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Mechanism of the quasi-zero axial acoustic radiation force experienced by elastic and viscoelastic spheres in the field of a quasi-Gaussian beam and particle tweezing

The present analysis investigates the (axial) acoustic radiation force induced by a quasi-Gaussian beam of progressive (traveling) waves centered on an elastic and a viscoelastic (polymer-type) sphere in a nonviscous fluid. The quasi-Gaussian beam is an exact solution of the source free Helmholtz wave equation and is characterized by an arbitrary waist w 0 and a diffraction convergence length known as the Rayleigh range R z .

Examples are found where the radiation force unexpectedly approaches closely to zero at some of the elastic sphere's resonance frequencies for kw 0  1 (where this range is of particular interest in describing strongly focused or divergent beams), which may produce particle immobilization along the axial direction. Moreover, the (quasi)vanishing behavior of the radiation force is found to be correlated with conditions giving extinction of the backscattering by the quasi-Gaussian beam. Furthermore, the mechanism for the quasi-zero force is studied theoretically by analyzing the contributions of the kinetic, potential and momentum flux energy densities and their density functions. It is found that all the components vanish simultaneously at the selected ka values for the nulls.

However, for a viscoelastic sphere, acoustic absorption degrades the quasi-zero mean force.

Introduction

Quasi-Gaussian beams have been recently originated in the wave diffraction theory as an exact solution of the Helmholtz equation. The properties of such beams have been analyzed from the standpoint of the classical wave propagation theory based on the complex source point method [START_REF] Keller | Surface Wave Excitation and Propagation[END_REF][START_REF] Deschamps | Gaussian beam as a bundle of complex rays[END_REF][START_REF] Keller | Complex Rays with an Application to Gaussian Beams[END_REF][START_REF] Felsen | Evanescent waves[END_REF][START_REF] Couture | From Gaussian beam to complex-source-point spherical wave[END_REF][START_REF] Norris | Complex point-source representation of real point sources and the Gaussian beam summation method[END_REF][START_REF] Norris | Exact complex source representations of time-harmonic radiation[END_REF][START_REF] Mitri | Quasi-Gaussian electromagnetic beams[END_REF] to obtain the expression of the pressure for the incident quasi-Gaussian beam, and expand it using a partial-wave series [START_REF] Sapozhnikov | An exact solution to the Helmholtz equation for a quasi-Gaussian beam in the form of a superposition of two sources and sinks with complex coordinates[END_REF][START_REF] Azarpeyvand | Acoustic radiation force on a rigid cylinder in a focused Gaussian beam[END_REF]. A quasi-Gaussian beam (Fig. 1) is characterized by an arbitrary waist w 0 and a diffraction convergence length known as the Rayleigh range R z . Moreover, the beam has the form of a superposition of sources and sinks with complex coordinates [START_REF] Sapozhnikov | An exact solution to the Helmholtz equation for a quasi-Gaussian beam in the form of a superposition of two sources and sinks with complex coordinates[END_REF].

In a recent investigation [START_REF] Mitri | Interaction of an acoustical Quasi-Gaussian beam with a rigid sphere: linear axial scattering, instantaneous force, and time-averaged radiation force[END_REF], the scattering (which is an important phenomenon in many applications, for example nondestructive imaging applications [START_REF] Chimenti | Interaction of Acoustic Beams with Fluid-Loaded Elastic Structures[END_REF][START_REF] Schmerr | Ultrasonic Nondestructive Evaluation Systems: Models and Measurements[END_REF], medical imaging etc.), instantaneous and mean radiation forces experienced by a rigid and immovable (fixed) sphere centered on the axis of the beam have been investigated theoretically. Situations have been observed where significant differences have occurred between the quasi-Gaussian beam and the plane wave results for kw 0 < 25, (where k denotes the wavenumber of the incident beam), however, the plane wave results have been recovered when kw 0 > 25 and increases toward → ∞.

