define
the reference d-dimensional Ornstein-Uhlenbeck process U′

1. For this case,

the form of the final bound on E[|u(t)|2], with u(t) = U1(t)− U′
1(t), is

identical to (28), replacing v with u and c1 with c1.

Note that |c1|2 is independent of D (typically O(d)), which still leads to
a vanishing contribution from the second term in the r.h.s. of the equation
corresponding to (28). �

7.. THE ENERGY AND MOMENTUM CONSERVING MODEL

In this section, we return from this model with N′ = N −1 effective par-
ticles to the more physical N-particle model, with interactions conserving
energy and momentum. In this setting, the vector of velocity components
V assumes values in the manifold

(36) M
3N−4
ū0,e0

=

{

(V̄1, . . .V̄N) :
3N

∑
i=1

|Vi|2
2

= Ne0 ;
N

∑
k=1

V̄k = Nū0

}

,

where ū0 is the momentum per particle and the vectors V and V̄k are sim-
ilar (with the original N) to those defined in Section 3. This manifold cor-
responds to the (3N − 4)-dimensional sphere of radius

√
2Nε0 centered

at (ū0, ..., ū0) and embedded in the constant momentum plane, with ε0 =
e0 −|ū0|2/2.

Diffusion on M
3N−4
ū0,e0

may be defined with the Stratonovich differential
equation

(37) dV = λP(S) · ◦dB,

where the Si’s are the components of the three-dimensional vectors

(38) S̄k = V̄k − ū0 = (S3k−2,S3k−1,S3k)
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and P is the orthogonal projector onto M
3N−4
ū0,e0

given by

(39) Pi j(S) = ∑
k

σik(S)

(

δk j −
3

∑
γ=1

E
γ
k
E

γ
j

N

)

= σi j(S)−
3

∑
γ=1

E
γ
i E

γ
j

N
,

with the 3N-dimensional vectors Eγ ,γ = 1,2,3, composed of all the com-
ponents of N unit vectors in R3 along the γ direction, viz.

E1 = (1,0,0,1,0,0, ...,1,0,0)

E2 = (0,1,0,0,1,0, ...,0,1,0)(40)

E3 = (0,0,1,0,0,1, ...,0,0,1)

and B is now the standard 3N-dimensional brownian motion.
Kiessling and Lancellotti [KL06] use Gram-Schmidt orthonormalization,

s = RV,

s̄n =

√

N −n

N −n+1

[

V̄n −
1

N −n

N

∑
i=n+1

V̄i

]

for 1 ≤ n ≤ N −1,(41)

s̄N =
1√
N

N

∑
i=1

V̄i,(42)

to map M
3N−4
ū0,e0

to

(43)

{

(s̄1, . . . s̄N) : s̄N =
√

Nū0,
N−1

∑
i=1

|s̄i|2
2

= Nε0

}

.

As the matrix R is orthogonal and B is isotropic, RB is also a standard
brownian motion in R3N . In this new representation, P is simply the identity
on the 3(N −1) first components, and zero on the last three ones.

So, we can analyse the original N-particle system with energy and mo-
mentum conservation, in terms of the truncated (s̄1, ..., s̄N−1) vector, with
only “energy in the center of mass frame” (ε0) conservation, and the con-
stant vector (s̄N). In particular, for particle n = 1, one finds

V̄1 = s̄1

√

(N−1)(N −2)/N+ s̄N/
√

N, so that V̄1− ū0 also tends to an Ornstein-
Uhlenbeck process for N → ∞.

Actually, one can also directly prove

PROPOSITION 7..1. Consider m particles in the N-body model (37) with

given total momentum per particle ū0 and energy in the center of mass frame

ε0. Let the particles initial velocities be ū0 + c̄k (1 ≤ k ≤ m). In the N → ∞
limit, their velocity processes S̄k = V̄k− ū0 converge to m independent three-

dimensional Ornstein-Uhlenbeck processes, with initial data c̄k and driving

noise B̃k = (B3k−2,B3k−1,B3k), where convergence is in the mean-square

sense in C([0,T ],R3m) for any time T > 0.
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The proof follows closely that of Sec. 5. To complete the proof, one must
notice that ∑N

k=1 S̄k = 0 and, in the N → ∞ limit, that the process

(44) B̃1 −
1

N

N

∑
k=1

B̃k

converges, in the mean-square sense, to B̃1. To show this, it suffices to use
(21) with the changes V1Vi → 1 and D → N.

