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FROM CHAOS TO RANDOMNESS VIA GEOMETRIC
UNDERSAMPLING

RENE LozI 1, INA TARALOVA?

Abstract. We propose a new mechanism for undersampling ahaoiinbers obtained by
the ring coupling of one-dimensional maps. In theecof 2 coupled maps this mechanism
allows the building of a PRNG which passes all NII=Bt.

This new geometric undersampling is very effectfge generating 2 parallel streams of
pseudo-random numbers, as we show, computing digréfair properties, up to sequences of

2
10 consecutives iterates of the ring coupled mappwmgch provides more than
3.35% 10°random numbers in very short time.

Résumé. Nous proposons un nouveau mécanisme de sous-dicimratge de nombres
chaotiques obtenus par couplage en anneau dednsatnidimensionnelles. Dans le cas de 2
fonctions couplées, ce mécanisme permet de corestimi Générateur de Nombres Pseudo-
Aléatoires (GNPA) qui satisfait tous les tests NIST

Ce nouveau sous-échantillonnage géométrique esteifficace pour générer deux séries
paralleles de nombres pseudo-aléatoires, comme m@usnontrons en étudiant tres

2
soigneusement leurs propriétés pour des suitesodeones allant Jusqu’é\lo1 nombres

scutifs de I'applicat , iefourni 3.35x 1(¢°
consécutifs de I'application couplée en anneaujuwiefournit plus de- nombres
aléatoires en un temps trés court.
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INTRODUCTION

During the last decade, it has been emphasizedthiatindersampling of sequence of
chaotic numbers is an efficient tool in order toldhypseudo-random number generators
(PRNG) [14]. Randomness appears to be an emergepenty of complex systems of
coupled chaotic maps [15]. Several kinds of couploa;n be considered as ultra-weak
coupling or ring coupling,... . An ultra-weak couggirrecovers chaotic properties of 1-
dimensional maps [11] when computed with floatingnibers or double precision numbers.
Chaotic undersampling with thresholds based oncomeponent of the coupled system adds
random properties to the chaotic sequences. Ddubdshold sampled sequence (i.e., using
both thresholds of different nature) improves sughdom properties [13]. Ring coupling
deals wherp 1-dimensional maps are constrained on a torustig,coupling can directly
provide random numbers, without sampling or mixipgyvided the numbep of maps is
large enough, although it is possible to combires¢hprocesses with it. However in lower
dimension 2 and 3, the chaotic numbers are notdexjubuted on the torus. Therefore we
introduce a particular “geometric” undersamplingdxhon the property of piecewise linearity
of the invariant measure of system. This new genmahdersampling is very effective for
generating parallel streams of pseudo-random nwsmnign a very compact mapping.

In Section 1 we briefly recall properties of chaatappings, when used alone or ultra-
weakly coupled. Section 2 describes the route frdmos to randomness via chaotic
undersampling, discovered during the last decadeSdction 3, we introduce geometric
undersampling in the scope of ring coupled mapping.

1. COMPUTATION OF CHAOTIC NUMBERS

1.1. Disappointing chaotic numbers

Chaos theory studies the behavior of dynamicaksystthat are highly sensitive to initial
conditions, an effect which is popularly referredas the butterfly effect. Small differences in
initial conditions (such as those due to roundimgprs in numerical computation) yield
widely diverging outcomes for chaotic systems, sgimdy long-term prediction impossible in
general. This happens even though these systentemeninistic, meaning that their future
behavior is fully determined by their initial cotidns, with no random elements involved. In
other words, the deterministic nature of theseesystdoes not make them predictable. The
first example of such chaotic continuous systerihedissipative case was pointed out by the
meteorologist E. Lorenz in 1963 [10].

In order to study numerically the properties of therenz attractor, M. Hénon an
astronomer of the observatory of Nice, Francepthiced in 1976 a simplified model of the
Poincaré map of this attractor [8]. The Lorenzaatior being imbedded in dimension 3, the

corresponding Poincaré map is a mapping from tleeR?2 into R2. Hence the Hénon
mapping is also defined in dimension 2 and is aateat to the dynamical system

{xm =y, +1-ax
Yot = bX,

which has been extensively studied since thirtyysexrs.
More simple dynamical systems in dimension ongherintervalJ =[—1,:I] UR into itself

: (1)

Xn+1 = fa( Xn )' (2)
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corresponding to the logistic map

f.=L(x)=1-ax, (3)
or the symmetric tent map
f =T.(x)=1-4, (4)

have also been fully explored in the hope of geimregaandom numbers easily [23]. However
when a dynamical system is realized on a compudiEguloating point or double precision
numbers, the computation is of a discretizationgmehfinite machine arithmetic replaces
continuum state space. For chaotic dynamical systensmall dimension, the discretization
often has collapsing effects to a fixed point oshort cycles [9, 5].