The purpose here is to illustrate situations where the radiation force function (which the radiation force per unit energy density and unit cross-section) tends to zero at some of the resonance frequencies of an elastic sphere and specific values of kw 0 . The formalism for the scattering derived previously [START_REF] Mitri | Interaction of an acoustical Quasi-Gaussian beam with a rigid sphere: linear axial scattering, instantaneous force, and time-averaged radiation force[END_REF] is used here to evaluate the acoustic radiation force of a quasi-Gaussian beam on an elastic sphere in a nonviscous fluid, and correlate the backscattering and radiation force function plots. Moreover, the mechanism for the quasi-zero force is studied theoretically by analyzing the contributions of the kinetic, potential and momentum flux energy densities and their density functions. Additional examples are provided for a (polymer-type) viscoelastic sphere. The extension of the previous work [START_REF] Mitri | Interaction of an acoustical Quasi-Gaussian beam with a rigid sphere: linear axial scattering, instantaneous force, and time-averaged radiation force[END_REF] to account for the sphere's elasticity may be helpful for the identification of some conditions where ultrasonic quasi-Gaussian beams may be used to immobilize a sphere (or a spherical shell, a layered sphere [START_REF] Mitri | Acoustic radiation force due to incident plane-progressive waves on coated spheres immersed in ideal fluids[END_REF][START_REF] Mitri | Erratum to: Acoustic radiation force due to incident plane-progressive waves on coated spheres immersed in ideal fluids[END_REF][START_REF] Mitri | The mechanism of the attracting acoustic radiation force on a polymer-coated gold sphere in plane progressive waves[END_REF], or a layered spherical shell [START_REF] Mitri | Calculation of the acoustic radiation force on coated spherical shells in progressive and standing plane waves[END_REF]) in a fluid with negligible viscosity. It is important to identify such conditions using a priori information obtained from theoretical predictions since it may be experimentally easier to verify the existence of zero acoustic radiation forces in quasi-Gaussian beams using solid objects.

Radiation force, its components and density functions

The mean (time-averaged) radiation force of a quasi-Gaussian beam of continuous waves is expressed as [START_REF] Yosioka | Acoustic radiation pressure on a compressible sphere[END_REF][START_REF] Hasegawa | Acoustic radiation force on a solid elastic sphere[END_REF],
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is the Lagrangean energy density, the superscript (1) denotes first-order quantities,
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is the total (incident + scattered) linear velocity potential that is related to the total pressure in the surrounding fluid.

This equation can be rewritten in terms of the following factors [START_REF] Hasegawa | Frequency dependence of the acoustic radiation pressure on a solid sphere in water[END_REF],
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is the momentum flux energy density, and   given by the partial-wave series as,
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where, 0  is the amplitude. The coefficient n R is given by [START_REF] Mitri | Interaction of an acoustical Quasi-Gaussian beam with a rigid sphere: linear axial scattering, instantaneous force, and time-averaged radiation force[END_REF],
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. with the assumption that the surrounding fluid is nonviscous. These functions depend on the sphere's elastic parameters such as the longitudinal c L , the shear or transverse c T sound speed and the mass densities of both the fluid ρ 0 and the sphere ρ s . It should be emphasized that those coefficients are found equivalent to those obtained from the study of acoustic scattering by plane waves (See Appendix in [START_REF] Ayres | Acoustic resonance scattering by viscoelastic objects[END_REF]).

The three components of the radiation force are now expressed as [START_REF] Hasegawa | Frequency dependence of the acoustic radiation pressure on a solid sphere in water[END_REF],
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the characteristic energy density, the axial timeaveraged radiation force of a quasi-Gaussian beam is expressed by [START_REF] Mitri | Interaction of an acoustical Quasi-Gaussian beam with a rigid sphere: linear axial scattering, instantaneous force, and time-averaged radiation force[END_REF],
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where S c = a 2 is the cross-sectional area, and qG Y is the radiation force function, which is the radiation force per unit energy density and unit cross-sectional surface given by [START_REF] Mitri | Interaction of an acoustical Quasi-Gaussian beam with a rigid sphere: linear axial scattering, instantaneous force, and time-averaged radiation force[END_REF],

           1 1 1 1 2 0 4 1 2 . qG n R n R n n n n n n n Y g k z g k z n ka                        (11) 
In the same manner, the form functions for the kinetic energy density K qG , potential energy density U qG and momentum flux density R qG are defined as,
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so the radiation force function is rewritten as,
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To further calculate the radiation force function's distribution versus the polar angle  over the sphere's surface at a particular dimensionless frequency ka, a density function
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The density function   qG y  physically represents the contribution of the radiation force function along a certain direction . Following Eq.( 16), the kinetic 
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The density form functions are expressed as,
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Using the identity for the time-average of a product of two complex functions (p. [START_REF] Hasegawa | Acoustic radiation force on a solid elastic sphere in a spherical wave field[END_REF][START_REF] Chen | Radiation force on a spherical object in an axisymmetric wave field and its application to the calibration of high-frequency transducers[END_REF] in [22]), Eqs.( 20)-( 22) can be directly evaluated at r = a using Eqs.( 4)-( 6), so that the density function
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Numerical results, discussion and concluding remarks