8.. CONCLUSIONS

A 3-dimensional N-particle system, in which particles interact stochas-
tically due to a driving Brownian noise term, satisfying total energy (Ne0)
conservation is modeled by a diffusion process on the sphere M3N−1

e0
. In the

N → ∞ limit, a single velocity component evolves independently of all the
other velocity components for finite times. Furthermore, this “tagged” com-
ponent converges to a 1-dimensional Ornstein-Uhlenbeck process driven by
the single noise component coupled directly to it. The role of friction in the
usual Ornstein-Uhlenbeck model to keep the velocity component bounded
is here played by total energy conservation and by the curvature of the
sphere (equatorial bands have a larger area than polar caps).

Technically, convergence to the Ornstein-Uhlenbeck process is proven
using standard arguments (see section 5.2 of [Øk10]). In the language of
[KPS03], we obtain mean-square convergence for the velocity process in
(29). Recall that mean-square convergence implies convergence in proba-
bility.

An immediate extension is given for the d-dimensional velocity process.
In the D → ∞ limit, this is also shown to converge to the d-dimensional
Ornstein-Uhlenbeck process. If at initial time the d tagged components have
independent data, the subsequent evolution of these d components preserves
their independence, which amounts to propagating molecular chaos.

For the total energy and momentum conserving model, we show that
the velocities of m tagged particles converge, in the N → ∞ limit, to m in-
dependent three-dimensional Ornstein-Uhlenbeck process driven by their
respective independent three-dimensional noises.

We leave to the reader or for a forthcoming work the discussion of the
three-dimensional model of App. A, where one will eliminate the self-
coupling gyroscopic terms in Ω and show that, in the limit N → ∞, one
recovers the same limit. Such a model is considered, from the Fokker-
Planck viewpoint, in section 4 of [CCL03].
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A. APPENDIX : TWO REPRESENTATIONS OF THE DIFFUSION ON THE

SPHERE, AND A BINARY INTERACTION INTERPRETATION

Our representation of the diffusion on the sphere, with the Itô differential
equation (8), describes the evolution of the velocity vector in terms of D in-
dependent brownian driving noises B j, 1 ≤ j ≤ D, each directly associated
with one component of V. Kiessling and Lancellotti [KL06] recall the rep-
resentation of the Laplace-Beltrami operator on the unit sphere SD−1 ⊂ R

D

in the form

(45) △SD−1 = ∑
1≤k<l≤D

(vk∂vl
− vl∂vk

)2

and interpret the Fokker-Planck equation in terms of a model for their origi-
nal N = 1+D/3 particles with two-body and one-body interactions preserv-
ing momentum and energy. Here we translate this interpretation to a simple
stochastic process, limiting ourselves to the D/3 “effective particles” with
interactions preserving only energy.

Diffusion on the sphere may be viewed as a succession of independent
infinitesimal rotations. So, consider a family of D(D− 1)/2 independent
processes Ωkl(.),1 ≤ k < l ≤ D, taken to be martingales with initial value
0 and cross-variation 〈Ωi j,Ωkl〉(t) = δikδ jl t/D. Complement Ω to an an-
tisymmetric matrix, with Ωi j = −Ω ji, so that the differentials dΩi j act as
infinitesimal rotation generators, and consider the process V′ defined by an

initial data V′(0) with |V′(0)|=
√

D and the Stratonovich differential equa-
tion

(46) dV ′
i = ∑

j

V ′
j ◦ dΩi j.

Its Fokker-Planck operator, acting on measures f on the sphere S
D−1√

D

with radius
√

D, is the sum L =−1
2 ∑1≤i< j≤D R∗

i jRi j, where Ri j is the vector

field associated with Ωi j, and R∗
i j is its adjoint operator on RD. By (46), the

vector field is Ri j = D−1/2(v′j∂v′i
− v′i∂v′j

). Then R∗
i j = −D−1/2(∂v′i

(v′j ·)−
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∂v′j
(v′i ·)) = −Ri j, so that L = 1

2D
△SD−1. As the generator determines the

law of a diffusion, this proves that the process defined by (46) is the same
as the one defined in Sec. 3.