It seems that the computation of numerical appraxioms of the periodic orbits leads to
unpredictable and somewhat enigmatic results. A&s €a E. Lanford Il [9] “The reason is
that because of the expansivity of the mappinggtiesvth of roundoff error normally means
that the computed orbit will remain near the trukitowith the chosen initial condition only
for a relatively small number of steps typicallytbé order of the number of bits of precision
with which the calculation is done. It is true thhe above mapping like many ‘chaotic’
mappings satisfies a shadowing theo(gee[19, 20) which ensures that the computed orbit
stays near to some true orbit over arbitrarily éangimbers of steps. The flaw in this idea as
an explanation of the behavior of computed orlsithat the shadowing theorem says that the
computed orbit approximates some true orbit butnecessarily that it approximates a typical
one.”

The collapsing of iterates of dynamical systemsabiteast the existence of very short
periodic orbits, their non constant invariant measand the easily recognized shape of the
function in the phase space avoid the use of omesional map (logistic, baker, or tent, ...)
as a Pseudo Random Number Generator (see [17kiavay).

Remark 1.1 However, the very simple implementation in compyseogram of chaotic
dynamical systems led some authors to use it ase@ of cryptosystem [3, 2]. In addition it
seems that for some applications, chaotic numhersnare efficient than random numbers,
that is the case for evolutionary algorithms [24], @ chaotic optimization [1].

In this paper we show how to overcome the poorityualf chaotic generators using
geometric undersampling. This special undersamplwegintroduce in this article is one
among others undersampling processes we have dthditore. In order to explain the
difference between these processes we give in2Sztrief survey of them. Before doing this
survey, we have to show how to stabilize the cloaptoperties of chaotic number when
realized on a computer.

1.2. Long periodic orbits for ultra-weakly coupled tert map

The first step in order to preserve the genuinetbhgroperties of the continuous models
in numerical experiments is reached consideringawiteak multidimensional coupling @f
one-dimensional dynamical systems instead of salege-dimensional map.

1.2.1. System of 2-coupled symmetric tent map

In order to simplify the presentation below, we asean example the symmetric tent map
(4) with the parameter valwe= 2, later denoted simply &seven though others chaotic map



Submitted for publication IRroceedings of European Conference on IlteratiorofhéECIT

2012), Ponta Delgada, Acores, Portugal, Septemiiér 2012. (to be published European

Series in Applied and Indsutrial Mathematics, ESARfoceedings

of the interval (as the logistic map, the bakendfarm, ...) can be used for the same purpose

(as a matter of course, the invariant measureeo€tiaotic map considered is preserved).
Whenp = 2, the system is simply described by Eq. (5)

()

{Xnﬂ:(l_gl)f(xn)'*'glf(yn)
yn+1:82f(Xn)+(1_82)f(yn)’

We use generally, =107, €, = 2¢,when computations are done using floating points or

£, =10"for double precision numbers. In both cases, wites¢ numerical values, the

collapsing effect disappears and the invariant oreasf any component is the Lebesgue
measure [11] as we show below. In the case of ctatipn using floating points, starting
form most initial condition, it is possible to firrlMega-Periodic orbit (i.e. with period equal
to 1,320,752). When computations are done with opiecision number it is not possible to
find any periodic orbit, up ton=5x10" iterations. In [11] the computations have been
performed on a Dell computer with a Pentium IV rapmocessor using a Borland C compiler
computing with ordinary (IEEE-754) double precisimmmbers.

15
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Figure 1. Density of iterates oR-coupled symmetric tent maps,
double precision, N, =10°, ¢£,=2¢, &=10" to 10°,
N,., =10, initial valuesx, = 0.330, y, = 0.338756-.
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When &, converges towards 0, the iterates of each compoqeandy, of equation (5)
converge to the Lebesgue measure (Fig. 1).
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1.2.2. System ofp-coupled symmetric tent map

More generally, the coupling pfmaps takes the form

Xpa = F(X,) = AL (X, ), (6)
where
f(x;) X
fX)=| o %= @
fF(x) Xy
and
i=p
gl,lzl_zgl,j €1 o €pa €1p
j=2
i=p
€1 &~ '_Z € " Eapa €ap
A= . .J:LJ#Z . . ’ (8)

j=p-1

oot Enp 'Z €ni

p,1

i=p
with & =1- z &; on the diagonal (the matriA is always a stochastic matrix iff the
j=1,j#i
coupling constants verify, ; >0 for everyi andj).