The following examples are considered to illustrate the theory by plotting the radiation force function qG Y for acoustical quasi-Gaussian beam incident upon elastic and viscoelastic spheres immersed in water ( water = 1060 kg/m 3 , c water = 1470 m/s). In addition, the magnitude of the backscattering form-function

 

, , R f ka kz   , (Eq.( 8) in [START_REF] Mitri | Interaction of an acoustical Quasi-Gaussian beam with a rigid sphere: linear axial scattering, instantaneous force, and time-averaged radiation force[END_REF]) is displayed to correlate the radiation force function plots with the backscattering.

The simulations are evaluated in the dimensionless frequency range 0 < ka  10 for selected values of the dimensionless beam waist parameter kw 0 at which the quasi-zero behavior in the qG Y plots is manifested.

The top and bottom panels in Figure 2 show the plots for the backscattering formfunction (Eq.( 8) in [START_REF] Mitri | Interaction of an acoustical Quasi-Gaussian beam with a rigid sphere: linear axial scattering, instantaneous force, and time-averaged radiation force[END_REF]) and radiation force function (Eq.( 11 correspond to nulls, the transmission of sound waves through the elastic sphere in the forward direction (i.e. axial direction  = 0) is total. Moreover, as explained in [START_REF] Sapozhnikov | An exact solution to the Helmholtz equation for a quasi-Gaussian beam in the form of a superposition of two sources and sinks with complex coordinates[END_REF], this range of kw 0  1 values is of particular interest in describing strongly focused or divergent beams. As kw 0 increases, the magnitude of the backscattering as well as the amplitude of the radiation force function increase.

To closely examine the conditions for which the nulls tend to appear (pointed by arrows in Fig. 3) in the plots, the components K qG , U qG , R qG as well as qG Y are evaluated through Eqs.( 12)-( 15) for kw 0 = 0.1. From Fig. 3, it is noticed that all the three components, namely the kinetic energy density, the potential energy density as well as the momentum flux density vanish simultaneously at the selected ka values for the nulls, unlike the case of the zero-force predicted for spherical waves on a rigid sphere (See Fig.

3 in [START_REF] Kido | Mechanisms for the attracting acoustic radiation force on a rigid sphere placed freely in a spherical sound field[END_REF], around ka = 3.9) for which both the kinetic energy density as well as the potential energy density have same magnitudes but opposite amplitudes. In addition, it is noticeable that for a tightly focused (or strongly divergent) quasi-Gaussian beam (i.e., kw 0  1), though the axial radiation force approaches closely to zero, it is not found to be negative (i.e. not a force of attraction), whereas for some situations, theoretical predictions have demonstrated the existence of a negative (pulling) force on a sphere placed in the close proximity of acoustical spherical waves [START_REF] Kido | Mechanisms for the attracting acoustic radiation force on a rigid sphere placed freely in a spherical sound field[END_REF][START_REF] Hasegawa | Acoustic radiation pressure on a rigid sphere in a spherical wave field[END_REF][START_REF] Hasegawa | Acoustic radiation force on a solid elastic sphere in a spherical wave field[END_REF][START_REF] Chen | Radiation force on a spherical object in an axisymmetric wave field and its application to the calibration of high-frequency transducers[END_REF], or in the field of focused Gaussian beams [START_REF] Lee | Radiation forces exerted on arbitrarily located sphere by acoustic tweezer[END_REF][START_REF] Lee | Single beam acoustic trapping[END_REF], Bessel beams [START_REF] Marston | Axial radiation force of a Bessel beam on a sphere and direction reversal of the force[END_REF][START_REF] Mitri | Langevin acoustic radiation force of a high-order Bessel beam on a rigid sphere[END_REF][START_REF] Mitri | Negative Axial Radiation Force on a Fluid and Elastic Spheres Illuminated by a High-Order Bessel Beam of Progressive Waves[END_REF][START_REF] Marston | Radiation force of a helicoidal Bessel beam on a sphere[END_REF], plane waves on an elastic spherical shell close to a boundary [START_REF] Miri | Acoustic Radiation Force on a Spherical Contrast Agent Shell Near a Vessel Porous Wall -Theory[END_REF], or plane waves on a coated sphere [START_REF] Mitri | The mechanism of the attracting acoustic radiation force on a polymer-coated gold sphere in plane progressive waves[END_REF].