Now, comparing directly the differential equations is also interesting. So,
from the Stratonovich form (46), we deduce the Itô equation for V′,

dV ′
i = ∑

j

V ′
j dΩi j +

1

2 ∑
j

d〈V ′
j ,Ωi j〉(47)

= ∑
j

V ′
j dΩi j +

1

2
∑

j
∑
k 6= j

V ′
k d〈Ω jk,Ωi j〉

= ∑
j

V ′
j dΩi j +

1

2 ∑
j

∑
k 6= j

V ′
k(−D−1δ j jδik)dt

= ∑
j

V ′
j dΩi j −

1

2
V ′

i (1−D−1)dt.(48)

For the first equality, we used the relation between Itô and Stratonovich
integrals (see e.g. Sec. V.5 in [Pr05]) ; then we substitute the first term of
the r.h.s. of (47) into the cross-variation term, and finally we use the explicit
cross-variation of Ω.

In the final expression (48), the drift is exactly the one in (8). The first
term appears as coupling the i-th component of vector V′ with all other com-
ponents, and it is linear with respect to V′ while (8) involves a projection
matrix σ orthogonal to V. As this first term is the differential of a martin-
gale, say dM′

i = ∑ j V
′
j dΩi j, we now show that it is equivalent (in law) to

the first term in (8). Indeed, this martingale M′ is further characterized by
its cross-variation process, which has the differential

d〈M′
i ,M

′
j〉 = ∑

k
∑

l

V ′
kV ′

l d〈Ωik,Ω jl〉

= ∑
k

∑
l

V ′
kV ′

l D−1(δi jδkl −δilδ jk)dt

= D−1(δi j ∑
k

V ′
k

2 −V ′
i V ′

j)dt(49)

where one readily recognizes the projector entry σi j(V
′).

For comparison, the first term in (8) defines a martingale M with dMi =
∑ j σi j(V)dB j, so that its cross-variation satisfies

(50) d〈Mi,M j〉= ∑
k

∑
l

σikσ jl d〈Bk,Bl〉= σi j(V) dt

as follows from the cross-variation of B and the fact that σ 2 = σ .
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As a result, M′ and M have the same cross-variation when generated from
the same trajectory (assuming M(0) = M′(0) = 0 for definiteness), as befits
processes V′ and V having the same law (incidentally, these calculations
reformulate the fact that the Fokker-Planck generators are equal). However,
the brownian drivers underlying both processes differ, as those for V are
defined from translations along the D components directions while those for
V′ are associated with the rotation matrices acting on RD. Interestingly, the
non-abelian nature of rotation compositions is irrelevant to our discussion.

Kiessling and Lancellotti [KL06] interpret their representation (A.5) of
the Laplace-Beltrami operator on the sphere in terms of two types of con-
tributions. Here, one associates with three components, 3k − 2 ≤ i ≤ 3k,
the cartesian components of the velocity V̄ ′

k of particle k in R
3, so that

in the Ωi j’s one distinguishes the terms associated with different particles
(⌈i/3⌉ 6= ⌈ j/3⌉ for the ceiling function ⌈·⌉), and terms coupling two ve-
locity components of the same particle (⌈i/3⌉= ⌈ j/3⌉) so that the particle

velocity vector just rotates in R3 as under a gyroscopic force. As they ob-
serve, the gyroscopic contribution to each particle velocity drops out in the
N → ∞ limit.

B. APPENDIX : THE KAC SYSTEM PROPERTY

Here we write N for D to follow the notations of Carlen, Carvalho and
Loss closely. Kac’ model is a random walk on the sphere SN−1, where,
at (Poisson distributed) random times, two particles are picked up at ran-
dom, and their velocities (Vi,Vj) suffer a random rotation by an angle θ ,
according to a probability measure ρ(θ)dθ in the (êi, ê j) plane, with ρ be-
ing continuous and even. Given a ρε with support [−επ ,επ ], this system
can be modelled pathwise by a jump process for the velocity components
Vi, driven by piecewise constant noise processes ωi j,ε =−ω ji,ε , with incre-
ments

(51) ∆Vi = ∑
j 6=i

[Vi (cos∆ωi j,ε −1)+Vj sin∆ωi j,ε ]

where V (t) in the right hand side is understood as the left limit, V (t−).