It is noteworthy that these families of very weaktbupled maps are more powerful than
the usual formulas used to generate chaotic segagntainly because only additions and
multiplications are used in the computation procassdivision being required. Moreover the
computations are done using floating point or deylrecision numbers, allowing the use of
the powerful Floating Point Unit (FPU) of the modlenicroprocessors. In addition, a large
part of the computations can be parallelized takiagvantage of the multicore
microprocessors which appear on the market of faptonputers.

Moreover, a determining property of such coupleg nsathe high number of parameters
used (px(p-21)for p coupled equations) which allows to choose it pbeai-keys, when used

in chaos based cryptographic algorithms, due tchitbke sensitivity to the parameters values
[15]. It at be shown also, that using control tlys@chniques, synchronization of two systems
(6), withp = 2 or 3, can be reached via exact (dead-beat3yonptotic observers [7].

1.2.3. Approximated distribution function

In order to assess numerical computations morerataty, we define an approximation
R. .« (X) of the invariant measure also called the probatdlistribution function linked to the

1-dimensional maj, when computed with floating numbers (or numberdauble precision).
In this scope we consider a regular partitidiMasmall intervals (boxes) of J defined by
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a=—1+%i, i =0,M (9)

r=[s . saf .i= OM-:and 1, =[s,,.d (10)

the length of each box is equal to& and ther, intervals form a partition of the interval

M-1

J=Un @

All iteratesf ™(x) belonging to these boxes are collected, aftarastent regime of)
iterations decidea@ priori, (i.e. the firstQ iterates are neglected). Once the computation of
N + Q iterates is completed, the relative number ofites with respect t/M in each box;
represents the valu€, (s). The approximated®, (x) defined in this article is then a step

function, withM steps. Asvl may vary, we define
M
Pun(8) =5 (#1) (12)

where #; is the number of iterates belonging to the interva P,  (X) is normalized to 2 on
the intervalJ .

Pun (X =Pyn(s) OxOr, (13)

In the case ofp-coupled maps, we are more interested by the biigion of each
component(xl, X, X, xp) of X rather than the distribution of the variabdétself in J°.

We then consider the approximated probability distron function PMYN(X'.) associated to

one among several components=0X) defined by (6), which are one-dimensional maps. |
this paper we use equaly,.. for M and N, for N, when they are more explicit.

The discrepancie€; (in norm L), E, (in norm L,) and E, (in norm L) between

iter

v (X') and the Lebesgue measure, which is the invariasore associated to the

Nd\scr iter

symmetric tent map, are defined by

Er e ) =R, 0O -1 (14)

v (X) -1

disc’ Viter

(15)

) =|R

Zde\sc vNiter

L

iter

Bt () =[P, OO -1 (19)

As previously said, Fig. 1 shows the convergencethef density of iterates of the
components of 2-coupled symmetric tent maps to_#i®esgue measure when converges

towards 0. Moreover, for a fixed value df,,. when the numberN,, increases, the

discrepancy betweerR, NiIer(x") and the Lebesgue measure is expected to converge

disc 1

towards 0, except if there exist periodic orbitinite length lower thanN,,, which capture
the iterates. In this case whatsoever the valueNgf is, the approximated distribution

function converges to the distribution functiontbé& periodic orbit, if it is unique, or to the
average of the distribution functions of the peigaatbits observed, if not.
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Figure 2 shows the errorBLNdlsc’Nner(%) versus the number of iterates of the approximated

distribution functions, with respect to the firstiahle x*, for 2 and 3-coupled symmetric tent
map. Same results are obtained for the other Vagad or x°.

The 3-coupled symmetric tent maps model consideezd with very very small value of
€1, seems a sterling model of generator of chaotichausmwith a uniform distribution of
these numbers over the interv@l It produces very long periodic orbits: Gigapeitodrbits
(i.e. with length of period betweeh®’ and 10'*) when computed with simple precision
numbers, and orbits of unknown length when compwtéti double precision numbers.
However these chaotic sequences are not at albnasgquences.

0,5 1

o

b _,-\)Iogl(err(_;LLl)l S
(6] w ol N ol [l ol

-4 F . . . . . . . .
4,0 50 6,0 70 8,0 90 100 11,0 12,0 13,0

—— 2 coupled tent maff§ MN=6— 3 coupled tent maps

Figure 2. Error E, (x) for 2 and 3-coupled
symmetric tent map, double precisidh, =10,
g=10", &=2¢, N, =101t010°. Initial values

iter

x, = 0.330, X2 = 0.338756:, X = 0.33135342.