Complete acoustical tweezing requires immobilization of a particle in the acoustical field (i.e. producing a mean zero force). However, in practical cases, a pulling force may be required to counteract the effects of possible mechanical instabilities (e.g., hydrodynamic forces, viscous forces, etc.) that could destabilize the trap using a single beam. Further experiments using acoustical quasi-Gaussian beams are warranted to address this problem.

To analyze the behavior of the radiation force function and its density distribution along a selected direction , the kinetic, potential, momentum flux, and radiation force density functions are evaluated using Eqs.( 20)-( 23) for kw 0 = 0.1 at the zeros of qG Y (pointed to by arrows in Fig. 3). The results are displayed in panels (a)-(d) of Fig. 4 for ka = 3.366, 4.806, 6.456 and 7.691, respectively. In all cases, all the density functions including   qG y  exhibit an anti-symmetric behavior with respect to the direction / = 0.5. From Fig. 4, one concludes that both anterior (0  /  0.5) and posterior (0.5  /  1) areas of the sphere experience a force of equal magnitude in opposite direction, resulting in a zero mean force on the sphere, at the selected ka values.

Viscoelasticity inside the sphere's material and its effect on the radiation force function for a quasi-Gaussian beam is further analyzed by introducing complex wave numbers into the theory [START_REF] Schuetz | Acoustic reflection from cylinders---nonabsorbing and absorbing[END_REF][START_REF] Mitri | Acoustic backscattering form function of absorbing cylinder targets (L)[END_REF][START_REF] Mitri | Acoustic radiation force acting on absorbing spherical shells[END_REF]. The curves shown in Fig. 3 for the elastic sphere case, are now computed for a viscoelastic PMMA sphere, for which the plots for the components K qG , U qG , R qG as well as qG Y are shown in Fig. 5 for kw 0 = 0.1. For the first null that have occurred at ka = 3.366 for the elastic sphere case, the inclusion of absorption induces a slight shift to higher ka so that the first minimum in the plot for qG Y occurs at ka = 3.406. Moreover, an increase in the kinetic K qG and potential U qG energy densities counteract the momentum flux density R qG , giving birth to a positive (repulsive)

force. The third null that have occurred at ka = 6.456 for the elastic sphere case (Fig. 3), becomes a minimum in the viscoelastic case that is shifted to lower ka = 6.406. As a general observation, comparison of Figs. 3 and5 show that absorption degrades the zeromean force. Initially, this behavior has been observed for the axial radiation force of a zero-order Bessel acoustical beam on a polyethylene viscoelastic sphere (see Fig. 8 in

Ref. [START_REF] Mitri | Acoustic radiation force on a sphere in standing and quasi-standing zeroorder Bessel beam tweezers[END_REF]), and later discussed to include vortex beams by introducing the notion of acoustical efficiency factors [START_REF] Zhang | Geometrical interpretation of negative radiation forces of acoustical Bessel beams on spheres[END_REF].

Finally, additional computations are performed to examine the effect of varying kw 0 on the qG Y curves. Fig. 6 shows the plots for a PMMA elastic sphere in water for kw 0 = 5, 10 and 25, respectively. As shown previously [START_REF] Mitri | Interaction of an acoustical Quasi-Gaussian beam with a rigid sphere: linear axial scattering, instantaneous force, and time-averaged radiation force[END_REF], when kw 0  25, the qG Y plot closely approaches p Y , where p Y is the radiation force function for plane waves [START_REF] Mitri | Acoustic radiation force acting on absorbing spherical shells[END_REF]. Fig. 6 shows that some resonances in the radiation force function curves tend to appear as kw 0 increases. To study this behavior, the magnitude of the backscattering form function

  , , R f ka kz  
is plotted for the same set of parameters chosen for Fig. 6. Comparison of both figures show that the suppression of the resonance in the radiation force function curve of Fig. 6 around ka = 5.336 for kw 0 = 5, is associated with a reduction in the backscattering direction (Fig. 7). Moreover, the suppression of the qG Y -resonances in Fig. 6 around ka = 7.461 and 8.876 for kw 0 = 5, is associated with a suppression of the scattering in the backward direction (Fig. 7). This behavior has also been observed in the context of Bessel beams [START_REF] Marston | Axial radiation force of a Bessel beam on a sphere and direction reversal of the force[END_REF]; that is a reduction of the scattering into the backward hemisphere reduces the radiation force.