In the noise ωi j,ε(t) = ∑
Ki j(t)
k=1 θi j,k, the jumps ∆ωi j,ε = θi j,k = −θ ji,k are

independent, distributed with law ρε , and their number Ki j(t) in [0, t[ is

Poisson distributed with rate λε = 1/ε2. In the limit ε → 0, one can show
that the noise becomes Brownian, and solutions to equation (51) converge
to those of (46).

In the following, we show directly that our model has all features of Kac
systems, which are defined in [CCL03] as systems of probability spaces,
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depending on N ∈N0, verifying four features. The first feature is the invari-
ance, under particle labeling permutations, of the stationary measure µN

which is the microcanonical measure on the sphere XN = S
N−1√

N
. The sec-

ond feature characterizes νN as the marginal distribution of the component
j of interest obtained by the projection π j, in our case π j(V) = Vj ∈ YN =

[−
√

N,
√

N] :

(52) dνN(y) =
|SN−2|
|SN−1|

(

1− y2

N

)(N−3)/2

N−1/2 dy

where |SN−1| is the measure of the unit (N − 1)-dimensional sphere. The
third feature introduces the lift from N −1 components in XN−1 along with
one additional component in YN , in a form consistent with the definition of
the projection π j, viz. for j = N

(53) φN(u,y) = (sN(y)u,y)

with the scaling function sN(y) :=
√

N−y2

N−1 projecting u onto the sphere with

radius
√

N − y2, so that (µN−1⊗νN)(φ
−1
j (A)) = µN(A) for any measurable

A ⊂ XN .
The fourth feature deals with the Markov transition operator QN , which

occurs in the generator of the evolution for the probability distribution func-
tion, such that ∂t f = (1/τN)(QN − IN) f where IN is the identity and τN is a
characteristic time, e.g. τN = 1/N for Kac’ original model (see section 1 in
[CCL03]). In our case, the Fokker-Planck equation yields

(54) QN = IN +
1

2N

N

∑
k=1

N

∑
i=1

∂vi
σik(v)∂vk

from the Stratonovich formulation, recalling that σ is symmetric and idem-
potent.

Then we must check that for any f ∈ HN := L2(XN,µN)

(55) 〈 f ,QN f 〉HN
=

1

N

N

∑
j=1

∫

YN

〈 f j,y,QN−1 f j,y〉HN−1
dνN(y)

where f j,y(u) := f (φ j(u,y)) for y ∈ YN and u ∈ XN−1 ; in our case, it sim-
ply reads fN,y(u) = f (sN(y)u1, . . .sN(y)uN−1,y), and indices j < N select
similarly the j-th component instead of the N-th one.

With our Q, f must be twice differentiable, so we take f ∈ H2(XN,µN).
Now, condition (55) is linear in Q, so it suffices to prove it for I and (Q−
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I)/τ separately. First, for I, note that

∫

YN

〈 f j,y, f j,y〉HN−1
dνN(y) =

∫

YN

[

∫

XN−1

| f (φ j(u,y))|2 dµN−1(u)

]

dνN(y)

= 〈 f , f 〉HN
(56)

where the first equality follows from the definition of the Hilbert scalar
product, and the second from Fubini and feature 3. Then summing for
1 ≤ j ≤ N and dividing by N shows (unsurprisingly) that I fulfills feature 4.

For Q− I, we use the representation [KL06] of the Laplace-Beltrami op-

erator on the sphere XN = S
N−1√

N

(57) 2(QN − IN)/τN = (1/N)
N

∑
k<l

(vk∂vl
− vl∂vk

)2 .