2. THE ROUTE FROM CHAOS TO RANDOMNESS VIA CHAOTIC UNDERAMPLING

Chaotic numbers are not pseudo-random numbers $edtha plot of the couples of any
component(xL, x:m) of iterated points(X,, X,.,)in the corresponding phase plane reveals

the mapf used as one-dimensional dynamical systems to gendhem via Eq. (6).
Nevertheless, we have recently introduced a famwilgnhanced Chaotic Pseudo Random
Number Generators (CPRNG) in order to compute ifalsteg series of pseudorandom
numbers with desktop computer [13, 14]. This fanmdybased on the previous ultra weak
coupling which is improved in order to conceal thaotic genuine function.

In this Section, we describe briefly how works thirst process of undersampling, the
chaotic one.

2.1. Chaotic undersampling
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In order to hidd in the phase spa((ed1 , ){m) two mechanisms are used. The pivotal idea
of the first one mechanism is to sample chaotictlly sequencédx), X\, x,, ..., X\, X..;,...)
generated by théth componentx', selectingx, every time the valuex™ of the m-th

componentx™, is strictly greater (or smaller) than a thresh®ld J, with | # m, for 1< 1, m
<p.
That is to say to extract the subseque(uq'%), >¢m, >{h),..., )'g\q), qum ,...)denoted here

(%ZX_Z x_qa ) of the original one, in the following way
givenl<sl,m< p,l#m
n(_l) =-1 (17)
Xy = Xy, 0 Withng = !\éll\l]r{ r> qq_l)‘){” >'}'

The sequenceX,, X, X, -*+, X, X ) is then the sequence of chaotic pseudo-random

q1 Tg+l
numbers.
The above mathematical formula can be best undetstoalgorithmic way. The pseudo-
code, for computing iterates of (17) correspondol iterates of (6) is:

XO:(xé,)é,... ,>§l,>§): see

n=0;9=0

do { whilen <N
do{while(x;“sT)compute(x,f,ﬁ,...,>§f*l,>gf);n++}
compute(ﬁ,xf,...,ﬁl,ﬁ); thenn(q)=n; Zﬁq) n++q++}

This chaotic sampling is possible due to the inddpace of each component of the
iterated pointsX versus the others [12].

Remark 2.1. Albeit the numberNSampl, of pseudo-random numbeg corresponding to

the computation oN iterates is not knowa priori, considering that the selecting process is
again linked to the uniform distribution of therages of the tent map od, this number is

. 2N
equivalent to——.
1-T

2.2.  Chaotic mixing

A second mechanism can improve the unpredictabilftghe pseudo-random sequence
generated as above, using synergistically all tmponents of the vectoX, , instead of two.

Givenp - 1thresholds
T<T,<--<T_,0J(18)

and the corresponding partitiody =[-1,T], 3, =|T,.T[, J, =[T, . T forl< k< p-land
Jpu=[ T, dl L with

J=lJ3J (19)
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(note that this partition oflis different from the regular previous one (11)dider the
approximated distribution function).

The second simple mechanism is based on the chaotlersampling combined with a
chaotic mixing of thep-1 sequences

1 1 1 1 U1 2 L2 2 2 U2 p-1 p-1 p-1 p-1  p-1
(xo,xl,xz,...,xn,xnﬂ,...), (xo,xl,xz,...,xn,xn+1,...),..., (x0 X XS L X ,xn+1,...)

using the last on(xf, XE 0 XS ooy XB X ) in order to distribute the iterated points with

' Mnoy Mpsly

respect to this given partition, defining the smmce(g,z,x_z, S Xy Xars ) (in pseudo-
code) by
X, :(xé>§ o X ,>§): see
n=0;9=0
do{ whilen <N
do {while(xnp O Jo)compute(x,f, X >§) N+ +}
compute(x,i,xf e >§)
letk be such thak? 0 J,; thenn(g)=n; X = >§q) n++q++

Remark 2.2.In this case alsoNSamp),, is not knowna priori, however, considering that

the selecting process is linked to the uniformritistion of the iterates of the tent map dn
2N

1-T,

one hasNSamp|,, =

Remark 2.3.This second mechanism is more or less linkedegathitening process [26, 27].

Remark 2.4.Actually, one can choose any of the componentsder to sample and mix the
sequence, not only the last one.