Concerning the case where the sphere is shifted off-axis of the beam and the issue related to transverse stability, recent investigations based on the partial-wave expansion method [START_REF] Silva | An expression for the radiation force exerted by an acoustic beam with arbitrary wavefront (L)[END_REF], and utilizing the arbitrary scattering theory [START_REF] Mitri | Off-axial acoustic scattering of a high-order Bessel vortex beam by a rigid sphere[END_REF][START_REF] Silva | Off-axis scattering of an ultrasound Bessel beam by a sphere[END_REF][START_REF] Mitri | Generalized theory of resonance excitation by sound scattering from an elastic spherical shell in a nonviscous fluid[END_REF][START_REF] Mitri | Arbitrary scattering of an acoustical high-order Bessel trigonometric (non-vortex) beam by a compressible soft fluid sphere[END_REF], have shed some light onto this topic for the case of Bessel beams [START_REF] Baresch | Three-dimensional acoustic radiation force on an arbitrarily located elastic sphere[END_REF][START_REF] Silva | Off-axial acoustic radiation force of repulsor and tractor Bessel beams on a sphere Ieee T Ultrason Ferr[END_REF]. Those studies can be potentially extended to the case of quasi-Gaussian beams, and further experimental data is warranted to support the theoretical predictions and demonstrate the feasibility of particle tweezing. (See also the Supplementary Animation). 
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 1 is the normal component of the velocity. The three components of the radiation force on an elastic sphere can be represented in terms of the total velocity potential   1 

  Neumann functions (or the spherical Bessel functions of the second kind), are the scattering coefficients determined by applying appropriate boundary conditions at the interface fluid-structure,

  functions are defined as,
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 5 )), respectively, for a polymethylmetacrylate (PMMA) elastic sphere ( PMMA = 1191 kg/m 3 , c L,PMMA = 2690 m/s, c T,PMMA = 1340 m/s) for kw 0 = 0.1 (solid line), kw 0 = 1 (long-dashed line), kw 0 = 1.dashed-dotted line), and kw 0 = 2 (dotted line). The arrows along the ka axis in the bottom panel point to the zeros of qG Y that occur at the minima-resonances of the elastic sphere. Visual inspection and comparison of both curves indicate the correlation of the quasi-zero radiation force with the reduction in the backscattering direction; the nulls in the plots for of qG Y for kw 0  1. At those specific ka values that
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Fig. 1

 1 Fig. 1. (Color online) Instantaneous sound pressure (top panel) for a quasi-Gaussian beam

  Fig. 1. (Color online) Instantaneous sound pressure (top panel) for a quasi-Gaussian beam at kw 0 = 5. The bottom panel represents the magnitude of the pressure for k = 25 m -1 .

Fig. 2 .

 2 Fig. 2. (Color online) The plots for the backscattering form-function (top panel) and radiation force function (bottom panel), for a polymethylmetacrylate (PMMA) elastic sphere for kw 0 = 0.1 (solid line), kw 0 = 1 (long-dashed line), kw 0 = 1.5 (dashed-dotted line), and kw 0 = 2 (dotted line). The arrows along the ka axis in the bottom panel point to the zeros of qG Y that occur at the minima-resonances of the elastic sphere.

Fig. 3 .

 3 Fig. 3. (Color online) The plots for the the components K qG , U qG , R qG as well as qG Y for

Fig. 4 .

 4 Fig. 4. (Color online) The plots for the density functions for an elastic PMMA sphere for

Fig. 5 .

 5 Fig. 5. (Color online) The same as in Fig. 3, however the PMMA sphere is viscoelastic (sound absorptive). The (red) curve with triangles ( ) corresponds to the case of noabsorption and is added for convenience.

Fig. 6 .

 6 Fig. 6. (Color online) The qG Y plots for a PMMA elastic sphere in water for kw 0 = 5, 10

Fig. 7 .

 7 Fig. 7. (Color online) The magnitude of the backscattering form function   , , R f ka kz  
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