Then,

〈 f j,y,2(QN−1− IN−1) f j,y〉HN−1

=
τN−1

N −1 ∑
k<l

k 6= j, l 6= j

∫

XN−1

( f j,y(u)(uk∂ul
−ul∂uk

)2 f j,y(u))dµN−1(u),(58)

where we note that the operator uk∂ul
− ul∂uk

is homogeneous, so that the
factor s(y) in the change of variable (53) from u to v = φ j(u,y) will be
absorbed. Thus,

N

∑
j=1

∫

YN

〈 f j,y,2(QN−1 − IN−1) f j,y〉HN−1
dνN(y)

=
N

∑
j=1

τN−1

N −1 ∑
k<l

k 6= j, l 6= j

∫

YN

∫

XN−1

( f j,y(u)(uk∂ul
−ul∂uk

)2 f j,y(u))dµN−1(u)dνN(y)

=
N

∑
j=1

τN−1

N −1 ∑
k<l

k 6= j, l 6= j

∫

XN

( f (v)(vk∂vl
− vl∂vk

)2 f (v))dµN(v),

(59)

where the second equality holds from Fubini and feature 3. Note that we
may interchange the sums and keep the restrictions on indices by changing

(60)
N

∑
j=1

N

∑
k<l

k 6= j, l 6= j

=
N

∑
k<l

N

∑
j=1

j 6=k,l

.
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Thus, we have

1

N

N

∑
j=1

∫

YN

〈 f j,y,2(QN−1 − IN−1) f j,y〉HN−1
dνN(y)

=
N

∑
k<l

N

∑
j=1

j 6=k,l

τN−1

N −1

[

1

N

∫

XN

( f (v)(vk∂vl
− vl∂vk

)2 f (v))dµN(v)

]

.(61)

Now, the summand depends only on k and l, so that the N −2 values of
j contribute with the same result. Furthermore, we recognize the resulting

(k, l) sum as 〈 f ,2τ−1
N (QN − IN) f 〉HN

. Hence,
(62)

1

N

N

∑
j=1

∫

YN

〈 f j,y,2(QN−1−IN−1) f j,y〉HN−1
dνN(y)=

(N −2)τN−1

(N −1)τN
〈 f ,2(QN−IN) f 〉HN

.

To meet feature 4, it suffices to set τN = 1/(N − 1), which scale as
O(1/N) as N →∞. Note that 1/(NτN) also describes the N(=D)-dependence
of the drift term in the Itô equation (8).

In our pathwise formulation, feature 4 relates the stochastic differential
equation (46) of the N-particle system to the equations for (N −1)-particle
subsystems as follows. First, the (N −1)-particle subsystem, with particle
j removed, obeys the equation for ui, 6 j =Vi/sN(Vj) (i 6= j)

(63) dui, 6 j = τ
1/2
N−1 ∑

k

uk, 6 j ◦ dΩik, 6 j

where the Ωik, 6 j’s are independent brownian motions with variance t/(N−1)
(see App. A for the denominator N −1, for the diffusion on XN−1) for 1 ≤
i < k ≤ N, i 6= j,k 6= j, and Ωki, 6 j =−Ωik, 6 j. Then the generator on the right
hand side of (55) corresponds formally to the evolution equation

dVi =
1√
N

N

∑
j=1

∑
l 6= j

(

∂Vi

∂ul, 6 j

)

V j

◦ dul, 6 j(64)

=
1√
N

N

∑
j=1

(1−δi j)sN(Vj)◦ dui, 6 j(65)

=
τ

1/2
N−1√

N
∑
j 6=i

sN(Vj) ∑
k 6= j

uk, 6 j ◦ dΩik, 6 j(66)

=
τ

1/2
N−1√

N
∑
k 6=i

∑
j 6=i, j 6=k

Vk ◦ dΩik, 6 j ,(67)
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where the first equality is our interpretation of (55), the second follows
from the projection of XN onto XN−1 and the lift (53), the third follows
from (63) and the fourth again from the lift (53) (and k 6= i because Ω
is antisymmetric). To obtain (46) formally, it suffices to define Ωik :=
(τN−1/τN)

1/2N−1/2 ∑ j 6=i, j 6=k Ωik, 6 j ; for this Ωik to be the brownian mo-

tion with variance t/N, we set again τN = 1/(N − 1) so that τN−1/τN =
(N −1)/(N−2) since the sum over j has only N −2 terms.

Note that this latter check for feature 4 works pathwise, with an explicit
construction of the new driving noises Ω for N degrees of freedom from
the subsystems’ driving noises. In contrast, working with the generators
(Q− I)/N ensures only equivalence in law of the processes constructed
from the subsystems with the N-particle process.
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