2.3. Enhanced chaotic undersampling

On can eventually improve the CPRG previously mirced with respect to the infinity

norm instead of the, or L, norms because the  norm is more sensitive than the others
ones to reveal the concealefd 3]. For this purpose we introduce a second kihthieshold

T'ON, together withT,---,T,_,[J Jsuch that the subsequenge, X, X,, -, X, xq+1,---) is
defined (in pseudo-code) by
XO:(xé,>§,... o ,>§): see
n=0,9=0
do{ whilen <N
do {while(ns Neny*T' and X0 Q,)
computgx:, 3¢ ... . X, ) n+ +}

compute(x}],xf ,)ﬁ“,)ﬁ)
letk be such thak” O J,
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thenn(g)=n; x =X :n++q++
Remark 2.5.1n this case alsoNSampl, is not knowna priori, it is more complicated to give

an equivalent to it. However, considering that $leéecting process is linked to the uniform
distribution of the iterates of the tent map énand to the second threshdly it comes that

NSampl, < Mi 2N E :

1-T, T
Remark 2.6. The second kind of threshol@' can also be used with only the chaotic
sampling, without the chaotic mixing.

2.4. A window of emergence of randomness

In [14, 15] we show that if one consider the errdts, (x)=H PNdisc,Nne,()Q_luLl'

disc » ' Viter

S (x):H R,.. Niter(x)—lHLZ and Een N, (x)=H R,.. NiIer(x)—lHLw together with the

iter iter

correlated distribution functions which assess ititdependence of each component of the
iterated pointsX, versus the others, a window of emergence comescliato sight for the

valuese[D[107°,107 ], in the case = 4 ands, ; = =ig,. We have also performed NIST

test developed by the National Institute of Staddand Technology [22], in order to check
carefully the random nature of such numbers [6].

Then there is a route from chaos to randomnessgudiie process of chaotic
undersampling.

3 GEOMETRIC UNDERSAMPLING

The previous route from chaos to randomness usestichundersampling. It is possible to
couple in another way tent maps on the torus® =[-1,1” ORP", which can directly provide

random numbers, without sampling or mixing, prodigeis large enough, although it is
possible to combine these processes with it. Afeatiewing this ring coupling in high
dimension, we introduce the new geometric underagpn order to obtain randomness
with small values op (for examplep = 2).

3.1.Ring coupled mapping

Consider the mapping defined on frdimensional torusvi, : J P JP

Xrl1 )¢+1 1_2X’1‘+k1xX2”
2 2 1-2|xq +k, % x

M| T || s TS (20)
Xr? Xr?+1 1_2Xnm+kmxX,11

with the parameterk Of 1,3 . In order to confine every variable on J° we do, for every
iteration, the transform

10
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| if(.xr{+1 <-1) add 2 21)
if(x!,,>1) substract :

n+1

The particularity of this coupling is that eachigate x' is coupled only with itself and

x!*!  as displayed on Fig. 3a. At first glance, in ortieenrich the random properties of the
map, it could seem interesting to add supplemertiays couplings between these variables,
as shown on Fig. 3b. However in this case a croaping is inappropriate because it would
increase the determinism and therefore deteridiagestatistical properties which we are
looking for.

To evaluate the random properties of these gensrdte set of NIST tests have been used
again.

©

R
A

) ’f \‘ 2
p—1 2 -1 T X
kP j k kP S j k2

o 3 £ "3
1 T P T
SLTE S TG

Figure 3a(left). Ring coupling between the variables.
Figure 3b (right). Cross coupling between the variabies

The random properties validations of both a 4-dismamal system and a 10-dimensional
one have been carried out [4]. For this purpose, dhaotic carrier output needs to be
quantised and binarized (0 and 1) in order to bielated as being random using NIST tests.
Therefore, different methods of binarization (catiwg real signals to binary ones) have been
implemented and compared.

A first 1-bit binarization has been applied to system (21) output, defined ag = x!

with jO[1,p]
if >0) b=1
f(y,20) 22)
else b= 0

The results showed to be highly sensitive to thme tgf binarization. Eventually, after
testing several different methods, a 32-bit biretion has been chosen as being the most

suitable solution. Because the system is confinethé p-dimensional torusJ®, 31 bits are
assigned to represent the decimal part, and b bitet sign. To illustrate the results, the NIST

tests for the 4-dimensional system with parameteis¢ 1) are shown in Fig. 4. The

chosen conditions are: length of the original segae=10"bits, length of bit string 20’ bits,
quantity of bit strings = 100. The output of thesteyn has been arbitrary chosen as being:

y=X.

Furthermore, as the results show their independé&oaoe the initial conditions, every bit
string in this test is the resulting sequence diiftierent randomly chosen initial condition.
The criterion for a successful test is that faealue has to be superior to the significance
level (0.01 for this case). For the present moaklests were successful thus the sequences
can be accepted as being random.
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1l c2 C3 4 Ch Ce CY¥ CB CH 10 P-VALUE PROPORTION STATISTICAL TEST

g 5 13 o o 12 6 1% 8 11 0.102528 96100 Freguency
b e b 5 5 10 10 1d 14 4] 8 6 0.437274 99,100 ElockFraeguency
13, 5 g 11 10 5 11 11 13 15 0.41%021 o7 /100 Cumul ativesums
g 6 17 10 1o 3] 7 011 1% 10 0.2133008 G700 Cumulativesums
5 g8 17 135 4] g 6 14 10 11 0,075719 0o/ 100 RUNS
11 11 1o 13 ) 5 g 8 15 1o 0.5§37110 S9,/100 LDnEestRun
5] g8 17 14 1o g o 15 i 6 0.122325 SO 100 Ran
510 9 13 14 1o ] 8 12 10 0.991468 S9,/100 FFT
T4 15 5 1o 14 10 11 9 4 5 0.191e87 S8/ 100 Monover lappingTemplate
1g- 8 11 5 & 13 712 10 11 0.964295 59,100 overlappingTemplate
13 1 4] 8 7 1o 15 10 8 9 0.455537 100100 universal
S 10 12 5 1¢ 11 5 14 11 10 0.818537 7100 ApproximateEntropy
(5] 5 (4] 5 g 11 5 5] 8 5 0.637119 65,66 RandomExcursions
3 5 ] 7010 10 ] 5 4 6 0.407091 65/66 RandomExcursionsvariant
£ 8 8 12 12 9 13 8 13 14 0.319084 100100 sariall
4 F Ad2n 1gs 12 g 2 14 9 12 0.028817 100100 Linearcomplexity

Figure 4. Example of NIST Test fok' = (-1)*" ,i=1,4, each sequence of
components satisfies the NIST test for randomness.

3.2.Low dimensional model

Although the system (20) is a good PRNG whek 4, in lower dimension 2 and 3, the
chaotic numbers are not equidistributed on thest¢sae Fig. 5).
In order to improve the ring coupling mechanismaw dimension, we introduce now a

very new type of undersampling based on geomettara of the invariant measure. We
present this very new mechanism which allows thergence of randomness from chaos, in

the simplest case, the 2-dimensional ring mappihgon the square?, with k* = k* = 1.
Let M, be defined by

Xhy =12/ %] + % (23)
X =1=2 %+ %
i j -
with { T(wa<-1) add 2 (24)
if ()., >1) substract :

3.2.1.Critical lines.

Figure 5 shows the distribution of the iteratesydtem (23) (the transient of the fi|5|596
iterations has been cut off). It can be observed tie attractor contains regions where the
point density is lower, and two lozenge-like holiss possible to define critical lines which

form a partition of the squard®. The critical lines CL [18] are singularities dfreension 1
and represent an important tool for the analysisasiinvertible maps. The holes on Fig. 5 are

completely delimited by segments of the criticahek CL*,CL>*,CLS?,CL*, and
CL?,CL®,CLS*, CLY®, defined below.

The critical lines separate regions of the phaseespvith different number of preimages
(backward iterates). In the case of piecewise tineaps, they are the first iterates of the lines
of discontinuityCL_, of the system.

For the two dimensional system (23), there are fgnaups of critical linesCL with
preimagesCL_, given by
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Critical lines A: CL, : x* =0
and cL:x =-2¢ -1 if ¥ >0
CLM: x*=2x-1 if ¥¥<O0
Critical lines B: CL%, : x' =-1
CLM: x*=2x if ¥<Q ¥0[q0]
CLP*: x’=-2x'-2 if ¥>0Q XOF + 0§

CLP®: x*=2x-2 if ¥<Q ¥005]1
CL: x*=-2x" if ¥>0 ¥OF a5

and

Critical lines C: CL, : x* =0

CL51:x2:—1(><1+1) if ¥>0
and 12
CL*: x* =5 (X +1) if X <0

Critical lines D: CL®, : x> =-1

cL™: x2=XEl if x'<0, ¥0[00]
%—1 if x>0 x0F & 03§

oL ==X if >0, ¢} a5

CLP?: = -
and

1
CLP: X?:XE+1 if x<Q x0[05]

(25)

(26)

(27)

(28)

13
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Figure 5. Critical lines of the mapM,on the torusJ® (a

square) [25].

3.2.2.Markov partition.

Our aim is first to use the partition defined bggh critical lines in order to do a cell-to-
cell analysis and, by the means of a Markov processompute explicitly the invariant
measure of iterates associated to system (23). &igudisplays the 32 sub-regions of the

squareJ?, labelled from a to p and a’ to p’. For claritythie presentation, we have labelled

from (1) to (IV), the four quadrants af°.

Figure 7 a (left). The nine regionatoi of quadrant (I)
Figure 7 b (right). The imagesM, (I) of the nine regions of quadrant (1).
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Straightforward computation shows that the imadge=ach region, by the mappird,, is

either one, two or three regions of the same pamtiof the squarel®. Figures 7a and 7b
display the images of the regions embedded initsiequadrant (I). Figures 8a and 8b display
the images of the regions embedded in the secordranta(ll). The colour is the same for
every region and its corresponding image, excegmivo regions are mapped on the same
region, in this case there is a mix of colourstmmdommon part of the image.

Figure 8 a (left). The seven regiorjgo p of quadrant (I1)
Figure 8 b (right). The imagesM, (Il) of the seven regions of quadrant (l1).

The overall correspondence between regions of #ntipn and their image is given by
the Markov matrixM, which is displayed on Table 1. The computatiothef coefficients of

this matrix, which are rational numbers, is basedhe ratios of surfaces of bounded regions.

alblecfld]le|]flglh]|]l |JlKk|]l | m[n]Jo|pla|Pl|l|ld|le | Pl | PP ]|n |0 |p
a x ¥ x
b t]ls]|sfu 5
[ ¥ | ¥ ]x
d t |s 5 | u 5
(3 plalplalr |glplglp
i 5 |u 5 5 L
Z XLy | X
h 5 u |s|s|t
1 X ¥ X
] Yy | 2z ¥
Kk X ¥ X
1 X ¥ X
m vioflolw]o]o]w
n x |y |x
o X ¥ X
E. ¥ z i
a’ X ¥ X
b 5 u 5 g L
< X ¥ X
[ t]ls]|sfu 5
€ plalplqglrialplglp
f* s | u s |s |t
o X ¥ X
h’ t |s s |u 5
1’ X ¥ X
i’ ¥ z v
Kk’ X ¥y X
|5 x|y | x
m’ v |lo 0| w 1] 1] ¥
n’ X ¥ X
o x| v ]x
P’ ¥ |z v

Table 1.Markov Matrix M, .
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In order to display the82x 32 matrix M, on one page, we have labelled the coefficients

using letters which are not related to the namekefegions.

_1. _i.q__3. _ 4
12’7 200" 20 20
S:E;t:_z;u :f;v:_l; (29)
9 9 9 6
1 1 3 2
W==ix==y=—;z==;
3 5 5 3

3.2.3.Exact computation of invariant measure associatetb M,

With the help of Markov matrixM_, it is straightforward to compute explicitly the
invariant measure associated M, . For every region on Figure 6, we define a qugruaft
initial points calledQ', i=1,32 uniformly scattered on it, and we compute its acefS .
We normalise both quantities ' Q' =|Q} =4, and ) 'S =|§= 4 Hence it is possible to

define the density of iterates on each region.

d' =9 (30)
S
Ql dl
Let Q=| : | and D=| : | the vectors of quantities and densities obtairgalying
Q32 d32
(30) to every region. Then starting from an arbjtriitial repartition of points onJ?, say
Q
Q,=| : |, and applying repeatedly the equation
O32
Qm+1 = Mtan (31)
The sequence of vectd{@m}} oy converges to a limit vectd@which satisfies
Q=M;Q (32)

and gives the invariant measure, the density o€lwts the vectoD, using (30).
Numerical results:
Q 1/8
Starting fromQ,=| : |=| ! |, Q is obtained rapidly, as
X 1/8
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Qoo 1/14 U0 10/7

Q| |3/28 diso | |5/7

Q| |1/14 deoe | | 20/7

Q| [3/28] » which gives using (30), di, | 577 :
Qu=| i || i [=Q Dwo=| i |=| i [=D

Qx| |47 dz | |12/7

Qx| |3/28 dis | 277

o d| |20

Qz) M7 az,) \°'7

Remark 3.1. Computing directly this density, iterating (23) tgp 10" iterates leads to the
same result.

3.3 Geometric undersampling

The exact computation of the densﬁ/of the invariant measure shows that this density i
constant on each region. The geometric undersamplingess consists in magnifying a

square G included in one region (as for examplestjeareG =[0.36,0.64x[ 0.36,0.4:
included in region m on Fig. 9), up to the sizéhef squarel®.

Figure 9. The squareG =[0.36,0.64x[ 0.36,0.4: in
which iterates of (23) are geometrically undersaupl

3.3.1.Algorithm of geometric undersampling

Let G =[>g1 : ﬂ X[ X, ﬂ the square in which we will undersample the iegit(23) and,

1 1
L XY e XY
Xmean 2 1 mean 2

. In algorithmic form, the pseudo-code, to geongetri
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undersamplé iterates of (23) is

X0=(x§,,>§): see
n=0;
do { whilen <N compute(xﬁ )qf) jif ()gﬁ)gf)D G then

X = hﬂ x;} 7= x; %;} G=q+Lin + 4]

Remark 3.2.In this case, the undersampling process providesstreams of pseudo-random
numbers.
Remark 3.3. In this case,NSampl, the number of geometrically undersampled iterates

not knowna priori, however, considering that the selecting procgedmked to the uniform

2
distribution of the iterates of the tent map dh, one hasNsSamp|, :@x d', where

d™ is the density of the measure in region m.

3.3.2.Numerical tests

We have applied this process in the case of thersdBaof Fig. 9, withN =10% which
gives NSamp),, =3.35x 10°. Figure 10a displays the densities of the sevgions j, k, |, m,
n, o, p of quadrant (Il) which are equal to

g =8g=2.q=25-12
AN A 4 7’
a=2.q0=2.g=0

71 71 71

\llll"u“"“l" o
i

A
l'mlllllilmm“"y,"“ X

| e e e ] e ) ) e e e e ey | | e e ] e e ) e ) e e e |

Figure 10 a (left).densities of the seven regions j, k, I, m, n, of guadrant (I1)
Figure 10 b (right). Uniform density of iterates in the square

G =[0.36,0.64x[ 0.36,0.60f quadrant (lI).
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Figure 10b shows the uniform density of iterates ithe square

G =[0.36,0.64x[ 0.36,0.60f quadrant (ll). On Fig. 11 the square is magdifigo to the
size of the squard?. The vertical scale is fitted near the invariasbesgue measure.

Figure 11.Uniform density of iterates of the square
G =[0.36,0.64x[ 0.36,0.6- magnified to the squara”.

We have also used NIST test to confirm the randawpgoty of the geometrical
undersampling process. They are all successful {2

RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF PASSING SEQUENCES
Cl C2 C3 C4C5C6C7C8CY C10 P-VALUE PROPORTION STATISTICAL TEST
12 9 7 91211 8 11 13 8 0924076  99/100 Frequency

1 4 34 7 5 916 16 35 0.000000* 100/100  BlockFrequency

9 91012 11 8 9 10 10 12 0.996335  99/100 CumulativeSums

10 91212 9 710 10 9 12 0983453  99/100 CumulativeSums

11 12 11 8 12 7 12 6 10 11 0.883171 99/100  Runs

9 913 8 9 817 8 10 9 0595549  100/100 LongestRun

6111111 9 8 814 9 13 0.798139 100/100 Rank

1510 7 8 8 81516 7 6 0.153763  97/100 FFT

12 910 13 9 11 7 15 4 10 0.474986 98/100  NonOvetlappingTemplate

12 610 613 6 8 8 17 14 0.145326  99/100  OvetlappingTemplate

18 12 13 11 910 5 8 9 5 0.145326  99/100  Universal

11 8 12 11 11 14 8 10 7 8 0.883171 99/100  ApproximateEntropy

3569 4 37 5 6 11 0.145326 59/59  RandomExcursions

7 6 62 6 76 7 4 80637119 59/59 RandomExcursions

2 6 45 5 610 6 7 8 0334538 59/59  RandomExcursionsVatiant
8151312 9 1213 5 9 4 0.224821 98/100  Setial

9 9 61313 7 12 9 10 12 0.798139 99/100  LinearComplexity

The minimum pass rate for each statistical test with the exception of the random excursion (variant) test is
approximately = 96 for a sample size = 100 binary sequences.
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Figure 12. Geometrical undersampling: each sequence of coemisn
satisfies the NIST test for randomness.

CONCLUSION

We have proposed a new mechanism of undersampliogaaitic number obtained by the
the ring coupling mechanism of one-dimensional mépshe case of 2 coupled maps this
mechanism allows the building of a PRNG which pasdeNIST Test.

This new geometric undersampling is very effectise generating 2 parallel streams of
pseudo-random numbers, as we have shown, compaérefully their properties, up to

sequences 010" consecutives iterates of (23) which provides mbant3.35x 10°random
numbers in very short time. In a forthcoming paperwill test the 3-dimensional case.
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